
These studies highlight the complexity of
considering both the cell-type specificity
and the time course of activity-dependent
gene and protein expression duringmem-
ory formation; such detail will be required
to inform therapeutic targeting of specific
brain circuits dysregulated in neurological
conditions impacting learning and
memory.
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The Redemption of
Noise: Inference with
Neural Populations
Rodrigo Echeveste 1 and
Máté Lengyel 1,2,*

In 2006, Ma et al. presented an
elegant theory for how popula-
tions of neurons might represent
uncertainty to perform Bayesian
inference. Critically, according to
this theory, neural variability is no
longer a nuisance, but rather a
vital part of how the brain encodes
probability distributions and per-
forms computations with them.

The brain faces a daunting task and
solves it with such ease that we are
rarely even aware of it: making sense
of the outside world based on a set of
noisy and incomplete sensory inputs.
Our visual system, for example, needs
to deal with partially occluded objects, or
infer 3D shapes from 2D images in our
retinas, all the while relying on intrinsically
noisy photoreceptor activations. The
Bayesian theory of probabilistic infer-
ence provides an optimal solution for
dealing with the uncertainty that is inher-
ent in sensory processing, but which
classical theories of sensory processing
typically eschew. The key is to represent
Trends
uncertainty in the form of probability dis-
tributions, such that instead of just com-
puting a single best estimate of a
stimulus feature, a posterior distribution
over that feature is computed, quantify-
ing the strength of the observer’s ‘belief’
that the stimulus may take on any par-
ticular value given the evidence provided
by our senses.

A probabilistically appropriate represen-
tation of uncertainty is indispensable for
the brain in at least three contexts: first,
when fusing information from multiple
information sources (e.g., sensory
modalities, or memory), each of which
may be unreliable on its own; second,
when making decisions that require
combining incomplete sensory informa-
tion with subjective utilities; and finally,
for updating its internal models of the
world over time, so that it remains well
calibrated [1]. Indeed, behavioral studies
of perception (and other cognitive func-
tions) had long indicated that the brain
must somehow represent uncertainty, as
underscored by the observation that it
can sometimes perform near the Bayes-
ian optimum [2]. A critical question is
then: how are probability distributions
encoded in the responses of neural
populations?

The seminal paper of Wei Ji Ma, Jeffrey
Beck, Peter Latham, and Alexandre Pou-
get [3] proposed a solution to this ques-
tion in the form of probabilistic population
codes (PPCs). Similar schemes, accord-
ing to which populations of neurons could
encode probability distributions about a
stimulus, had earlier been studied by Pou-
get and others [4]. Among the key novelty
points here was a biologically plausible
implementation that would allow neural
circuits to encode and operate with prob-
ability distributions. Critically, this
approach relied on neural activities being
variable or noisy, therefore marking a
departure from the traditional view of var-
iability in the brain being a nuisance to that
in Neurosciences, November 2018, Vol. 41, No. 11 767
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of variability being an essential part of
performing probabilistic inference.

The starting point for Ma et al. [3] was the
well-known experimental observation that
the same stimulus repeatedly presented to
an observer will produce each time a dif-
ferent pattern of activation in cortical neu-
rons that are tuned to specific features of
that stimulus (Figure 1, encoding). Con-
versely, a given pattern of activity in the
brain could arise in response to several
possible stimuli. This probabilistic relation-
shipbetweenstimuli and responsescanbe
Encoding

