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ABSTRACT
Background:
Functional magnetic resonance imaging (fMRI) provides non-invasive measures of neuronal activity using
an endogenous Blood Oxygenation-Level Dependent (BOLD) contrast. This article introduces a nonlinear
dimensionality reduction (Locally Linear Embedding) to extract informative measures of the underlying neu-
ronal activity from BOLD time-series. The method is validated using the Leave-One-Out-Cross-Validation
(LOOCV) accuracy of classifying psychiatric diagnoses using resting-state and task-related fMRI.
Methods:
Locally Linear Embedding of BOLD time-series (into each voxel’s respective tensor) was used to optimise
feature selection. This uses Gauß’ Principle of Least Constraint to conserve quantities over both space and
time. This conservation was assessed using LOOCV to greedily select time points in an incremental fashion
on training data that was categorised in terms of psychiatric diagnoses.
Findings:
The embedded fMRI gave highly diagnostic performances (> 80%) on eleven publicly-available datasets
containing healthy controls and patients with either Schizophrenia, Attention-Deficit Hyperactivity Disorder
(ADHD), or Autism Spectrum Disorder (ASD). Furthermore, unlike the original fMRI data before or after
using Principal Component Analysis (PCA) for artefact reduction, the embedded fMRI furnished significantly
better than chance classification (defined as the majority class proportion) on ten of eleven datasets.
Interpretation:
Locally Linear Embedding appears to be a useful feature extraction procedure that retains important
information about patterns of brain activity distinguishing among psychiatric cohorts.

INDEX TERMS Nonlinear, dimensionality reduction, image processing, machine learning, kernel methods,
optimization, least squares, neurophysiology, evidence-basedmedicine, (computer-assisted) diagnosis, fMRI,
method of image charges, integration, oscillations, theorema egregium.

I. INTRODUCTION
Over a century ago, Charles Darwin alluded to an exper-
imental paradigm that involved direct observation of the
brain’s physical mechanisms (nervous matter) [14], where
such observations [55] would serve as the physical basis
for dichotomising species-specific behaviour. In the early
90s, an indirect and non-invasive measurement of mental
activity over uniformly-spaced time points became possible
through functional Magnetic Resonance Imaging (fMRI),
which allows paramagnetic deoxyhemoglobin to act as an
endogenous Blood Oxygenation-Level Dependent (BOLD)
contrast [49]. This article pursues Darwin’s proposed experi-
mental paradigm by Locally Linear Embedding (LLE) [54]
the BOLD time-series to produce precise summaries of

cerebral activity that may optimise the classification of dif-
ferent brain states, such as mental disorders.

Logothetis et al found that an increase in invasively-
measured neural activity directly and monotonically reflects
local BOLD signal increases and, for short stimulus pre-
sentations, there is a linear relationship between BOLD
and neural responses [39]. This suggests the unobservable
neural activity is spatially-localised in anatomical space.
Locally Linear Embedding of fMRI data in space and
time can, in principle [2], [20], [24] (see Appendix IV),
summarise these localmeasurements of neuronal mass activ-
ity [40]–via the notion of analytic capacity [45]–to dis-
close information about global (i.e., whole-brain) activity
patterns.
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II. METHODS: TESTING LOCALLY LINEAR EMBEDDING
(LLE) WITH CROSS VALIDATION
The discriminatory power of Locally Linear Embedding was
compared to the original fMRI, both before and after applying
Principal Component Analysis (PCA) [31] for artefact reduc-
tion [39]. This comparison was performed on eleven datasets
containing cohorts with different mental disorders, using a
combination of Leave One Out Cross Validation (LOOCV)
on the training set, with greedy feature selection based on
Fisher discriminability [17], [18]. The purpose of using
LOOCV and feature selection is to find the time points that
discriminate patients from controls on the respective dataset.
The feature selection step initially starts with an empty can-
didate set of time points and proceeds to select the time
point with the highest discriminatory power [63]. Then, time
points that improve discrimination in conjunction with those
already in the candidate set are added to this set in incremental
fashion; this process is terminated when there are no more
time points that can be added to the candidate set to improve
discriminability. Note that the selection of time points is
based upon cross validation and does not induce any biased
sampling.

