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Abstract 

Background:  Electrical impedance tomography (EIT) is a noninvasive, radiation-free, 
and low-cost imaging modality for monitoring the conductivity distribution inside a 
patient. Nowadays, time-difference EIT (tdEIT) is used extensively as it has fast imaging 
speed and can reflect the dynamic changes of diseases, which make it attractive for a 
number of medical applications. Moreover, modeling errors are compensated to some 
extent by subtraction of voltage measurements collected before and after the change. 
However, tissue conductivity varies with frequency and tdEIT does not efficiently 
exploit multi-frequency information as it only uses measurements associated with a 
single frequency.

Methods:  This paper proposes a tdEIT algorithm that imposes spectral constraints on 
the framework of the linear least squares problem. Simulation and phantom experi-
ments are conducted to compare the proposed spectral constraints algorithm (SC) 
with the damped least squares algorithm (DLS), which is a stable tdEIT algorithm used 
in clinical practice. The condition number and rank of the matrices needing inverses 
are analyzed, and image quality is evaluated using four indexes. The possibility of multi-
tissue imaging and the influence of spectral errors are also explored.

Results:  Significant performance improvement is achieved by combining multi-fre-
quency and time-difference information. The simulation results show that, in one-step 
iteration, both algorithms have the same condition number and rank, but SC effec-
tively reduces image noise by 20.25% compared to DLS. In addition, deformation error 
and position error are reduced by 8.37% and 7.86%, respectively. In two-step iteration, 
the rank of SC is greatly increased, which suggests that more information is employed 
in image reconstruction. Image noise is further reduced by an average of 32.58%, and 
deformation error and position error are also reduced by 20.20% and 31.36%, respec-
tively. The phantom results also indicate that SC has stronger noise suppression and 
target identification abilities, and this advantage is more obvious with iteration. The 
results of multi-tissue imaging show that SC has the unique advantage of automatically 
extracting a single tissue to image.

Conclusions:  SC enables tdEIT to utilize multi-frequency information in cases where 
the spectral constraints are known and then provides higher quality images for 
applications.
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Background
Electrical impedance tomography (EIT) is a technique in which the electrical proper-
ties within a body are imaged using electrical stimulations and measurements applied 
at electrodes on the body surface. First, forward solutions are computed using the 
finite-element method to map the association between the impedance inside the 
body and the boundary voltage outside. Then, the internal impedance image of the 
object can be reconstructed according to the measured boundary voltage data using 
an inverse problem algorithm [1]. EIT has advantages such as noninvasiveness, no 
radiation, and low cost and can be used as a safe and convenient imaging technology 
in clinical scenarios [2].

Time-difference EIT (tdEIT), which uses single-frequency measurements referred 
to a baseline, provides images of changes in tissue properties over time [1]. Referring 
the measured data to the baseline reduces the sensitivity of the method to modeling 
and instrumentation errors. In tdEIT, the relationship between internal conductivity 
change and outside voltage change is considered to be linear [2–5]. The linearization 
is conducted with respect to prior defined conductivity distribution and a solution is 
usually obtained by solving the regularized linear problem, which results in a short 
computation time. Thus, it is applicable for real-time monitoring [2]. The overwhelm-
ing majority of EIT clinical images are produced using tdEIT; for example, respira-
tion, gastric emptying, and the cardiac cycle [1].

Presently, the various tdEIT algorithms can be categorized into the following 
approaches: back projection (BP), one-step linear Gauss–Newton (GN), total varia-
tion (TV), and GREIT. Their main characteristics are listed in Table 1.

1.	 BP was developed by Barber and Brown in 1984 [6] and is widely used in experimen-
tal and clinical EIT [7, 8]. Its original idea is based on an analogy to the algorithm 
used in CT. With BP, reconstructed images can be simply understood as a superposi-
tion of boundary measurements. However, it suffers from low spatial resolution and 
large smearing artifacts [9] because electric current propagates diffusely and differ-
ently to X-ray photons [8].

2.	 GN has been widely used in EIT since the late 1980s [3, 4]. Its original idea involves 
transforming the non-linear ill-posed inverse problem into an optimization prob-

Table 1  Comparison of various time-difference algorithms

tdEIT algorithms Advantages Disadvantages

BP Fast imaging speed [6]
Easy implementation [7, 24]

Smearing artifacts [9]
Low spatial resolution [7, 9]

GN Fast imaging speed [3]
Easy implementation [1, 4]
Generally performs better than BP [5]

Target boundary blurred [1]

TV Sharp edges preserved [12] Iteration needed [12]
Multiple parameters adjustment needed [12]

GREIT Uniform amplitude response [5] Training set required [5]

SC Multi-frequency information integrated
Automatic extraction of single tissue
Image noise significantly reduced

Tissues conductivity spectra required
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lem where L2 norm regularization and linearization are used. It meets the needs of 
real-time imaging and significantly improves image quality compared to BP. Several 
algorithms with different advantages have been derived by applying the distinct reg-
ularization method [5]. One such algorithm is the damped least squares algorithm 
(DLS), which has been successfully applied in clinical researches with high stability 
and image quality [9–11].

