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The opioid system in the brain is responsible for processing affective states such as
pain, pleasure, and reward. It consists of three main receptors, mu- (µ-ORs), delta-
(δ-ORs), and kappa- (κ-ORs), and their ligands – the endogenous opioid peptides.
Despite their involvement in the reward pathway, and a signaling mechanism operating
in synergy with the dopaminergic system, fewer reports focus on the role of these
receptors in higher cognitive processes. Whereas research on opioids is predominated
by studies on their addictive properties and role in pain pathways, recent studies suggest
that these receptors may be involved in learning. Rodents deficient in δ-ORs were
poor at recognizing the location of novel objects in their surroundings. Furthermore,
in chicken, learning to avoid beads coated with a bitter chemical from those without
the coating was modulated by δ-ORs. Similarly, µ-ORs facilitate long term potentiation
in hippocampal CA3 neurons in mammals, thereby having a positive impact on spatial
learning. Whereas these studies have explored the role of opioid receptors on learning
using reward/punishment-based paradigms, the role of these receptors in natural
learning processes, such as vocal learning, are yet unexplored. In this review, we explore
studies that have established the expression pattern of these receptors in different
brain regions of birds, with an emphasis on songbirds which are model systems for
vocal learning. We also review the role of opioid receptors in modulating the cognitive
processes associated with vocalizations in birds. Finally, we discuss the role of these
receptors in regulating the motivation to vocalize, and a possible role in modulating
vocal learning.

Keywords: songbirds, endogenous opioids, opioid receptors, learning, reward, basal ganglia

INTRODUCTION

Acoustic communication is important for the survival of animals living in large social groups. Many
species of animals utilize innate vocalizations to relay information to others. The context for such
innate vocalizations may be acquired from the environment (DeVries et al., 2015; Wegdell et al.,
2019) but is not affected by changes in auditory input during early development (Cheney et al.,
1992; Hammerschmidt et al., 2012). In contrast, some animals have elaborate vocal repertoires
which are learnt during the course of development and even in adulthood (Figure 1; Harcus, 1977;
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Eens, 1997; Hardy and Parker, 1997; Dowsett-Lemaire, 2008;
Gammon and Altizer, 2011; Balsby et al., 2012; Janik, 2014;
Mello, 2014; Reichmuth and Casey, 2014; Stoeger and Manger,
2014; Favaro et al., 2016; Mori et al., 2018; Johnson and
Clark, 2020; Vernes and Wilkinson, 2020; Dalziell et al., 2021).
Neuroethologists study these vocal learners to understand the
intricacies and origins of human speech acquisition.

One such avian species which learns to produce complex
vocal signals are songbirds. Like humans, these birds live in
intricate social groups wherein vocal communication is essential
(Zann, 1996; Fernandez et al., 2017; Tchernichovski et al., 2017).
Birdsong is used to attract mates, mark territories and is the
defining feature of songbirds, refined across generations by sexual
selection (Zann, 1996). One of the first studies that hinted at
song learning in passerine birds was performed by Barrington
(1773). In a letter to the Royal Society of London, he wrote
about the stages of song learning in young birds, differentiating
begging calls for food, distance calls for communication and
learnt vocalizations. He stated that the initial phase of song
production in young birds was very similar to babbling in
human babies, which was strongly influenced by the social
environment (Barrington, 1773). Furthermore, active tutors were
found to be essential for both young songbirds and human babies.
Earlier studies had demonstrated that human babies did not
learn language from audio/video recordings (Kuhl et al., 2003).
Similarly, Baptista and Petrinovich (1984, 1986) showed that
white crowned sparrows (Zonotrichia leucophrys) tutored with
taped songs of conspecific adult males until 50 days post hatch
chose to learn the songs of a live heterospecific tutor (strawberry
finches, Amandava amandava) presented to them after the
sensitive period for learning ended. These findings suggested
that vocal learners chose to learn from a live heterospecific tutor
rather than from the taped vocalizations of conspecifics, showing
that social interactions were important for vocal learning.

The presence of a strong social influence and an internal
reward guiding vocal learning [reviewed in Riters (2011) and
Riters et al. (2019)] hints at the involvement of neuromodulators
in vocal learning during the sensitive period. One of the most
potent neuromodulator groups that are associated with social
reward and motivation is the endogenous opioid system. It
is composed of opioid receptors (ORs) and their ligands, the
endogenous opioid peptides. The four primary subtypes of
opioid receptors include µ (mu)-ORs encoded by the OPRM1
gene (Chen et al., 1993a; Fukuda et al., 1993; Wang et al.,
1993), δ (delta)-ORs encoded by the OPRD1 gene (Evans
et al., 1992; Kieffer et al., 1992), κ (kappa)-ORs encoded by
OPRK1 gene (Chen et al., 1993b; Meng et al., 1993; Minami
et al., 1993; Yasuda et al., 1993) and Nociceptin/Orphanin
FQ receptors encoded by the OPRL1 gene (Fukuda et al.,
1994; Mollereau et al., 1994; Wang et al., 1994; Table 1). The
present review focuses mainly on the two most studied subtypes,
that is, the µ- and δ-ORs. Besides being activated by their
respective endogenous ligands (Pleuvry, 1991), endorphins and
enkephalins, respectively, the ORs also bind to a lesser degree to
the other opioid ligands (Jordan et al., 2000). The endorphins are
synthesized after post-translational modification of the precursor
prohormone preproopiomelanocortin (POMC; Smyth, 1983),