To illustrate the patterns that best discriminate between
groups, a paired two-sample t-test between the patient and
control groups is performed to both threshold and identify
the statistically-significant differences (p< 0.05 uncorrected)
in space (at the time points identified by the greedy feature
selection). PerMill’sMethods of Induction (Method of differ-
ence), the functional differences (depicted by the statistically
significantly-different regions) at the respective time point are
therefore a necessary part of the cause of the phenomena that
distinguish the subject groups [46], which in this case pertain
to a neuropsychiatric disorder. Neuropsychiatric disorders are
diagnosed using clinical assessments that include: evaluating
the background demographics, collecting first and third party
observations, and a structured psychiatric interview with the
subject [53]. In detail:

Every subject’s fMRI time-series is treated as a
four-dimensional array X ∈ RL×W×H×T with V =

LWH T -dimensional voxel waveforms xi ∈ RT for i =
1, . . . ,V . Assume each subject scan Xi is associated with
a binary-valued class label yi representing the diagnosis and
that, for any subject scan, every voxel waveform x ∈ RT is
generated by a vector z ∈ Rd corresponding to a point on the
manifold. Our approach to fMRI-based diagnosis involves
two stages:

fMRI reconstruction takes the subject’s fMRI as input
and outputs a reconstructed fMRI that is more informative
than the original. Formally, this reconstruction is a mapping
L : RL×W×H×T

→ RL×W×H×d .

In other words, Locally Linear Embedding reduces a
time-series of length T to a smaller number of spatial modes
of dimensionality d; these modes contain all the information
used for the subsequent step.

Classification builds a classifier that takes the subject’s
reconstructed fMRI as input, and outputs a class label

yi ∈ {0, 1}. The classifier is therefore a mapping C :
RL×W×H×d

→ {0, 1}.
The reconstructed, or reduced, fMRI data produced from

step 1 is hereon referred to as Z. All reconstructions initially
vectorise the fMRI data to produce a two-dimensional
array X ∈ RV×T , and conclude by reshaping the result-
ing two-dimensional reconstruction Z ∈ RV×d into a
four-dimensional array Z ∈ RL×W×H×d .
a) Principal Component Analysis (PCA) [5], [31]: recon-

structsX by finding an orthogonal rotation that minimises the
reconstruction cost

min
B=[b1,...,bT ]

V∑
i=1

||xi −Nx− Bzi||22

where x̄ ∈ RT is the mean over all voxel waveforms, and
zi = Bᵀ(xi − Nx) ∈ RT . To find the optimal B, com-
pute the right-hand matrix for the singular value decom-
position (SVD) of X = UDBᵀ, which contains the T
right-singular vectors of X [26]. It follows that Z = XB ∈
RV×T is the rotated matrix that minimises the reconstruction
cost of the subject’s fMRI, where every column of Z is
a principal component. It is assumed the first d principal
components (columns) of Z capture the ‘‘systematic struc-
ture,’’ where the confounding factors are relegated to the
remaining T - d principal components, which produces the
two-dimensional reconstructed fMRI Z ∈ RV×d .

Using PCA’s ‘‘systematic structure’’ for distinguishing
humans with different neurological disorders has been
met with caution [16], largely because PCA’s applica-
tion to fMRI has some subjective components [1]. The
main limitation behind the PCA reconstruction is that it
assumes the lower-dimensional manifold is a linear sub-
space. We demonstrate that introducing the Cauchy stress
tensor [9] on the Cartesian space with the Pythagorean dis-
tance metric enables three-dimensional measurements over
time, thereby revealing the local (group) action in the physical
system.
b) Locally Linear Embedding (LLE) [54], [56]: recon-

structsX by constructing the Cauchy stress tensor [9] at every
voxel i for i = 1, . . . ,V , which is achieved by minimising
the reconstruction cost of its waveform xi in terms of its
spatially-adjacent neighbours:

min ||xi −
∑
j∈N (i)

wi,jxj||22, where
∑
j∈N (i)

wi,j = 1 (1)

where the neighbourhood set N (i) for voxel i is the comple-
ment of its K spatial neighbours on the surface of the sphere
with radius r, and wi = [wi,1, . . . ,wi,|N (i)|] ∈ R|N (i)| are
the reconstruction weights containing the spatially-invariant
geometric properties of the Cauchy stress tensor at voxel i.
To determine the analytic capacity [45] at every voxel

location i, LLE first subtracts the K spatial patterns of the
voxels on the boundary of the sphere centred around voxel
i to determine the separation distance from the origin of
the tensor at the respective voxel. Then, it computes the
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local (symmetric) spatiotemporal covariance matrix:

Gi

= Cᵀ
i Ci

= [(xj−xi),. . ., (xj+|N (i)|−xi)]ᵀ[(xj−xi),. . ., (xj+|N (i)|−xi)]

+ξI|N (i)| (2)

where ξI|N (i)| is a non-negative regularisation term to enforce
positive-definiteness (for this study, ξ = 0). LLE cal-
culates the reconstruction weights by finding the unique
minimum-norm solution [50] to the constrained least-squares
problem defined by:

Giwi = 1|N (i)| ⇐⇒ G+i 1|N (i)| = wi (3)

where 1|N (i)| ∈ R|N (i)| is a vector of ones and the jth element
of wi,j can be thought of as the average height of a curve
representing the mean transit time of the indicator [34] of
voxel j from voxel i over the duration of the scan. Since Gi
represents the squared distance of the surface forces from
voxel i, the reconstruction weights wi are Lebesgue mea-
sures [36] summarising the analytic capacity, or spatially-
invariant geometry [25], of the space-filling curve [27], where
the constraint ensures that the areas between the imaginary
surface (acting as the origin that divides the body) and
curves (defined by the stress vectors) are 1 in each of the
|N (i)| directions. In practice the weights can be brittle [65]
due to any number of reasons. Modified Locally Linear
Embedding (MLLE) therefore computes the 1 ≤ si ≤ K
linearly-independent (orthogonal) vectors1 Qi ∈ RK×K ofGi
using the eigendecomposition Gi = Qᵀ

i AQi, thereby allow-
ing the definition of multiple weight vectors for each voxel.
Assuming the columns (eigenvectors) [q1, . . . ,qK ] = Qi
are sorted in descending order of their respective eigenvalues
λ
(i)
1 , . . . , λ

(i)
K , MLLE uses the first si columns to compute

multiple local weight vectors for a single voxel:

w(`)
i = (1− αi)wi +QiH

(`)
i where: αi =

1
√
si
||Qᵀ

i 1K ||
2
2

H(`)
i ∈ Rsi , Hi = I− 2hhᵀ ∈ Rsi×si , h ∈ Rsi , and

si = max
`

{
` ≤ K − d,

∑K
p=K−`+1 λ

(i)
p∑K−`

p=1 λ
(i)
p

< η

}

where h = h0
||h0||

if h0 = αi1si − Qᵀ
i 1K 6= 0 ∈ Rsi (else

h = h0 = 0 ∈ Rsi ), η = ρdV/2e, ρ̂i =
∑K

p=d+1 λ
(i)
p∑d

p=1 λ
(i)
p

, ρ =

sort(ρ̂, ascending), and ρ̂, ρ ∈ RV . Since every measure’s
invariant properties are determined in a square-integrable
space [58], LLE performs a global least-squares optimisa-
tion based on Gauß’ Principle of Least Constraint [23] to
calculate the vectors z1, . . . , zV corresponding to points on

1When using MLLE it is possible for d > K , thus the optimal number
of weight vectors si for each voxel i is determined by setting d = 1 so that
K - 1 ≤ si ≤ K–i.e., si is set to span as large of a basis as possible. After this
step the desired dimensionality d is then input to the eigensolver.

the manifold:

E[Z] = min
Z=[z1,...,zV ]

V∑
i=1

si∑
`=1

||zi −
∑
j∈N (i)

w(`)
i,j zj||

2
2,

such that ZZᵀ
= I (4)

where d ≤ T is the dimensionality parameter selected
by the user and Z ∈ RV×d is the two-dimensional
reconstructed fMRI. The global optimisation therefore cal-
culates the points on the manifold [57], [59] that act as the
four-dimensional orthogonal basis that best retains the geom-
etry of the stress vectors. These represent the second order
invariant properties of each voxel’s Cauchy stress tensor.
A detailed explanation of this optimisation is provided below.