3.	 TV is a popular regularization approach that has been applied to a range of imag-
ing modalities [12], with Borsic demonstrating its potential for EIT in 2010 [13]. 
With TV, sharp discontinuities in images are preserved using L1 norm regulariza-
tion, which makes its cost function discontinuous and therefore not applicable for 
GN. Several algorithms have been designed to overcome the non-differentiability of 
TV and solve it efficiently; for example, Split Bregman (SB) [14], PDIPM [13], and 
LADMM [15]. However, all three TV methods are iterative and have other param-
eters that need adjustment, in addition to the regularization parameter [16]. Thus, 
at present, it may not be available for applications with demand for high temporal 
resolution such as lung imaging.

4.	 GREIT was proposed by Adler et  al. for lung EIT in 2009 [5]. With the help of a 
weighting matrix, it integrates the image evaluation process into reconstruction, 
which results in the solution having more uniform amplitude response and fewer 
artifacts [16]. The reconstruction matrix is obtained using specific training data that 
are computed from a forward model. However, an accurate forward model cannot 
be established in every application scenario. It is also worth noting that when the 
weighting matrix is uniform, calculation of the reconstruction matrix is equivalent to 
a scaled generalized Tikhonov solution of GN [5].

All tdEIT algorithms are challenged by the ill-conditioned nature of the inverse prob-
lem [4]. One conventional means of overcoming this issue is regularization, which is 
widely used in the above algorithms. Another means is to increase the amount of data 
used in one-shot imaging, which is not possible using only measurements at a single 
frequency [17]. Consider a 16-electrode system for example. Under the opposite-drive 
adjacent-measurement protocol, the number of dimensions of the data used in an image 
is limited, 16 × (16 − 4) = 192 (potentials at the injection electrodes are excluded). Multi-
frequency measurements cannot be simultaneously employed in traditional tdEIT algo-
rithms because they would lead to an increase in the number of unknowns unexpectedly, 
because both unknown conductivities and measured voltages vary with frequency [18–
20]. Therefore, the idea is to find a parameter that can not only represent tissue distribu-
tion in the same manner as conductivity but is also independent of frequency.

Malone et al. [21] recently introduced the volume fraction model into the field of EIT, 
along with a method for using frequency-difference data in a nonlinear reconstruction 
scheme by employing spectral constraints. Their method simultaneously uses all multi-
frequency measurements to reconstruct the one-shot image because volume fraction is 
independent of frequency. Studies have shown that fraction imaging can provide satis-
factory images when compared to the weighted frequency-difference EIT algorithm [22, 
23] on simulated data that violate the assumptions of the latter method. However, this 
algorithm is an absolute EIT (aEIT) algorithm, which is aimed at providing an absolute 
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distribution of conductivity at a given time. Further, it requires repeated iteration and 
cannot meet real-time imaging requirements.

Inspired by the study conducted by Malone, this paper proposes a method that recon-
structs fraction changes in a linear scheme to realize real-time imaging. In this method, 
all multi-frequency measurements are directly employed to reconstruct one-shot con-
ductivity change via a frequency-independent fraction model. The proposed method, 
called the spectral constraints method (SC), successfully incorporates the multi-fre-
quency information into time-difference imaging, and thereby reduces the degrees of 
freedom and the ill-conditioning of the inverse problem, resulting in improvement of 
the imaging quality. In this paper, the results of comparison between SC and DLS, made 
via numerical validation and phantom experiment, are presented. Then, a multi-tissue 
case and the robustness of SC to spectral errors are discussed. Finally, the principle and 
advantages of SC are elaborated.

Results
Tissue conductivity spectra

The conductivity spectra used for numerical validation and the phantom experiment are 
shown in Table 2. The measurement results show that the conductivities of the pomelo 
solution and cucumber increased monotonically from 0.059 and 0.035 S/m at 1 kHz to 
0.149 S/m and 0.120 S/m at 200 kHz.

Numerical validation

The image results of one-step iteration for the two algorithms are shown in Fig. 1b–e. 
It is evident by visual comparison that the use of SC results in a significant reduction in 
image artifacts, which is more obvious when signal-to-noise ratio (SNR) is 60 dB and the 
target is near the center of the imaging domain. Through the analysis in the method sec-
tion, this can be attributed to the inherent advantage of the fraction model.

Next, image quantification and matrix analysis of the two algorithms were conducted. 
The image quantification results, which are in agreement with visual comparison, are 
shown in Fig. 2. When SNR is 80 dB, the PE and SD of the two algorithms are similarly 
small, with the main difference being that SC has a reduced IN . When SNR is 60 dB, 
all three indicators are reduced in SC, especially IN . After averaging the data in all tar-
get positions and SNR levels, SC reduces IN , SD , and PE by 20.25%, 8.37%, and 7.86%, 
respectively, compared to DLS.