whereas δ-ORs are activated by enkephalins derived from the
peptide precursor preproenkephalin (PENK; Hughes et al., 1975).
A third type of opioid ligand, the dynorphins, synthesized from
prodynorphin bind to κ-ORs (Goldstein et al., 1979, 1981).
By binding to these receptors, opioids influence a variety of
physiological activities including analgesia, hunger, motivation,
anxiety and even learning (Bodnar, 2004; Wilson and Junor,
2008; Kibaly et al., 2019). Whereas research on opioid addiction
has largely overshadowed the role of these receptors in higher
cognition, recent studies have shown their involvement in
learning (Meilandt et al., 2004; Bertran-Gonzalez et al., 2013).

Both µ- and δ-ORs can act to modulate different kinds
of learning, with some researchers hypothesizing that these
receptors help in learning the association between drug and
reward in addiction (Klenowski et al., 2015). In the present
review, we will discuss the anatomical distribution of opioid
ligands and receptors in the brain of songbirds and how these
receptors may modulate vocalization and vocal learning.

VOCAL LEARNING AND THE
UNDERLYING NEURAL CIRCUITRY

The process of vocal learning begins with the perception of
adult vocalizations. Human babies are exposed to language
in utero and newborns respond more to their mother’s voice
and language (DeCasper and Fifer, 1980; Moon et al., 1993).
This suggests that before learning semantics and grammar,
babies learn to identify phonetic arrangements specific to their
native language. Songbirds too begin to learn parental vocal
signals early in development. The superb fairy wren (Malurus
splendens) learns its mother’s incubation calls in ovo and uses
a similar vocal structure in its own begging calls for food
(Colombelli-Negrel et al., 2014). This has been tested by showing
that the embryos of this species of birds show an increased
heart rate in response to a playback of tutor songs in ovo
(Colombelli-Negrel and Kleindorfer, 2017).

After hatching, the young birds begin an early phase of
learning is called the sensory phase, during which they memorize
their tutor’s songs. An increased response to the playback of
a known song in white-crowned sparrows, trained using songs
taped from the tutor, suggests the presence of a memory of
the imitated song (Nelson, 1997). Once the song template is
learnt, young birds begin to sing a soft and immature subsong
(Immelmann, 1969). This is the sensorimotor phase during
which the bird tries to match its own song to the “mental
template” it had acquired during the sensory phase. Auditory
feedback helps in matching the bird’s own vocalizations to that
of their fathers/tutors (Konishi, 1965; Brainard and Doupe,
2000). With practice, the vocalizations of the young bird become
more structured, but still possess the ability to undergo change.
These vocalizations are called plastic songs, which finally develop
into a fully structured unchangeable vocal pattern in adulthood
(Eales, 1985; Slater and Jones, 1998). For closed-ended learners
such as zebra finches (Taenopygia guttata) and white crowned
sparrows (Zonotrichia leucophrys), the adult song does not
undergo further change and is aptly referred to as “crystallized
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FIGURE 1 | Different animal species that learn to vocalize. Vocal mimics further enhance their vocal repertoires by including heterospecific and environmental sounds
in their vocalizations (Harcus, 1977; Eens, 1997; Hardy and Parker, 1997; Dowsett-Lemaire, 2008; Gammon and Altizer, 2011; Balsby et al., 2012; Janik, 2014;
Mello, 2014; Reichmuth and Casey, 2014; Stoeger and Manger, 2014; Favaro et al., 2016; Mori et al., 2018; Johnson and Clark, 2020; Vernes and Wilkinson, 2020;
Dalziell et al., 2021).

song” (Immelmann, 1969; Marler and Peters, 1982; Böhner, 1990;
Zann, 1990).

For songbirds, the process of vocal learning and production
is controlled by specific brain areas called song control nuclei.
Nottebohm et al. (1982) showed the presence of five such nuclei

in the songbird brain that were associated with vocal control.
These nuclei included the pallial sensorimotor nucleus HVC
(used as a proper name) which projects to a pallial motor nucleus
RA (robust nucleus of the arcopallium) in the caudal part of
the brain and forms the vocal motor pathway (VMP), which
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TABLE 1 | Opioid peptide receptors and their ligands.