Define Ŵi ∈ RV×si as the local sparse adjacency matrix,
where:

Ŵi(N (i), :) = wi, Ŵi(i, :) = −1ᵀsi , and

Ŵi(j, :) = 0, ∀j 6∈ {N (i) ∪ i}

The optimisation in Equation 4 can be written as a minimisa-
tion of the expected reconstruction cost, or error:

E[Z]

=

V∑
i=1

||ZŴi||
2
2 = trace(Z

V∑
i=1

ŴiŴ
ᵀ
i Z

ᵀ) = trace(Z8Zᵀ)

(5)

where ŴiŴ
ᵀ
i is the orthogonal projection for voxel i,

and 8 =
∑V

i=1 ŴiŴ
ᵀ
i is the sparse, symmetric and

positive-definite alignment matrix, and therefore admits the
eigendecomposition [42]:

Z8Zᵀ
= Z3Zᵀ (6)

where 3 ∈ R(d+1)×(d+1) is the diagonal matrix containing
the d + 1 smallest eigenvalues of Z8Zᵀ, and Z ∈ RV×(d+1)

are the corresponding eigenvectors; Rayleigh’s variational
principle [12], [52] enables calculation of these bottom (d+1)
eigenvectors. Each eigenvector represents a degree of free-
dom in space and time, where the (d + 1) eigenvector is
the global unit vector that fills three-dimensional space. The
global unit vector is discarded to enforce the constraint that
the manifolds have mean zero.

Note: To avoid degenerate solutions, LLE requires the
manifolds to be centred around the origin in both space and
time – i.e.,

∑V
i Zi,: = 0 ∈ Rd and

∑d
i Z:,i = 0 ∈ RV – and

also have outer products with unit covariance – i.e.,ZZᵀ
= I.

Centring the manifolds about the origin ensures they are of
the same scale, which is superficially similar to the common
practice of signal, or count rate, normalisation [51]. The
unit covariance constraint imposes the requirement that the
reconstruction errors of the extracted manifolds are measured
on the same scale.
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TABLE 1. Results.

TABLE 2. Dataset summary.

A. FEATURE & PARAMETER SELECTION
Hyper-parameter Selection involves selecting the algorithm
parameters that will be used to generate the reconstructed
fMRI from LLE and PCA, respectively. Both PCA and LLE
require one to specify the number of reconstruction dimen-
sions d , where LLE’s additional hyper-parameter, K = (1+
2r)3 − 1, selects the neighbouring voxels whose coordinates
are on the boundary of a sphere with radius r ∈ Z+, r ≥ 1
that is centred around the respective voxel. For both PCA and
LLE, the number of reconstruction dimensions is bounded by
the number of time points. In the case of PCA, the optimal d
is often chosen by the proportion of variance captured by the

first d eigenvectors, expressed as
∑d

i=1 λi∑T
j=1 λj

. For LLE, however,

there is no analogous interpretation because the d eigen-
vectors are uniformly spaced ‘‘time points’’ on the world
line [47]. Thus cross-validation procedures are implemented
(see following subsection for details) on the training data
to systematically select the best hyper-parameters, iterating
over d ∈ {1, . . . ,T }, where d is generated on a log-scale
from 1 to T .

SEQUENTIAL FORWARD SELECTION (SFS)2 [63]
is a nonparametric method for measurement (feature) selec-
tion that starts with an empty ‘‘candidate,’’ or near-optimal,
set of ‘‘time points’’. The method first finds the ‘‘time point,’’
defined as the second moment [6], with the highest classifi-
cation accuracy and adds the corresponding image volume to
the set. Themethod then finds an additional ‘‘time point’’ that
strictly improves the classification accuracy in conjunction
with the volume(s) whose ‘‘time points’’ are already in the
‘‘candidate’’ set, and terminates when no such volume can
be found. Thus, SFS produces a near-optimal set of ‘‘time
points’’ (volumes) that distinguish the subject groups with
high classification accuracy, where this set is determined by

2Implemented using MATLAB’s (R2013a) sequentialfs function

adding ‘‘time points’’ to the near optimal set in a one-by-
one fashion. It follows that the near-optimal set of ‘‘time
points’’ represent points in time during the scan that enable
discrimination of patients from controls with high classifica-
tion accuracy. Note that SFS is only used on the training data
(see Section II-C).