The results of matrix S analysis are shown in Table  3. The rank of the two algo-
rithms is exactly the same, which is unexpected. This means that SC increased 

Table 2  Conductivity spectra used for numerical validation and phantom experiment

ω1–ω3 are in the range of 10 Hz–100 kHz

Frequency Numerical validation (S/m) Phantom experiment (S/m)

Normal brain Ischemia brain Pomelo Cucumber

ω1 0.151 0.115 0.083 0.047

ω2 0.155 0.120 0.105 0.065

ω3 0.175 0.130 0.129 0.093
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the number of equations, without increasing the number of independent equa-
tions. The reason for this is that S is a partitioned matrix obtained by longitudi-
nal stitching. According to the rank characteristics of the partitioned matrix, if 
the ranks of all element matrices are equal and the distributions of the independ-
ent columns are uniform, the rank of the whole matrix is equal to the rank of the 

Fig. 1  Numerical validation model and results for one-step iteration: a Models of five different positions; the 
order from left to right is Targets 0–4, respectively. Perturbation conductivity images of Targets 0–4 using 
b DLS under SNR = 60 dB, c SC under SNR = 60 dB, d DLS under SNR = 80 dB, e SC under SNR = 80 dB. For 
each image, the color bar represents the range of the conductivity change, and the numbers represent the 
maximum range of change. The unit is S/m

Fig. 2  Image quantification results for one-step iteration. (SC: proposed method using spectral constraints; 
DLS: damped least squares method; IN: image noise; SD: shape deformation; PE: position error)
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element matrix, Rank(S) = Rank(J (ωi)A(ωi)) . Further, as A(ωi) is a full rank matrix, 
Rank(S) = Rank(J (ωi)A(ωi)) = Rank(J (ωi)) . Thus, there is no significant difference 
between the two algorithms as regards rank. As for condition number, the slight dif-
ference in that order of magnitude between the two algorithms is also of no signifi-
cance. Except for Target 0 under 60 dB, SC has a smaller condition number.

Based on the above analysis, it can be concluded that the rank of S can be effectively 
increased as long as the independent column distribution of matrix J (ωi) changes 
with frequency, which will happen when tissue distribution in the background 
frame is uneven. As we all know, with iteration, the tissue distribution in the back-
ground frame becomes uneven. Therefore, two-step iteration was further performed 
with both algorithms to determine whether SC can reduce the degrees of freedom 
and ill-conditioning of the inverse problem. The image results of two-step iteration 
are shown in Fig.  3a–d. The artifacts are significantly reduced, which was already 
observed in one-step iteration. In addition, the shape deformation is reduced espe-
cially when target is near the center and SNR is 80 dB, which were not perceived in 
the one-step iteration.

The image quantification results under two-step iteration are shown in Fig. 4. When 
SNR is 80 dB, the PE of the two algorithms is very small, and the main difference is 
that SC has smaller IN and SD , especially for Targets 1 and 2. When SNR is 60 dB, all 
three indicators of SC are smaller than those of DLS. On average, SC reduces IN , SD , 
and PE by 32.58%, 20.20%, and 31.36%, respectively. Compared to the results in one-
step iteration, all indicators are further reduced, especially SD and PE , which corrobo-
rates our previous conjecture.

Table 4 shows the result of matrix S analysis under two-step iteration. The condition 
numbers of SC decreased for Targets 0–2 and increased for Targets 3–4 when compared 

Fig. 3  Image results for two-step iteration: Perturbation conductivity images of Targets 0–4 using a DLS 
under SNR = 60 dB, b SC under SNR = 60 dB, c DLS under SNR = 80 dB, d SC under SNR = 80 dB. For each 
image, the color bar represents the range of the conductivity change, and the numbers represent the 
maximum range of change. The unit is S/m
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to DLS. However, the rank of SC increased significantly for all targets, as expected. This 
means that SC reduced the degrees of freedom of the inverse problem.

To further illustrate the image effect of reducing the degrees of freedom of the inverse 
problem, the TE of the two algorithms was compared. The results in Fig. 5 show that: 
(1) with or without iteration, SC has a smaller TE than DLS, and the gap between them 
is more obvious when SNR is 60 dB; (2) SC further reduced TE in the case of two-step 
iteration, and this reduction is more obvious when the target is near the center; however, 
DLS slightly increased TE in some locations, which we assume is mainly caused by mod-
eling errors. Then, by averaging the data, SC reduces TE by 12.16% under one-step itera-
tion and 28.14% under two-step iteration. These illustrate that, with iteration of limited 
steps, SC can further improve the image quality by reducing the degrees of freedom of 
the inverse problem. This is a unique advantage that DLS does not have.