Name* Endogenous
ligand(s)

Action pKi

µ, mu or
MOP

β-Endorphin Full agonist 9 (Raynor et al., 1994)

Leu-Enkephalin Partial agonist 8.1 (Toll et al., 1998)

Met-Enkephalin Full agonist 9.2 (Raynor et al., 1994)

Endomorphin-1 Potential full
agonist

8.3 (Zadina et al., 1997;
Gong et al., 1998)

Endomorphin-2 Potential full
agonist

8.5 (Zadina et al., 1997)

Dynorphin A Full agonist 8.3 (Toll et al., 1998)

Dynorphin B Full agonist 8.5 (Toll et al., 1998)

δ, delta or
DOP

Leu-Enkephalin Full agonist 8.4 (Raynor et al., 1994)–8.7
(Toll et al., 1998)

β-Endorphin Full agonist 8.3 (Toll et al., 1998)–9
(Raynor et al., 1994)

Met-Enkephalin Full agonist 6.0 (Meng et al., 1993)

Dynorphin A Full agonist 7.8 (Toll et al., 1998)

Dynorphin B Full agonist 7.8 (Toll et al., 1998)

Endomorphin-1 Potential full
agonist

6.1 (Zadina et al., 1997)

κ, kappa or
KOP

Dynorphin A Full agonist 8.3–10.8 (Simonin et al.,
1995; Zhu et al., 1995, 1997;
Toll et al., 1998)

Dynorphin B Full agonist 8.1–9.9 (Meng et al., 1993;
Simonin et al., 1995; Toll
et al., 1998)

Leu-Enkephalin Full agonist 6.8 (Meng et al., 1993)

Met-Enkephalin Partial agonist 6.3 (Simonin et al., 1995)–7.9
(Toll et al., 1998)

α-Neoendorphin Full agonist 8.3–10.2 (Li et al., 1993;
Meng et al., 1993; Simonin
et al., 1995; Zhu et al., 1995)

NOP Nociceptin/
orphanin FQ

Full agonist 8.4–10.4 (Adapa and Toll,
1997; Dooley et al., 1997;
Bigoni et al., 2002)

*NC-IUPHAR (Nomenclature and Standards Committee of the International Union
of Basic and Clinical Pharmacology) -approved nomenclature.
DOP, delta opioid receptor; KOP, kappa opioid receptor; MOP, mu opioid receptor;
NOP, nociceptin opioid receptor.

is important for vocalization since it controls the movements
of the syrinx (Nottebohm and Arnold, 1976; Nottebohm et al.,
1982). A nucleus in the avian basal ganglia, Area X, also receives
projections from HVC and projects to the thalamic nucleus
DLM (dorsolateral nucleus of the medial thalamus), which in
turn projects to LMAN (lateral magnocellular nucleus of the
anterior nidopallium, LMAN). The pathway connecting Area X,
DLM and LMAN forms a thalamocortical basal ganglia loop
called the anterior forebrain pathway (AFP; Nottebohm et al.,
1976; Bottjer et al., 1989), responsible for vocal learning (Bottjer
et al., 1984; Scharff and Nottebohm, 1991). The two pathways
are interconnected via projections from LMAN to RA (Figure 2;
Herrmann and Arnold, 1991).

SIGNALING AND NEURAL EXPRESSION
OF THE ENDOGENOUS OPIOID SYSTEM

The opioid receptors are members of the G-protein coupled
receptor (GPCR) family. They are composed of seven

hydrophobic transmembrane domains connected via intra
and extra-cellular loops and possess N- or amino and C or
carboxylic groups at the end terminals. Structurally, the µ- and
δ-ORs have a binding pocket that interacts with the respective
ligand and specifically recognizes the morphinan group (Table 1;
Mansour et al., 1997; Granier et al., 2012). Following activation,
µ-ORs inhibit adenyl cyclase and voltage-gated Ca2+ channels,
and stimulate G protein-activated inwardly rectifying K+
channels (GIRKs) and phospholipase Cβ by the activation of the
Gαi/o and Gβγ subunits (Childers, 1991). Similarly, for δ-ORs, the
activation of the Gαi/o and Gβγ subunits results in modulation
of the activity of calcium channels (P/ Q-, N-, and L-type),
GIRKs, and inhibition of adenylyl cyclase which reduces the
level of intracellular calcium via inhibition of cAMP-dependent
calcium channels. Together, these events result in the inhibition
of neural activity (Kieffer and Evans, 2009; Al-Hasani and
Bruchas, 2011; Gendron et al., 2016). Once activated, both µ-
and δ-ORs are internalized and δ-ORs are specifically degraded
via the lysosomal pathway (Whistler et al., 2002). In contrast,
µ-ORs may continue to be involved in signal transduction even
after internalization and only unbound µ-ORs are recycled
(Al-Hasani and Bruchas, 2011).