B. CLASSIFIER
A slight abuse of notation is introduced by redefining vari-
able z ∈ RVc as the one-dimensional representation of the
c diagnostic volumes from the respective subject’s recon-
structed fMRI Z produced in the previous step. Here, it is
assumed there are c diagnostic time points and that Z is a
random variable containing the collection of cohorts’ recon-
structed fMRI.

FISHER’S LINEAR DISCRIMINANT (LDA)3 [17], [18]
is a linear classification rule [26] that assumes both the patient
and control class densities (at each voxel location) can be
represented as multivariate Gaussians in three-dimensional
space, each with some intrinsic curvature [21], [22]. Each
class density is expressed as

fk (z) =
1

(2π)
Vc
2 |6k |

1
2

e−
1
2 (z−µk )

ᵀ6−1k (z−µk )

where it is assumed the k classes have a common covariance
matrix– i.e., 6k = 6, ∀k . This assumption allows the log
ratio between the posterior distribution of each class to form
a decision boundary that lies between patients (class 1) and
controls (class 0), written as P(Y = 0|Z = z) = P(Y =
1|Z = z), which is linear in z. LDA therefore calculates the
(Vc)-dimensional hyperplane that best discriminates, or sepa-
rates, the diagnostic volumes that have been determined using

3Implemented using MATLAB’s (R2013a) classify function with the
‘diaglinear’ argument to estimate the positive diagonal covariance matrix
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SFS with LOOCV on the respective dataset, for each class’
reconstructed fMRI. It follows these diagnostic volumes con-
tain spatial locations with sufficiently different patient and
control class densities, where statistically-significantly dif-
ferent regions possess the requisite margin between the class
densities such that they are perceptible [51].

C. EVALUATION CRITERIA
Each dataset was split such that the proportion of patients
in the training partition was near-equal to the proportion of
controls, and the holdout dataset contained at least 10 cohorts.
In all but two cases, the aforementioned criteria could not be
met because the datasets were unbalanced. For these situa-
tions, the training dataset was constructed such that it was a
representative sample of the overall data, with the remaining
cohorts being assigned to the holdout dataset. The holdout set
therefore contained group proportions that could deviate from
the training set. The cohorts used to define the training and
holdout partition for each dataset are provided in Table 3 of
the Supplementary Information.

Performance was compared to the original fMRI, both
before and after applying PCA for artefact reduction [39],
and chance, which is defined as the proportion of the major-
ity class on the respective dataset. The performance of the
reconstruction methods are evaluated using a combination
of Leave-One-Out Cross Validation (LOOCV) and holdout
data classification performance [26]. LOOCV is used on the
training data to find both the best reconstruction parameter d ,
and the diagnostic volumes that produce the highest accuracy
for this d . The holdout data classification accuracies use the
parameters found from performing LOOCV on the training
data. Note: the cohorts in the holdout set are never involved in
determining the optimal hyper-parameter d , or the diagnostic
volumes produced from this d .

III. RESULTS
A. PERFORMANCE & VISUALISATION
Tables 1 and 2 demonstrate that Locally Linear Embed-
ded fMRI can distinguish various mental disorders from
healthy controls with high discriminatory power (> 80%);
results for six additional resting-state datasets are pro-
vided in Table 2 of the Supplementary Information.
The datasets contained healthy controls and patients with
either Schizophrenia, Attention-Deficit Hyperactivity Dis-
order (ADHD), or Autism Spectrum Disorder (ASD). Ten
of these datasets contained cohorts in the resting-state,
with the remaining containing schizophrenic patients and
healthy controls performing the Sternberg Item Recognition
Paradigm (SIRP) task [61]. For a description of the data
sources and technical details, please consult the appendix.

Given that performance on the training partition uses Leave
One Out Cross Validation (LOOCV) to individually predict
each subject’s diagnosis, which is analogous to performing
n Bernoulli trials [4] (where n is the number of cohorts),

the training data’s performance metrics can be interpreted as
the mean of successes over n binomially-distributed obser-
vations. To calculate the error of these estimates, we follow
Laplace’s approach of employing a normal distribution to
estimate the error of binomially-distributed observations [33].
Given that discrimination performance on the holdout parti-
tion is determined in a one-time fashion, variance estimates
are not applicable.