Phantom study

Figure 6 shows the results of the phantom experiment. SC effectively suppresses image 
artifacts and has higher edge-preservation ability. In particular, when the target is close 
to the center, DLS fails, while SC performs well. Moreover, the image quality is further 
improved when SC is iterated in two steps, but no improvement for DLS is perceived.

The results of matrix S analysis are shown in Table 5. It can be seen that SC effectively 
increased the rank and decreased the condition number of S when iterated in two steps, 
which means that it reduced the degrees of freedom and the morbidity of the inverse 
problem.

The results of comparison of TE between the two algorithms are shown in Fig. 7. The 
results show the same tendency as compared with the data acquired from the numerical 
validation. Overall, SC reduces TE by 25.75% under one-step iteration and 36.54% under 
two-step iteration.

Robustness to spectral errors

Accurate conductivity spectra are fundamental to SC. However, errors exist in the spec-
tra data obtained from both methods described in the experimental setup section [25]. 

Fig. 4  Image quantification results for two-step iteration. (SC: proposed method using spectral constraints; 
DLS: damped least squares method; IN: image noise; SD: shape deformation; PE: position error)
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To study the influence of spectral errors, a simulation study was performed. First, the 
mean relative contrast between the tissues was defined [21]:

(1)C% =
1

M

M∑

i=1

(
εi2 − εi1

εi1

)

Fig. 5  Comparison of total image error under two SNR levels: a SNR = 60 dB, b SNR = 80 dB

Fig. 6  Phantom experiment reconstructed images of the two algorithms: a real target setup. b, c 
Reconstructed images of b the DLS algorithm and c the proposed SC algorithm under one-step and 
two-step iteration. For each image, the color bar represents the range of the conductivity change, and the 
numbers represent the maximum range of change. The unit is S/m

Table 5  Matrix S indexes of the two algorithms in the phantom study

Iteration 
number

Index SC DLS

Target 0 Target 1 Target 2 Target 0 Target 1 Target 2

One Rank 76 76 76 76 76 76

Cond 84.62 84.62 84.62 84.64 84.64 84.64

Two Rank 144 165 160 76 76 76

Cond 79.35 99.94 82.47 109.84 102.75 115.04
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For the brain tissue spectrum used in the simulation, C = 24.05%.
Then, a random error was added to the conductivity spectra of normal brain tissue ε1 

and ischemic brain tissue ε2 before producing a conductivity model:

where 
∑

= 1%, 3%, 5%, and 10% were, respectively, selected, i is the frequency index 
and Rand

(
0, εij ∗

∑)
 is a random number drawn from the normal distribution with 

mean zero and variance εi1 ∗
∑

 . Finally, the boundary voltage data were simulated using 
the original model, and fraction images were reconstructed using the model σ ∗ . The 
reconstruction results and comparison between the original spectrum and the spectrum 
with errors are shown in Fig. 8. The evaluation results are shown in Fig. 9. The results 
show that image errors increased with the spectral errors, while the amplitude response 
decreased. In particular, when the spectral error was 5% and 10%, the target response 
was weak and difficult to distinguish by the human eye.

(2)σ
∗
ni =

{
εi1 + Rand

(
0, εi1 ∗

∑)
on the background

εi2 + Rand
(
0, εi2 ∗

∑)
on the pertubation

Fig. 7  Phantom experiment evaluation results

Fig. 8  Robustness to spectral errors results: a reconstructed images for each value of 
∑

 . b Comparison 
between the original spectrum and the spectrum with errors. The color bar represents the range of the 
conductivity change, and the numbers represent the maximum range of change. The unit is S/m
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Multiple tissue case

One promising application of SC is tissue identification. As the tissues were classified 
before imaging, following reconstruction, the target images of each tissue were easily 
obtained without extra steps. However, only two tissues and one target were set in the 
study presented above, which aimed at drawing a comparison between SC and DLS. To 
further verify the feasibility of SC in the multi-tissue case and demonstrate its tissue 
identification capability, it was applied to a preliminary numerical validation with multi-
ple tissues.

The number of tissues was increased to three to generate simulation data among 
which t3 blood was added. The conductivity spectrum of the blood remains unchanged 
at 0.7 S/m over a wide range. Thus, the blood conductivity at the three chosen frequen-
cies is 0.7 S/m.

The reconstruction process was fundamentally the same as that of the two-tissue 
experiment. However, at the end of the reconstruction, the tissue of interest could be 
easily extracted by fraction value to image. The results of two-step iteration at two SNR 
levels are shown in Fig. 10. The target images of hemorrhagic and ischemic tissue were 
easily obtained, respectively. However, the image quality of the ischemic target was 
found to be inferior to that of the hemorrhagic target, especially for SNR = 60 dB.