µ-ORs and Their Ligands
In mammals, µ-ORs and their ligands (enkephalins and
endorphins) are mostly concentrated in the hippocampus,
thalamic nuclei, amygdala, locus coeruleus, parabrachial nucleus,
and the nucleus of the solitary tract (Bloom et al., 1978; Di
Giulio et al., 1979; Gall et al., 1981). Within the striatum, these
receptors are concentrated in patches, which are embedded
in a matrix intensely stained for acetylcholine and rich in
Substance P (Pert et al., 1976; Brimblecombe and Cragg, 2017).
Although the patch and matrix organization of the mammalian
striatum is absent in birds, levels of µ-ORs are uniformly high
across the striatum in birds including pigeons (Columba livia)
(Reiner et al., 1989), chick (Gallus gallus) (Csillag et al., 1990),
juncos (Junco hyemalis) (Gulledge and DeViche, 1995; Gulledge
and Deviche, 1999) and zebra finches. Furthermore, µ-ORs
are present across development in some of the song control
regions of juncos HVC, RA, LMAN, and Area X (Gulledge
and DeViche, 1995; Gulledge and Deviche, 1999), especially
in RA, and in all song control nuclei including HVC, RA,
LMAN, Area X, and DLM in adult male zebra finches (Figure 2;
Khurshid et al., 2009).

Comparatively fewer studies have been conducted to detect
opioid ligands in songbirds. Initial studies used specific
antibodies to detect the presence of leu-enkephalin (Ryan
et al., 1981) and met-enkephalin (Ryan et al., 1981; Bottjer
and Alexander, 1995) in different song control nuclei. Both
reports demonstrated the presence of enkephalinergic fibers and
somata in components of the VMP and AFP in adult male
zebra finches. Additionally, Carrillo and Doupe (2004) found
that medium spiny neurons as well as large DLM-projecting
neurons in Area X were immunoreactive for leu-enkephalin.
These findings were confirmed by Xie et al. (2010), who
used mass spectrometry and MALDI-TOF to demonstrate that
both proopiomelanocortin (POMC), the precursor peptide of
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FIGURE 2 | Expression pattern of µ- and δ-opioid receptors and the dopaminergic system in the vocal control nuclei in the songbird brain, based on data from
Bottjer (1993) and Khurshid et al. (2009). Blue arrows represent connections of HVC connections, red arrows represent connections of AFP, and violet arrows
represent dopaminergic input. DLM, dorsolateral nucleus of the medial thalamus; LMAN, lateral magnocellular nucleus of the anterior nidopallium; RA, robust
nucleus of the arcopallium; SN, substantia nigra; VTA, ventral tegmental area.

β-endorphin, and preproenkephalin (PENK, the precursor of
enkephalin) were present in Area X, LMAN, HVC, and RA.

The presence of both POMC and PENK as well as µ-ORs
in components of the VMP (HVC→RA) and AFP (the neural
circuit connecting LMAN, Area X, and DLM) in songbirds
suggests that they may be able to modulate both vocalization
and vocal learning and/or singing in different social contexts.
In particular, the localization of µ-ORs in the avian striatum
suggests that these receptors may be important for the control
of reward-guided behavior, since undirected singing and song
learning (cf., Scharff and Nottebohm, 1991) during practice is
thought to be internally rewarding (Riters et al., 2019).

δ-ORs and Their Ligands
The neural expression of δ-ORs has been well-documented
in rodents. Developmentally, δ-OR expression begins in the
pons and the hypothalamus at embryonic day 13 (E 13.5),
whereas µ- and κ-ORs are detected in the basal ganglia and
midbrain at E 11.5. The prenatal expression of δ-ORs at day
E 17.5 and E 19.5 is very low and restricted to the caudate
putamen, parabrachial nucleus and olfactory tubercle (Zhu et al.,
1998). In contrast, in adult rodents, δ-ORs are distributed
in the olfactory tubercle, cerebral cortex, amygdala, nucleus
accumbens, and striatum (Mansour et al., 1987, 1994) and have
a low, yet detectable presence in the hippocampus and VTA
(Erbs et al., 2015). Since this pattern of expression is absent
in the prenatal stages, it is possible that they may influence

the development of neural circuits developing after birth and
modulate the associated cognitive processes. Furthermore, the
expression of δ-ORs in areas regulating reward, motivation,
learning, memory, and emotional processing (Jutkiewicz, 2018)
suggests that these receptors may be involved in cognitive
processes such as vocal learning.

In songbirds (zebra finches), the expression of enkephalin
is similar to that of δ-ORs. Neuronal fibers immunoreactive
for met-enkephalin are distributed across the pallium and are
concentrated in song control areas including HVC, RA, LMAN,
Area X, and DLM (Ryan et al., 1981; Bottjer and Alexander,
1995). Patterns of δ-OR expression mirrored these results, with
δ-OR mRNA being localized to the song control nuclei (LMAN,
HVC, RA), all parts of the pallium and hippocampus, and Area
X expressing the highest levels of these receptors in adult male
zebra finches (Khurshid et al., 2009; Parishar et al., 2021).