The Harvard-Oxford Subcortical/Cortical and Cerebellum
atlases [30] are used to identify the statistically-significant
differences between patients and controls in the diag-
nostic volumes for the respective dataset, shown in
Figures 1, 2, and 3 (Figures 1, 2, 3, 4, 5, and 6 for datasets in
the Supplementary Information). Each dataset’s figure con-
tains six different views of the statistically-significant differ-
ences at the time reflected by the respective time point(s); the
coloured voxels at these time points denote statistically sig-
nificant (p < 0.05 uncorrected) physical differences between
the patient and control groups, where these groups include
cohorts from both the training and holdout partitions. The
proportion of significantly different voxels in each region,
calculated by dividing the number of significantly different
voxels by the total number of voxels in the respective region
defined by the atlas, are provided in Tables 4 and 5 of the
Supplementary Information.

B. NEUROBIOLOGICAL INTERPRETATION
1) SCHIZOPHRENIA
David Ingvar & Göran Franzèn found that healthy con-
trols exhibit increased flows in the prefrontal regions and
decreased flow in the post central regions, and schizophrenic
patients exhibited the reversed pattern, with low flows pre-
frontally and high flows postcentrally [28]. Furthermore, they
noticed that a lower flow in the premotor and frontal regions
was associated with symptoms of indifference, activity and
autism, and a higher postcentral flow over the temporo-
occipito-parietal regions was associated with disturbed cog-
nition [28]. Inspecting the statistical maps for the volumes
in Figure 1, the significantly different areas seem to further
substantiate Ingvar& Franzèn’s observations, as there are sig-
nificant differences in the various temporo-occipital-parietal
regions in all of the volumes.

The Sternberg Item Recognition Paradigm (SIRP) task
evaluates cohorts’ short-term, or working, memory. Each of
the seven tasks during the scan involves the subject memoris-
ing a set of objects, followed by presentation of a new object
whose membership in this set is identified by a ‘yes’ or ‘no.’
The tasks therefore evaluate the hypothesised information
processing differences between schizophrenics and healthy
controls [16]. It has been shown that the prefrontal andmedial
temporal regions are involved in encoding information, and it
is believed the interactions between these regions are central
to retrieval of stored information [60]. Figure 1b, especially
volume 136, illustrates significant differences in the areas
associated with the prefrontal and medial temporal regions;

VOLUME 7, 2019 2200211



G. Sidhu: LLE and fMRI Feature Selection in Psychiatric Classification

FIGURE 1. Statistical maps illustrating the individual differences in mental activity (schizophrenic patients versus healthy controls) for the
discriminative time points determined on the training partition.
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FIGURE 2. Statistical maps illustrating the individual differences in mental activity (ADHD patients versus healthy controls) for the
discriminative time points determined on the training partition.

this is further supported by the fact that the accuracy on
the holdout data rose from 68.8% to 75% when using only
volume 136. Thus, it is possible that schizophrenia indeed
affects the physical mechanisms associated with retrieving
stored information, as these mechanisms are central to the
SIRP task. The reconstruction method therefore successfully
reveals physical differences associated with task performance
between patients and controls, which are different from the
resting-state differences for the same subject groups.

2) ATTENTION-DEFICIT HYPERACTIVITY DISORDER (ADHD)
Similar to the goals of Ingvar & Franzèn [28], previous
work used PET scans to compare the regional cerebral blood
flow of children with Attention-Deficit Hyperactivity Dis-
order (ADHD) to healthy controls, where it was found that
the disorder was associated with hypoperfusion in the stri-
atal and posterior periventricular regions [41]; these results
provide biological evidence that is consistent with the canon-
ical model for ADHD as a fronto-striatal deficient disorder.
Figure 2 shows significant differences in the various occipital,
striatal, cerebellar and ventral regions of the brain.

3) AUTISM SPECTRUM DISORDER (ASD)
Similar to Ingvar&Franzèn’s observations that schizophrenic
patients and healthy controls had normal hemisphere
flows [28], studies using PET to compare the regional cere-
bral blood flow of Autism Spectrum Disorder (ASD) patients
to healthy controls observed normal metabolism and blood
flow. Hypoperfusion in the temporal lobes, centred in the
associative auditory and adjacent multimodal cortex [66],
was observed in autistic children. Furthermore, this temporal
hypoperfusionwas individually identifiable in 75%of autistic
children [66]. Figure 3 illustrates statistical differences in
many areas of the temporal lobe.