S mulus

Figure 1. Probabilistic Encoding and Decoding o
each trial, the same stimulus (left) evokes a different patte
probability than others (arrows emanating from the sam
typically be different (compare arrows pointing to the s
stimuli. Given the inherently probabilistic nature of encod
stimulus quantifies the probability with which any given
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formalized by P(response | stimulus),
expressing the probability of obtaining a
particular population response given a
stimulus. The same quantity, P(response
| stimulus), also expresses how likely, given
a particular neural response, a stimulus
value is (Figure1, decoding). This likelihood
function is central for computing the
Bayesian posterior distribution over the
stimulus (via Bayes’ rule), and it represents
uncertainty in a fairly straightforward man-
ner. If the population response is such that
the likelihood is narrowly peaked around a
single stimulus, there is little uncertainty;
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level of uncertainty. While classical
approaches to neural coding tend to treat
the fact that the stimulus cannot be identi-
fied unequivocally from the response as a
nuisance, PPCs thrive on this ambiguity:
according to the theory of PPCs, each
population response inherently encodes
uncertainty over stimuli, just as required
for performing proper Bayesian inference.
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Figure 2. Cue Combination by PPCs. The product of likelihoods is computed by summing neural responses. (A) Two cues, each encoded (orange arrows) by the
stochastic responses of a neural population (blue and green), convey information about the same underlying stimulus. These two populations provide feed-forward
input to the output layer (red). Responses in each input population may also depend on nuisance parameters (j1 and j2, gray arrows). (B) Example neural responses in
the three populations (cf. Figure 1, middle). Responses in the output population are the (weighted) sum of the responses in the input populations (top, weighting factors
are omitted for clarity). (C) The likelihood functions that can be decoded (purple arrow) from the responses of each of the three populations (cf. Figure 1, right). While the
input layers only encode the likelihood of the stimulus given the information available in their respective cues (blue and green), the output layer represents the combined
likelihood of the stimulus given all available information (red); that is, the product of individual input likelihoods (top). Note that the likelihood encoded by the output layer
can be interpreted without knowledge of the nuisance parameters.
corresponds to a probabilistically mean-
ingful transformation of one likelihood (rep-
resented by the first response) to another
one (representedby thesecondresponse).

A paradigmatic transformation of likeli-
hoods arises in situations when different
sensory cues convey information about
the value of a stimulus that needs to be
inferred. Examples include visual and
auditory cues reporting about the location
of an object [3] (Figure 2A), or sequentially
received packets of sensory information
about the underlying direction of motion in
an evidence accumulation task using a
random dot kinematogram [5]. In these
situations, each cue gives rise to a differ-
ent population response (Figure 2B, blue
and green) and thus a different likelihood
function (Figure 2C, blue and green), but
the brain ultimately needs to compute the
likelihood of the stimulus combining all the
information conveyed by the cues. The
probabilistically correct way to combine
the individual likelihoods (as long as they
represent independent pieces of informa-
tion) is to multiply them; the likelihood of a
stimulus value considering all population
responses should simply be the product
of the individual likelihoods of this stimulus
value associated with each response
(Figure 2C, red).

A key contribution of Ma et al. [3] was to
show that, under biologically plausible
conditions, this combined likelihood can
be representedby a strikingly simple trans-
formation of the population responses
associated with the individual cues: their
sum (Figure2B, red). Inotherwords, a two-
layer feed-forward neural network in which
neurons in the output layer take an appro-
priately weighted sum of the neural
responses in the input populations per-
forms optimal cue combination, comput-
ing the product of input likelihood
functions. Analogously, for evidence accu-
mulation, the output layer needs to com-
pute a cumulative sum over time of the
responses in the input layer [5], just as in
the much celebrated drift-diffusion model
of decision making. Moreover, although
the mathematical form of the decoding
function that maps from neural responses
to the likelihood (Figure 1, purple arrow)
can in general be arbitrarily complex, in
PPCs it admits a particularly simple form:
both the individual input likelihoods repre-
sented in the input layer and the combined
likelihood represented in the output layer
Trends
can be decoded by computing a linear
function (an appropriately weighted sum)
of the corresponding neural responses.
Linear decoding has a long history in sys-
temsneuroscience, viewedbymanyas the
kind of representation the brain strives to
achieve [6], and something that cortical
neurons may easily implement [7]. Intrigu-
ingly, it is precisely this linear decodability
of likelihoods from the responses of the
input layer that by itself guarantees both
that the summation of these responses by
the network implements optimal cue com-
bination and that the resulting sum is also
linearly decodable.