Discussion
In this study, we introduced and verified a novel tdEIT algorithm that employs fraction 
model and spectral constraints. We applied the proposed SC algorithm to synthetic 
and measured data and found that it significantly reduced artifacts and shape deforma-
tion errors compared to the DLS algorithm. We also demonstrated that this advantage 
increased with the iteration step. The reasons why SC effectively improves imaging qual-
ity are as follows:

1.	 SC reconstructs a parameter that does not vary with frequency. The number of 
unknowns depends only on the number of tissues and elements, which is constant. 
Thus, we can reconstruct one frame time-difference image by simultaneously using 
data at multiple frequencies. By iteration, this method effectively reduces the degrees 
of freedom and the morbidity of the reconstruction problem, and improves the 
image quality.

Fig. 9  Image quantification results for each value of 
∑

 . (IN: image noise; SD: shape deformation; PE: position 
error)
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2.	 SC limits the fraction value to the range [0, 1]. As a result, the conductivity in each 
element is also limited to a certain range, and thus some artifacts are removed. This 
is the reason why even without iteration, the image quality is still improved.

In this study, only data under three different frequency points were used, because 
for our reconstruction model three is the minimum to make the number of equations 
greater than the number of unknowns. However, the results show that S is not full rank 
after two-step iteration and continuing iteration would marginally increase rank (less 
than five) but significantly increase computation time. It is necessary to further explore 
the variation of the image quality with the frequency number and thereby standardize 
the frequency selection method.

The results also show that, under two-step iteration, the rank of S increased in both 
the numerical simulation and the phantom experiment; however, the condition num-
ber differed. For Targets 0–2, it decreased in both experimental methods, whereas for 
Targets 3–4, it unexpectedly increased only in the numerical simulation. The following 
reasons could account for this. First, the target position and tissue spectra of the two 
experiments were not exactly the same. Second, the properties of S can be affected by 
the iteration number; therefore, iteration was continued to three steps in the simulation 
experiment. The results show that the rank continued to increase marginally and the 
condition number decreased for all target positions, especially for Targets 3–4, where 
the condition number was less than that obtained in one-step iteration. However, the 
reconstruction images under three-step iteration were not presented because they were 

Fig. 10  Three-tissue case model and reconstruction: a numerical model. Reconstructed images of different 
interested tissues under b SNR = 60 dB, c SNR = 80 dB. For each image, the color bar represents the range of 
the conductivity change, and the numbers represent the maximum range of change. The unit is S/m
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similar to those of two-step iteration and the number of iteration steps should be limited 
within two to meet the requirement of 1 frame in 1 s.

As for the multi-tissue case, the image quality of the ischemic target was found to be 
inferior to that of the hemorrhagic target. One of the main reasons for this is that, within 
the selected frequency band, the conductivity changes of hemorrhagic tissue relative 
to normal tissue are much larger than those of ischemic tissue. This situation can be 
improved by optimizing the selection of frequency points. However, as the blood spec-
trum remains unchanged over a wide frequency range, the corresponding improvement 
will be limited. Therefore, further studies are necessary to determine how image qual-
ity varies with the number of tissues and how to obtain optimal multi-target imaging 
results. As regards spectral errors, the results reveal that the image quality decreased 
with increasing spectral errors. Therefore, further studies are necessary to improve the 
anti-spectral error performance of SC. For this problem, Malone et al. previously pro-
posed a reconstruction classification algorithm [26] that can reconstruct the image and 
estimate the tissue spectrum simultaneously. However, further investigation is needed to 
determine whether this method can be successfully applied to tdEIT.

Conclusions
In this study, we developed a novel tdEIT algorithm (called SC) to obtain enhanced 
reconstructed images by exploiting multi-frequency information. Specifically, we rede-
signed the existing tdEIT framework by introducing the concept of volume fraction to 
enable simultaneous utilization of multi-frequency data to reconstruct one frame image.

The results of numerical and phantom experiments verify that SC has superior per-
formance in reducing image error, especially image noise, when compared with the DLS 
algorithm. The results also reveal a unique advantage of SC, which is that it can effec-
tively reduce the degrees of freedom and morbidity of the inverse problem and further 
improve the image quality when it iterates in limited steps.

Since the imaging results of each tissue are easily screened by the fraction model, fur-
ther work will be conducted to develop the potential for multi-target identification. In 
addition, imaging quality is affected by spectral errors and frequency number; further 
studies will be needed to reduce the influence of spectral errors and standardize the fre-
quency selection method. Overall, SC may provide a new direction for the development 
of tdEIT algorithms in cases where the spectral constraints are known.

Methods
Fraction model

A fraction model is a representation of the tissue distribution within an object [21, 27]. 
It assumes the object consists of a limited number of tissues. After meshing the object, 
volume fractions or concentration values of different tissues can be determined for each 
element. Meanwhile, if the conductivity spectra of all tissues are known, the conductiv-
ity distribution is also obtained by transforming the fraction model.