In summary, Locally Linear Embedding appears to have
conserved spatiotemporal patterns in resting-state fMRI
(and task-related responses) that are consistent with litera-
ture on regionally-specific abnormalities of cerebral activity
in the psychiatric conditions used to assess classification
performance.

IV. DISCUSSION
The multidisciplinary nature of this work undoubtedly intro-
duces difficulty when discussing its motivations, which is
the deployment of this methodology in a clinical setting.
Such a goal imposes some conditions. First, while the results
support deployment, the methodology must be further eval-
uated by trained clinicians well-versed in the etymology of
the disease under investigation. More importantly, however,
experimental designs are compulsory when discovering bio-
logical markers for disease; that is, patients must be subject
to the same stimulus presentation at the same time during
the scan in order to homogenise comparisons. With respect
to resting-state fMRI, it is felt that a consensus is required
to glean neurobiological insight that can generalise, which
makes further discussion more appropriate for future work.

This exposition focused on Locally Linear Embedding as a
promising and effective form of dimensionality reduction as
a pre-processing step for the analysis of fMRI time-series.
The approaches and aims of this form of pre-processing
share a close relationship with other approaches in imaging
neuroscience. These approaches include Independent Com-
ponent Analysis, the use of Support Vector Machines (and
regression) to classification problems (and prediction), and
algorithms based on adaptive smoothing. In future work,
it will be interesting to explore the formal connections
between other approaches and assess their relative sensitiv-
ity in the context of the classification problems considered
above.

VOLUME 7, 2019 2200211



G. Sidhu: LLE and fMRI Feature Selection in Psychiatric Classification

FIGURE 3. The statistical maps illustrating the individual differences in mental activity (ASD patients versus healthy controls) for the
discriminative time points determined on the training partition.
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FIGURE 4. The local geometry of the Cauchy stress tensor and its relative spatiotemporal patterns on topology [7] X , which is defined on the Cartesian
space with the Pythagorean distance metric.

One hundred and fourty-eight years after Darwin ascer-
tained that mental activity invokes physical mechanisms in
the brain [14], the brain of man and ant alike are among the
marvellous collection of atoms in the world.

APPENDIX
LOCALLY LINEAR EMBEDDING
fMRI contain T uniformly-spaced time points, where time
point t ∈ {1, . . . ,T } describes a three-dimensional space
comprised of V = L×W ×H voxels (volumetric elements);
this is the global description. Each voxel is a volumetric
measurement of the brain’s physical mechanisms in both
space and time– i.e., every voxel represents a measurement
at spatial coordinates (x, y, z) at time t , which can also be
expressed as a four-tuple (x, y, z, t). The BOLD contrast over
T uniformly-spaced time points can be viewed as a random
variable, or measurable function, [6] that is caused by local
neuronal fluctuations. The terms global and local are only
valid under a rigorous definition of three-dimensional space.
A topological space requires specification of the relationships
between points in a set and their respective open sets, which

are defined as the sets that generalise the concept of an
open interval in the real line while also providing a rigorous
definition for nearness of points in this space [7].

Locally Linear Embedding (LLE) [54] is a congruent
transformation [13] that first extracts the local mathemat-
ical (geometric) structure of the data, and then performs
a global optimisation that best conserves this local latent
structure [3], or extension [38]. The application of LLE is
challenging, primarily due to the implicit assumption that
each data point and its neighbours lie on, or close to, a locally
linear subspace [56]; earlier applications of LLE to fMRI

FIGURE 5. Illustrating the reconstruction of the waveform at voxel i, located in the left cerebral cortex of a schizophrenic patient performing the
Sternberg Item Recognition Paradigm (SIRP), as a linear combination of the Lebesgue measures [36] wi,1, . . . ,wi,|N (i )| (defined on the Cauchy stress
tensor) and the spatial patterns of the voxels on the boundary of the sphere, where spatial distance is defined using the Pythagorean distance metric; in
this example, r = 2. For comprehension, only the five nearest voxel waveforms are shown.
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discarded spatial properties of the data in the neighbourhood
selection step [44], thereby failing to preserve the inherent
spatial configuration. In contrast, specifying the topological
space X allows LLE to treat each data point’s open set as its
neighbourhood, thereby forgoing the neighbourhood selec-
tion step entirely. It follows that the benefit of LLE depends
on the suitability of the distance metric used in determining
the neighbourhood of each data point. Figures 4 and 5 suggest
that the physical reality represented by topological spaceX is
a collection of locally-linear subspaces whose properties are
subject to change at any time.