As in rodents (see above), it is possible that the expression of
δ-ORs and their ligands (enkephalins) may be developmentally
regulated in songbirds as well. An earlier study has found higher
levels of δ-OR expression in Area X and RA of juvenile juncos
(Gulledge and DeViche, 1995), whereas Carrillo and Doupe
(2004) have shown that higher levels of leu-enkephalin are
present in Area X in juvenile zebra finches, compared to those
in adult birds of both species. Another study by Wada et al.
(2006) demonstrated that singing for a 30-min duration led to
the expression of preproenkephalin (PENK, the precursor of
enkephalin) in the song control regions HVC and Area X in adult
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and juvenile male zebra finches. Furthermore, the expression of
PENK (which primarily binds δ-ORs) as well as mRNA for µ-ORs
was upregulated in the mPOA (medial preoptic nucleus) in male
European starlings (Sturnus vulgaris) during fall, a season marked
by increased undirected singing (Riters et al., 2014). The mPOA is
connected to the ventral tegmental area (VTA) in male starlings,
and lesions of this nucleus lead to deficits in the motivation to
sing to females and other courtship-associated behaviors (Riters
and Ball, 1999; Alger et al., 2009).

Taken together, these findings suggest that the endogenous
opioid system may be involved in modulating song-induced
reward associated with positive affect [reviewed in Riters (2011)
and Riters et al. (2019)] and may also be involved in guiding vocal
learning during development.

THE ROLE OF THE ENDOGENOUS
OPIOID SYSTEM IN VOCALIZATION AND
THE MOTIVATION TO SING

Besides their involvement in reward and motivation in mammals,
µ-ORs are also important for socialization and singing in birds.
Female-directed (FD) singing is a highly motivated behavior
in which both the mesolimbic dopaminergic systems as well
as the opioid system are involved. Recent studies have shown
that blocking dopamine receptors using antagonists leads to a
decrease in courtship singing in zebra finches (Schroeder and
Riters, 2006; Rauceo et al., 2008). The expression of endogenous
opioids has been demonstrated in song control nuclei and areas
important for motivation and reward in zebra finches (Bottjer
and Alexander, 1995; Carrillo and Doupe, 2004). Furthermore,
systemic administration of high doses of naloxone (a general
opioid receptor agonist with higher affinity for µ- compared
to δ-ORs) led to small increases in the number of FD songs
in male starlings (Riters et al., 2005), whereas there was a
significant decrease in their number following injections of
the µ-OR agonist, fentanyl (Schroeder and Riters, 2006). In
addition to the endogenous opioids, µ-ORs are expressed in the
song control nuclei as well as the VTA-SNc complex in adult
male zebra finches (Khurshid et al., 2009, 2010). In contrast to
their effects on male starlings, systemic administration of low
doses of the opioid antagonist naloxone leads to a decrease
in both FD and undirected (UD) singing in adult male zebra
finches. Despite different results in the two species, both sets
of findings suggest that ORs are involved in the motivation to
sing. In naloxone-treated birds, the decrease in the motivation
to sing was accompanied by changes in the quality of song:
spectral features (including goodness of pitch, frequency, and
amplitude modulation) decreased, whereas the duration of songs
and intersyllable intervals (temporal features) increased in length,
compared to vehicle-treated controls (Khurshid et al., 2010).

Studies on starlings by Kelm-Nelson et al. (2013) and Riters
et al. (2014) have demonstrated that mPOA is involved in
the motivation to sing. Kelm-Nelson and Riters (2013) have
demonstrated that high levels of µ-ORs and enkephalin are
present in mPOA in birds which are poor singers (Kelm-Nelson
et al., 2013). As mentioned above, Riters et al. (2014) have

reported an increase in the expression of PENK and µ-OR mRNA
in the mPOA of male starlings during undirected singing in fall.
More recently, research on male European starlings suggests that
there is a correlation between reward associated with singing
behavior and opioid-related gene expression in mPOA. These
findings have been confirmed by Stevenson et al. (2020), wherein
blocking µ-ORs in mPOA leads to a significant decrease in
undirected song and hinders the association between singing and
a positive affective state.

Recent studies have shown that blocking ORs with naloxone
specifically in components of the AFP, as opposed to systemic
injections, led to changes in the motivation to sing as well as
those in the acoustic features of FD songs in adult male zebra
finches (Kumar et al., 2019, 2020). Infusions of naloxone into
LMAN (Kumar et al., 2019) resulted in a significant decrease
in the number of FD songs (Kumar et al., 2020). Blocking ORs
in both LMAN and Area X led to significant decreases in the
length of motifs produced during FD song. Whereas blocking
ORs in LMAN led to significant decreases in the amplitude
modulation of motifs at a specific dose (100 ng/ml) of naloxone
(Kumar et al., 2019), the same manipulation in Area X led to
significant decreases in frequency and amplitude modulation and
pitch goodness as well as a significant increase in pitch (Kumar
et al., 2020). Additionally, blocking ORs in LMAN and Area
X led to changes in the spectral quality of individual syllables
in directed songs. Furthermore, naloxone infusion into Area X
resulted in a local increase in dopamine. These results suggest
that altering opioid modulation in LMAN and Area X may lead
to changes downstream at the level of the ventral tegmental area
(VTA) which sends dopaminergic projections to Area X, among
other targets (Gale et al., 2008).