The model can be summarized as follows.

1.	 The domain is composed of T kinds of distinct tissues, t1 . . . tj . . . tT .
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2.	 The impedance spectra of each tissue are known. For example, the conductivity of 
the jth tissue for the ith frequency is σij = ε

tj
(ωi).

3.	 The conductivity of the nth element is equal to the linear weighted sum of the con-
ductivities of the component tissues [28].

where 0 ≤ fnj ≤ 1 and
∑T

j=1 fnj = 1 . The weighting value fnj is the volume fraction of 
the jth tissue in the nth element.

Let us take a two-dimensional region � that is composed of T kinds of tissues as an 
example. First, discretization of the domain is performed using the finite-element 
method (FEM), and N  is the number of elements. As the object contains T  kinds of tis-
sues, there is a fraction value fnj in each element for every tissue. Subsequently, the frac-
tion matrix Fmatrix ∈ RT∗N is obtained, among which the nth column is the proportion 
of each tissue inside the nth element. Then, the matrix is vectorized by column to obtain 
the fraction vector, F = vec(Fmatrix),F ∈ R(T∗N )∗1:

Next, the element-based and piecewise constant conductivity distribution is 
approximated using the fraction model. The conductivity vector can then be repre-
sented as σ (ωi) ∈ RN∗1 . Finally, currents are injected at the boundary of M frequen-
cies ( ω1 . . . ωi . . . ωM ), and for each frequency a boundary voltage vector υ(ωi) ∈ RK∗1 
is acquired at a given time, where K  is the number of measurements. By comparing 
this vector with the background frame, a boundary voltage difference vector �υ(ωi) is 
obtained. The whole difference vector �υ can be obtained by longitudinally stitching the 
M vectors ( �υ(ω1) · · ·�υ(ωi) · · ·�υ(ωM)).

Forward problem

Based on the fraction model described above, the discrete forward problem is deduced 
as follows:

First, the linear relationship between fraction value and conductivity is obtained 
according to assumption (3):

(3)σn(ωi) =

T∑

j=1

fnj ∗ σij

(4)A(ωi)F = σ (ωi)
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where A(ωi) ∈ RN∗(T∗N ) is a coefficient matrix formed by the conductivity spectra of T  
kinds of tissues:

Second, in the traditional tdEIT algorithm, the discrete forward problem without 
noise is as follows [29]:

where the Jacobian matrix J (ωi) ∈ RK∗N is the first derivative of υ(ωi) with respect to 
σ (ωi), and can be calculated using the standard derivation method or the compensation 
theorem method [1, 4].

By substituting Eq.  (4) into Eq.  (5), the ideal discrete forward problem of fraction 
change reconstruction is obtained:

where both J  and A vary with frequency. Contrarily, �F  is independent of frequency, 
which makes it possible to simultaneously employ multi-frequency measurements to 
reconstruct one-frame image by viewing �F  as the unknown parameter.

Inverse problem

To simultaneously utilize the multi-frequency information, the following objective func-
tion is constructed to minimize the norm of the data mismatch under all frequencies:

S is an assembly matrix that includes M element matrices, each of which is obtained by 
multiplying the J  and A under the same frequency:

The objective function can also be written in an equivalent form [30] (Eq. 9):

Using the standard Tikhonov regularization method [3], the objective function 
becomes as follows:

A(ωi) =




ε
t1
(ωi) ε

t2
(ωi) · · · ε

tT
(ωi) 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 ε
t1
(ωi) ε

t2
(ωi) · · · ε

tT
(ωi) · · · 0 0 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
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.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

0 0 · · · 0 0 0 · · · 0 · · · ε
t1
(ωi) ε

t2
(ωi) · · · ε

tT
(ωi)




(5)J (ωi)�σ (ωi) = �υ(ωi)

(6)J (ωi)A(ωi)�F = �υ(ωi)

(7)� =
1

2
||S�F −�υ||2

(8)S =




J (ω1)A(ω1)

J (ω2)A(ω2)

. . . . . .

J (ωM)A(ωM)




(9)� =
1

2

M∑

i=1

||J (ωi)A(ωi)�F −�υ(ωi)||
2

(10)� =
1

2

[
||S�F −�υ||2 + �||R�F ||2

]
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The regularization parameter � controls the trade-off between fidelity and robustness 
[31, 32]. The L-curve method is chosen for both SC and DLS to determine the regu-
larization parameter � because it can be implemented efficiently and easily [33–35]. R 
is the regularization matrix and represents the inverse of the covariance of the expected 
image. The Standard Tikhonov method is chosen for both SC and DLS, which sets 
R = diag

(
STS

)
 in SC and R = diag

(
JT J

)
 in DLS.

To satisfy the constraint 
∑T

j=1 fnj = 1∀n , a substitution is made in the objective func-
tion ( fn1 = 1−

∑T
j=2 fnj ). Then, the unknown parameter becomes �FT−1 ( t2 . . . tj . . . tT ). 