LLE uses the local description to construct the Cauchy
stress tensor [9] at every voxel, which proceeds as fol-
lows: Initially, the spatial pattern of each voxel i, given by
xi ∈ RT , is subtracted from both itself and the spatial
patterns of its neighbours N (i), thereby allowing its ‘‘zero
waveform’’ (represented as 0 ∈ RT ) to serve as the imaginary
plane, or deflexion axis [15], [43], that divides the spherical
body; the subtracted spatial patterns, given by (vector space)
Ci = [xj − xi, . . . , xj+|N (i)| − xi] ∈ RT×|N (i)|, represent
the distances (over time) from the respective voxel’s spatial
location.

We then use the inner-product 〈(xj − xi), (xj − xi)〉 ∈ R
for j ∈ N (i) to compute the squared distances, which
results in the real-symmetric positive-definite spatiotempo-
ral covariance matrix Gi = Cᵀ

i Ci ∈ R|N (i)|×|N (i)| for
every voxel i. Since the contact forces are inversely propor-
tional to the squared differences represented in elements of
Gi [48], we use the Moore-Penrose inverse [50] to solve
for the minimum-norm solution (G+i 1|N (i)| = wi) to the
constrained least squares problem Giwi = 1|N (i)|. Here,
1|N (i)| ∈ R|N (i)| is the unit-length direction vector in each
of the |N (i)| directions, and weights wi ∈ R|N (i)| represent
the stress vectors originating from voxel i. By the spectral
theorem, there exists an orthogonal basisQi ∈ Rd×|N (i)| such
that Gi = Qᵀ

i AQi and Qᵀ
i Qi = I ∈ R|N (i)|×|N (i)| [62];

thus the stress vectors represented by wi are shift, rotation,
and translation invariant in the space defined on basis Qi.
The substantial overlap between spatially-adjacent voxels’
tensors precludes independently calculating orthogonal bases
Q1, . . . ,QV , as this defines each tensor’s basis on separate
vector spaces.

The stress vector wi for each voxel’s Cauchy stress ten-
sor, Qi, represents the spatially-invariant properties of the
three-dimensional forces applied over the duration of the scan
in the respective subspace. LLE retains these spatially-local
invariant properties by constructing the (global) adjacency
matrix W ∈ RV×V such that Wi,j 6= 0 ⇐⇒ j ∈ N (i) ⇐⇒
Wj,i 6= 0 ⇐⇒ i ∈ N (j); by construction W contains
every voxel’s stress vectors, which were determined using
the Cauchy stress tensor. Given that the stress vectors’ invari-
ant properties are determined using squared distances, LLE
then computes the squared distances between every voxel in
the (global) normalised Laplacian matrix [10] (I − W) ∈
RV×V . This is expressed by M = (I − W)ᵀ(I − W)1V ,
where (I − W)1V = 0 ∈ RV [35]. By construction, M is

symmetric and positive-definite, which means there exists
an orthogonal basis Z ∈ RV×(d+1) such that (I −W)ᵀ(I −
W)1V ≡ Z3Zᵀ [42], where 1V represents the global unit
vector in three-dimensional space.4 Since the Cauchy stress
tensor is of second order, LLE uses Rayleigh’s variational
principle [12], [52] to calculate the resonance frequencies
that best preserve the geometry of the deflexion axis at every
voxel’s stress tensor. These are given by the bottom (d+1)
eigenvectors, each of which represent one degree of freedom
in space and time. LLE therefore uses a global optimisation
to embed the relative measurements of every voxel’s Cauchy
stress tensor [9] in a global coordinate system ZV×(d+1) that
conserves quantities over both space and time [19], where
this coordinate system contains a mechanical system [32]
in static equilibrium [8]. Applying LLE to fMRI data can
therefore be viewed as using Carl Friedrich Gauß’ Principle
of Least Constraint [23] to determine the true motion of the
mechanical system defined on the topology X , where the
Cauchy stress tensor [9] allows preservation of the intrinsic
local Gaussian curvature [21], [22] in space and time.
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