One complication, which Ma et al. [3]
noted as well, is that responses in a given
neural population typically depend on
many other sensory features (e.g., image
contrast), or even stimulus-independent
factors (e.g., attention), beside the partic-
ular property of the stimulus that a brain
area may be inferring (e.g., the orientation
of a line segment in the primary visual
cortex). The problem is that, in general,
in the presence of these nuisance param-
eters, the likelihood of the stimulus would
only be linearly decodable if the values of
all the nuisance parameters were already
in Neurosciences, November 2018, Vol. 41, No. 11 769



known with certainty to the decoder – a
clearly untenable assumption. Thus, Ma
et al. [3] went on to show that as long as
neural responses satisfy two additional
conditions, linear decodability of the stim-
ulus likelihood will be preserved even in
the presence of nuisance parameters.
First, the distribution of responses should
be Poisson-like: nuisance parameters
should scale together the mean and the
(co)variance of responses, such that the
ratio of the mean and variance (the Fano
factor) remains constant. This seems
consistent with the often-observed (or
at least assumed) property of cortical
spike trains: that they resemble a Poisson
process (i.e., they have a Fano factor that
remains approximately constant [8],
though see [9]). Second, the tuning
curves (and noise covariance) of neurons
should be translation-invariant, which
effectively means that the population
should always express roughly the same
kind of response pattern, which is simply
shifted as the stimulus is changed (as in
Figure 1). Translation invariance has also
been a standard assumption in theoretical
studies of population codes [8] even if it is
probably a rather crude approximation of
reality [10].

The lasting impact of Ma et al. [3] is evident
in how it motivated specific experimental
tests and led to new theoretical develop-
ments in the study of probabilistic compu-
tations. Some of the detailed assumptions
(or, conversely, predictions) that the PPC
theorymakes about neural responsesmay
be difficult to test directly, or may even be
inaccurate. For example, Fano factors and
even the detailed patterns of response
covariances may change with stimulus
onset, image contrast, and other parame-
ters or task events [11,12], thus violating
the Poisson-like assumption of PPCs. The
strictly deterministic processing (summa-
tion of input responses) in the output layer
of the PPC architecture, in contrast to the
intrinsically stochastic activity assumed in
its input layer,mayalsobehard to reconcile
770 Trends in Neurosciences, November 2018, Vol. 41, N
with what we know about the operation of
cortical circuits. Nevertheless, as we saw,
forPPCs thecritical question iswhether the
stimulus is linearly decodable from neural
responses, andwhether it remains so even
in the presence of nuisance parameters.
This prediction has been confirmed exper-
imentally [13]. One potential caveat is that
the experimental tests so far have been
conducted with at most one nuisance
parameter (e.g., imagecontrast),while the-
oretical studiessuggest thatamorediverse
(and probably more realistic) set of nui-
sance parameters (such as phase, aper-
ture, or even object identity) can easily
abolish linear decodability and make the
resulting population code different from a
PPC [12]. Indeed, there have been advan-
ces in exploring howPPCsmight deal with
nuisance parameters in more sophisti-
catedways [14]. In addition, fundamentally
different proposals have been put forth for
how variability in neural responses may
support probabilistic inference without
requiring linear decodability [12,15]. Con-
tinuing the journey started by Ma et al. [3],
these theories are leading to specific, dis-
tinct, and experimentally testable predic-
tionsthatwill advanceourunderstandingof
the neural bases of probabilistic inference,
andmore broadly, of how our brains make
sense of the surrounding world.
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Mapping Meanings
Jonathan R. Brennan1,*

In a 2016 paper, Huth and col-
leagues probed, in a general way,
howwordmeanings map onto cor-
tical locations. By comparing the
fit between alternative maps, this
methodology offered a means to
evaluate what sorts of meaning
representations the brain handles
under ecologically realistic
conditions.

Human language is unique in its capacity
to convey meaning from one person to
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