Correspondingly, matrix S will change to S′ . The final objective is as follows:

The solution is obtained by setting the first derivative of �′ to zero [36]:

The temporary fraction vector F̃  of T  tissues is obtained by combining initial fraction 
distribution F0 and �FT−1 . The final F  is obtained by adding the constraints of Eq. (13) 
to F̃ :

The fraction change �F  is derived from Eq. (14):

Under the condition of satisfying a certain imaging speed, the performance of SC can 
be improved by linear iteration of limited steps ( NUM ). Then, the reconstruction pro-
cess is summarized as follows:

Step 0:	� Initialize fraction vector F0 and the number of iteration steps to k = 1

Step 1:	� If k ≤ NUM, repeat Steps 2–5; otherwise, output �F

Step 2:	� Set the first derivative of the objective function to zero and get �F k
T−1

Step 3:	� Combine F k−1 and �F k
T−1 to get F̃ k

Step 4:	� Impose the constraints in Eq. (13) on F̃ k to get F k and update the objective 
function and �υ

Step 5:	� Set �F = F k − F0 and k = k + 1 ; return to Step 1

Finally, to compare with DLS, the final fraction change needs to be transformed into 
conductivity change using the linear relationship in Eq. (4).

Matrix S evaluation

In this section, the reasons why SC can improve image quality are theorized and two 
indicators of S are proposed to verify them.

(11)Φ
′ =

1

2

[
S′�FT−1 −�υ

2 + �R�F2
T−1

]

(12)�FT−1 =

(
S′

T
*S′ + �R

)−1
*S′

T
*�υ

(13)fni =





0 if �fni ≤ 0

1 if �fni ≥ 1

�fni otherwise

(14)�F = F − F0
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First, SC needs to impose the constraints in Eq. (13) on the calculated solution F̃ . Accord-
ing to the linear relationship in Eq. (4), the corresponding conductivity will also be limited. 
This inherent characteristic of SC limits image artifacts to a certain extent and improves 
image quality.

Second, SC simultaneously uses multi-frequency data to reconstruct one shot image. This 
is in direct contrast to the DLS, which uses the data of only one frequency. The number of 
equations is M times that of the DLS algorithm; that is, M ∗ K  . The unknowns are a multi-
ple of (T − 1); that is, (T − 1) ∗ N  . When M ∗ K ≥ (T − 1) ∗ N  is satisfied, SC is expected 
to increase the number of independent equations, reduce the degrees of freedom and mor-
bidity of the inverse problem, and improve image quality. To verify this conjecture, the fol-
lowing two indicators are proposed for S , which is inversed in the reconstruction process 
[37]:

Rank

Rank corresponds to the maximum number of linearly independent columns or rows of 
a matrix. It is thus a measure of the “nondegenerateness” of the system encoded by this 
matrix. There are numerous equivalent solutions for rank. In this study, the Singular Value 
Decomposition (SVD) method is adopted.

Condition number

In the field of numerical analysis, the condition number of a matrix signifies how much the 
output vector of the system encoded by this matrix can change for a small change in the 
input vector. A problem with a high condition number is said to be ill-conditioned [36], 
which means that a small amount of noise at its input will have a significant impact on its 
output. It is defined as the ratio between the maximum and the minimum singular value of 
this matrix.

Image evaluation

We considered the case of two tissues and one target occupied by t2 , while the background 
is occupied by t1 . In accordance with the objective quantification method proposed by 
Adler [5], four indicators—position error, deformation error, image noise, and total image 
error—are used to evaluate the performance of the two algorithm. First, the region of per-
turbation (RP) is defined, which satisfies the following two conditions [21]:

a.	 Values larger than 50% of the maximum displacement from the mean value of the 
image [21].

b.	 The largest connected cluster of voxels in (a).

Position error (PE)

PE is defined as the ratio of the displacement distance of the centroid of the reconstructed 
perturbation from the real position to the diameter of the mesh dMESH:

(15)PE =

∣∣∣dRP − dREAL
∣∣∣

dMESH
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where dRP and dREAL , respectively, represent the distance from the centroid of the recon-
structed perturbation and that of the real perturbation to the center of the model.

Deformation error (DE)

DE is defined as the averaged difference in X–Y dimensions between the real and recon-
structed perturbations.

Among them, 
(
lRPx , lRPy

)
 and 

(
lREALx , lREALy

)
 , respectively, represent the width on the X–

Y dimensions of the reconstructed and real perturbations.

Image noise (IN)

IN is defined as the inverse of the contrast-to-noise ratio (CNR) between the real pertur-
bation and the background:

where �f̃ REAL2  and �f̃ B2  are the mean fraction change of the real perturbation and the 
background, and NB is the number of elements of the background.