THE ROLE OF OPIOID RECEPTORS IN
LEARNING

µ-ORs and Learning
Besides playing a role in modulating the motivation to sing as
well as the spectro-temporal features of song, both µ- and δ-ORs
may play a role in modulating song learning since they are present
in components of the AFP, including Area X, LMAN, and DLM
(Khurshid et al., 2009; Parishar et al., 2021). These findings are
supported by earlier reports demonstrating that these receptors
are involved in different kinds of learning.

Studies in the Rodent Model System
Aloyo et al. (1993) showed that µ-ORs could modulate
associative learning. Using Pavlovian conditioning in rabbits,
they conditioned the nictitating membrane reflex to an audio
tone using an air puff. Whereas intraventricular administration of
saline did not interfere with the learning process, intraventricular
injections of D-Ala, Me- Phe-, Gly-ol enkephalin (DAMGO),
a µ-OR agonist, impaired conditional learning in experimental
animals. This effect was blocked by µ-OR antagonist naloxone
(Aloyo et al., 1993). Furthermore, Loh and Galvez (2014)
demonstrated that opioid modulation regulated associative
learning in a rodent model system. They used a trace
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paradigm – whisker–trace–eye blink (WTEB) conditioning,
wherein an eye blink, elicited using a periorbital electric
shock, was conditioned to whisker stimulation. They observed
that if naloxone was administered before the conditioning,
it was capable of significantly impairing associative learning.
However, administration of naloxone after learning did not
have any effect on the conditional association in this paradigm
(Loh and Galvez, 2014).

To further establish that µ-ORs are involved in motor
learning, Lawhorn et al. (2009) used the dermorphin-saporin
toxin which specifically targets and destroys neurons in the
striosomes which express µ-OR in the basal ganglia. When
these mice were tested on motor tasks, they showed specific
impairments only on the rotarod test. Striosomes project to
substantia nigra pars compacta, a major source of dopaminergic
input to the striatum, and ablating µ-OR-positive neurons in
this region would lead to a decrease in dopamine release. Since
dopaminergic feedback from the midbrain to the striatal and
cortical circuits may provide the necessary reinforcement needed
to learn and perform on the rotarod, its absence would lead to
deficits in motor learning (Lawhorn et al., 2009). In contrast
to this study, Cominski et al. (2014) has shown that the loss
of µ-ORs leads to an increase in hippocampal neurogenesis
which in turn facilitates spatial learning. Furthermore, the µ-OR
antagonist naltrexone is known to facilitate spatial learning
and memory formation in mice by increasing AMPA receptor
phosphorylation and membrane insertion (Kibaly et al., 2016).
Yet another study (Laurent et al., 2015) has shown that µ-
and δ-ORs play important roles in incentive learning and in
value-based and stimulus-based decision-making in mice.

Although these learning paradigms cannot be compared
directly to vocal learning in birds, striatal-based learning
involves different aspects of social association (Carouso-Peck
and Goldstein, 2019), timing (Gobes et al., 2019) and cued
dopaminergic input (Gadagkar et al., 2016), each of which are
important factors for vocal learning.

Studies on δ-ORs and Learning in the
Chicken Model System
Initial studies on the involvement of δ-ORs in learning were
performed on chicks (Gallus gallus) by training them on a
passive avoidance task. In this experiment, birds were provided
with steel beads coated with a bitter tasting chemical called
methyl anthranilate (MEA), which they are averse to. A different
set of birds, used as controls, were presented with steel beads
coated with water. Both experimental and control birds were
presented with a single steel bead and their latency to peck and
aversive behavior after pecking at the bead was measured to
estimate their behavioral response. Experimental birds learned
to associate the steel bead with the bitter taste and avoided
pecking at the other bead whereas control birds did not
avoid the bead. Administration of leu-enkephalin and D-Pen–
2, L-Pen–5 enkephalin (DPLPE), a δ-OR selective agonist,
into the intermediate medial hyperstriatum ventrale 5 min
before training resulted in poor performance on this task. This
study also demonstrated that the amnesia caused by δ-OR
agonists was reversed by administration of δ-OR antagonists

(Patterson et al., 1989). Csillag et al. (1993) also used a passive
avoidance task similar to that used by Patterson et al. (1989) to
establish the role of these receptors in learning. In their paradigm,
1-day old chicks were trained to peck at a chrome bead coated
with methyl anthranilate or water (control). Neural tissue from
the trained birds was tested for binding with radio-labeled ligands
specific for δ-, µ-, and κ-ORs. Interestingly, there was higher
binding for the δ-OR ligand 3H-DPDPE in the striatal areas
medial striatum (MSt) and lateral striatum (LSt) (Csillag et al.,
1993) in birds which performed well on the avoidance task. In
another study, site-specific injections of δ-OR antagonist ICI-
174,864 in MSt abolished the avoidance learning for the bitter-
tasting bead in 1-day old chicks (Freeman and Young, 2000).