Total image error (TE)

Overall, the error of an image is described by adding the three errors described above:

Experimental setup

Tissue impedance spectra

In numerical validation, the conductivity spectra of human brain tissues taken from the 
literature were used [38]. The background and perturbation conductivities were set to 
the values for normal brain and ischemic brain.

In the phantom experiment, fruit and vegetable objects with frequency-depend-
ent conductivities were used to mimic the properties of live tissues. The background 
medium was a mixture of 0.1% NaCl solution and pomelo granules, and the perturbation 
was a cucumber segment of diameter 2.5 cm and height 7 cm. Conductivity measure-
ments were acquired with a Solartron 1294 impedance analyzer for 25 frequencies in the 
range 1–200 kHz using Ag–AgCl electrodes. This frequency range is consistent with our 
imaging system, FMMU-EIT5 [39]. The cucumber was cut into 3 mm × 3 mm cubes for 
placement in the measurement box, which had a diameter of 1 cm and a height of 1.2 cm 
and was connected to the analyzer via a conductor. Three different samples were selected 
for each tissue, and measurements were made five times for each sample at room tem-
perature. The conductivity was calculated using the specific calculation formula for this 
measurement box, and the final conductivity spectra were obtained by averaging.

(16)SD =
1

2




���lRPx − lREALx

���+
���lRPy − lREALy

���
dMESH




(17)IN =

√
1

NB−1

∑
n∈B

(
�fn2 −�f̃ B2

)2

∣∣∣�f̃ REAL2 −�f̃ B2

∣∣∣

(18)TE=PE+ SD+ IN
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Three frequency points were intercepted from the broad spectra obtained via the two 
different methods mentioned above to generate the final spectra, because when M = 3 
the number of equations is greater than the number of unknowns for our reconstruction 
model.

Design of the numerical validation

In the numerical validation, SC and DLS were applied to synthetic data, and the recon-
structed images were compared. The generation of synthetic data is based on a circular 
mesh model with a radius of 300 pixels divided into 800 elements and 441 nodes. Fur-
ther, 16 electrodes are evenly placed on the edge (Fig. 11a). A current of peak amplitude 
1  mA was injected into two electrodes placed polarly, and the difference between the 
voltages on all adjacent pairs of electrodes not involved in delivering the current was 
measured, for a total of 192 measurements per frequency. The ground point was fixed at 
the center of the mesh. After generating the boundary voltage data, two levels of Gauss-
ian noise were added, with SNRs of 60 dB and 80 dB, respectively.

An elliptical perturbation with an average length of six pixels was set at five different 
locations (Fig. 1a). The disturbance centers were 0, 60, 120, 180, and 240 pixels from the 
center of the circle. The conductivity of the background and perturbation at different 
frequencies were set to the values shown in Table 2.

Each target generated two frames of measurement data, namely, background frame 
without target and foreground frame with target. Then, SC and DLS were applied to 
reconstruct the images. The reconstruction was based on a circular mesh model divided 
into 512 elements and 289 nodes, which differed from the generation model to avoid 
the inverse crime (Fig. 11b). The regularization parameter was selected via the L-curve 
method and the two indexes of matrix S were calculated simultaneously in the recon-
struction process.

Design of the phantom study

A phantom study was designed to reproduce the experimental setup introduced previ-
ously in the simulation. The boundary voltage data were generated across an acrylic tank 

Fig. 11  Numerical simulation in a circular mesh model: a forward model with 800 elements and 441 nodes. 
b Inverse model with 512 elements and 289 nodes
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filled with biological tissues. The tank was 17 cm in diameter and 7 cm in height, and 16 
electrodes are evenly placed on its edge.

The cucumber was placed in three different positions, as shown in Fig.  12a, and 
immersed in the saline–pomelo mixture. The three perturbations, Targets 0–2, were 
0 cm, 4.25 cm, and 6.5 cm away from the center of the tank, respectively.

Data acquisition was conducted using the FMMU-EIT5 system [39] shown in Fig. 12b. 
This EIT data acquisition system can produce a programmable current with SNR greater 
than 89 dB and can also measure the voltage difference precisely with CMRR higher than 
75 dB [39]. The three excitation frequencies were set at 20 kHz, 50 kHz, and 100 kHz. 
The peak amplitude of the injected current was set at 1 mA. The used background frame 
and the foreground frame were averaged over 10 frames, respectively. Images were 
reconstructed using the same mesh employed in numerical validation. In the following, 
unless otherwise specified, the regularization parameter was selected using the L-curve 
method.

In addition to the experiments above, which were designed to compare the perfor-
mance of SC and DLS, another two preliminary simulation experiments were conducted 
to explore the possibility of multi-tissue imaging and the influence of spectral errors. 
The specific implementation plans were presented in the results section.

Fig. 12  Phantom experiment setup and models: a perturbation locations; the order from left to right is 
Targets 0–2. b Data acquisition system
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