Studies on δ-ORs and Learning in the
Rodent Model System
Recent studies on δ-ORs and learning have provided further
evidence that these receptors show changes in expression patterns
based on the learning experience. Bertran-Gonzalez et al. (2013)
trained mice on a Pavlovian instrumental transfer protocol (PIT)
in which associations learnt following the delivery of a reward
influences the behavior toward two external cues. In this study,
a sound was linked to a food reward, followed by training on
a second task where a lever press delivered the food reward.
A successful test session of the instrumental transfer comprised
of the mouse pressing the lever when the sound stimulus was
presented. The researchers observed an increase in the expression
of δ-ORs in cholinergic interneurons within the shell of nucleus
accumbens in mice that had learnt the reward association as
well as the instrumental transfer (Bertran-Gonzalez et al., 2013).
Interestingly, the level of learning determined the extent of δ-OR
expression. These results were similar to those shown in the
earlier study by Csillag et al. (1993), which demonstrated an
increased binding for δ-ORs in the striatum of chicks trained on
an avoidance task.

Another study explored the function of δ-ORs in the
hippocampus and their role in learning by using δ-OR gene
knockout mice (Oprd1−/−). These gene-deficient mice were poor
in place recognition (hippocampal-based learning). Interestingly,
they performed better on tasks involving the striatum, such as
balancing on an accelerating rotarod, compared to wild type
mice (controls). Peripheral injections of the δ-OR antagonist
naltrindole in normal mice were able to produce learning
deficits similar to the Oprd1−/− mice. This study concluded
that δ-ORs are involved in hippocampal-based learning and
possibly modulate parvalbumin interneurons that regulate long
term potentiation (Le Merrer et al., 2013). Recently, Leroy et al.
(2017) has demonstrated a more specific role for hippocampal
δ-ORs. They injected naltrindole into the CA2 region of the
hippocampus of young mice interacting with their mates. The
study revealed that blocking δ-ORs impairs social memory
formation by a failure to induce plasticity in the CA2 region
(Leroy et al., 2017).

Despite these findings, learning and memory can never be
separated from internally reinforcing reward signals, making it
difficult to isolate the role of opioid receptors in learning and
memory formation from reward related processes in the brain.
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It is therefore possible that opioid receptors might modulate
learning and memory not just via inhibition of local circuits but
also by regulating dopaminergic signaling.

MODULATION OF DOPAMINERGIC
SIGNALING VIA δ-ORs: EFFECTS OF THE
OPIOID SYSTEM ON THE REWARD
PATHWAY

The interaction between µ-ORs and dopaminergic signaling has
been extensively studied in association with addiction and pain
pathways (Van Vliet et al., 1990; Li et al., 2016; Burns et al.,
2019). Recently, Galaj et al. (2020) have shown that µ-ORs are
highly expressed by the GABAergic neurons of the substantia
nigra pars reticulata (SNr), that sends dense innervations to the
dopamine rich substantia nigra pars compacta (SNc) and ventral
tegmental area (VTA) in mice. They observed that optogenetic
activation of SNr GABAergic neurons increased heroin intake
and reduced heroin-primed drug seeking, whereas inhibition
of these neurons induced optical cranial self-activation and
place-preference. These results hint at the opioid modulation of
reward via inhibitory projections of the SNr to SNc and VTA
(Galaj et al., 2020).

Earlier research shows that δ-OR signaling also influences
dopaminergic circuitry and vice versa. Dopaminergic afferents
acting via D2 receptors are known to inhibit the production
of enkephalin which preferentially binds δ-ORs in striatal
neurons (Normand et al., 1988; Jiang et al., 1990; Llorens-Cortes
et al., 1991). Conversely, blocking D2 receptors increases the
production of enkephalin in the striatum (Steiner and Gerfen,
1999). This coupling between δ-OR and dopaminergic signaling
may be responsible for memory retrieval and increased retention
of information in mice with induced amnesia (Dubrovina
and Ilyutchenok, 1996). Dopaminergic release in the striatum
also regulates predictive learning by signaling for error in
performance (Iordanova, 2009).

Interestingly, the pharmacological activation of µ-ORs in the
ventral striatum induces the activation of δ-OR subtypes, which
further enhances dopamine release within the area (Hirose et al.,
2005). Opioids can exert control over dopaminergic signaling via
different mechanisms. The ORs expressed by GABAergic neurons
in VTA or on medium spiny neurons in the striatum lead to
the disinhibition of dopaminergic neurons thereby causing an
increased release of dopamine. Furthermore, ORs present on
dopaminergic neurons in the VTA can inhibit the release of
dopamine in the striatum [reviewed in Xi and Stein (2002)].
Taken together, a fine balance between dopaminergic and opioid
signaling is required for behavioral reinforcement.

FIGURE 3 | Possible mechanism for the opioid modulation of dopaminergic input to Area X and the regulation of vocal learning. Green arrow, Glutamatergic
projection; red arrows, GABAergic projections; violet arrow, dopaminergic projection, OR, opioid receptors.
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The error prediction and behavioral reinforcement through
dopaminergic signaling from the midbrain is essential for vocal
learning as well. Evaluative signals in the form of bursts
of dopamine released in Area X in zebra finches shape the
spectral features of song according to the desired template
(Gadagkar et al., 2016; Xiao et al., 2018). Since µ- and δ-ORs are
present in components of the AFP (such as LMAN and Area X)
which are linked to the VTA-SN complex in birds (Ding and
Perkel, 2002; Kumar et al., 2019, 2020), it is possible that the
complex interplay between OR activation and dopamine release
plays a role in the structuring of vocal patterns during song
learning, as discussed below.

OPIOID REGULATION OF SOCIALLY
REWARDING BEHAVIOR AND
VOCALIZATIONS MAY ALSO BE
INVOLVED IN THE REGULATION OF
VOCAL LEARNING

Vocal learning is a social process (Tchernichovski et al.,
2017) which is rewarding in itself (Riters and Stevenson,
2012). Whereas rodents do not display socially guided vocal
learning, certain vocalizations are associated with socially
rewarding behavior (Humphreys and Einon, 1981). One such
behavior is social play, wherein rodents emit short bursts
of high frequency vocalizations (<0.5 s; ∼ 50 Hz) while
playing. A play-associated place preference can be established
in rodents (Normansell and Panksepp, 1990), suggesting that
it is intrinsically rewarding. Similarly, singing-induced place
preference can be established in European starlings and zebra
finches singing undirected songs (Riters and Stevenson, 2012),
also indicating that undirected song, which is produced during
learning and for song maintenance, is intrinsically rewarding
[reviewed in Riters et al. (2019)]. This play-associated vocal
behavior is also demonstrated when young rodents are placed
in a spatial location associated with play behavior (Knutson
et al., 1998). Opioid agonists such as morphine increase these
play-associated vocalizations when administered chronically
(Hamed and Boguszewski, 2018). Furthermore, response to play
vocalizations is enhanced by opioid agonists and reduced by
antagonists (Wohr and Schwarting, 2009). These findings suggest
that opioids enable behaviors associated with social activity. In
case of a social learning process, like vocal learning, this could
help in shaping vocal structure by directing attention toward
adult vocalizations produced by tutors and/or other members of
the flock (Chen et al., 2016).

Earlier studies (Khurshid et al., 2010; Kumar et al., 2019, 2020)
have demonstrated that the opioid system can modulate different
aspects of singing. Based on the neuroanatomical localization

of ORs in the song control areas of oscines, it is possible that
these receptors may be involved in vocal learning (Gulledge
and Deviche, 1999). As mentioned above, findings from Wada
et al. (2006) have demonstrated that there is an increase in the
level of the opioid ligand pre-proenkephalin in Area X after
singing in juvenile male birds. An increase in the activation
of ORs in Area X could potentially lead to a decrease in
the activity of MSNs and a disinhibition of pallidal neurons.
This would ultimately lead to the disinhibition of the VTA-SN
complex and an increase in DA release in Area X, which acts
as an evaluatory signal, shown to play an important role in
vocal learning (Figure 3; Gadagkar et al., 2016; Xiao et al., 2018).
Additionally, ORs are involved in associative learning, modulate
dopaminergic signaling, and are differentially expressed in the
brain in the developmental phase rather than in the adulthood in
mammals and songbirds, which suggests that ORs may influence
cognitive processes such as vocal learning.

CONCLUSION

A number of studies on different species of mammals and birds
have demonstrated that the endogenous opioid system is involved
in higher cognitive functions including learning. Whereas the
endogenous opioid system has been shown to modulate the
motivation to vocalize and also effects the acoustic properties of
song in different species of songbirds, recent anatomical findings
demonstrate that it is present in components of the AFP. Given
that the AFP is involved in learning, is connected to the VTA-
SN complex and can influence dopamine release, the endogenous
opioid system may potentially modulate vocal learning during
the sensitive period. Experiments wherein the ORs are blocked
or activated in young songbirds at different time points during
the sensitive period would provide further insights into the role
of the endogenous opioid system in vocal learning.
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