

Genome Sequences of 64 Non-O157:H7 Shiga Toxin-Producing *Escherichia coli* Strains

Magaly Toro,^a Guojie Cao,^{b,c} Lydia Rump,^{b,c} T. G. Nagaraja,^d Jianghong Meng,^{b,c} Narjol Gonzalez-Escalona^a

Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA^a; Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland, USA^b; Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA^c; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA^d

Shiga toxin-producing *Escherichia coli* (STEC) strains are human pathogens. Although >400 non-O157 serotypes have been involved in human disease, whole-genome sequencing information is missing for many serotypes. We sequenced 64 STEC strains comprising 38 serotypes, isolated from clinical sources, animals, and environmental samples, to improve the phylogenetic understanding of these important foodborne pathogens.

Received 5 August 2015 Accepted 21 August 2015 Published 1 October 2015

Citation Toro M, Cao G, Rump L, Nagaraja TG, Meng J, Gonzalez-Escalona N. 2015. Genome sequences of 64 non-O157:H7 Shiga toxin-producing *Escherichia coli* strains. Genome Announc 3(5):e01067-15. doi:10.1128/genomeA.01067-15.

Copyright © 2015 Toro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Narjol Gonzalez-Escalona, narjol.gonzalez-escalona@fda.hhs.gov.

n 1982, the first Shiga toxin-producing *Escherichia coli* (STEC) serotype, *E. coli* O157:H7, was associated with mild to severe human disease and outbreaks (1). Since then, its diversity has been widely studied (2). However, not only O157:H7 has been implicated with human diseases, as >400 STEC serotypes have also been found to be responsible for them (3). In the United States, six serogroups, O26, O45, O103, O111, O121, and O145, cause 70% of non-O157 STEC diseases (4). Although some of these serotypes have been described genetically (5), many more strains still have not been assigned to serogroups or sequenced.

Shiga toxin (Stx) is a cytotoxin similar to *Shigella dysenteriae* toxin type 1 (6); the two main *stx* gene variants are Shiga toxin 1 (stx_1) and Shiga toxin 2 (stx_2), which damage intestinal epithelial cells and kidneys, causing hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS), respectively (7, 8). Other virulence factors carried by STECs include intimin (*eae*) and plasmid-borne enterohemolysin (*ehxA*), both of which contribute to severe disease in humans (6, 9).

Sixty-four STEC cultures were grown aerobically overnight in tryptic soy agar (TSA) at 37°C, and then DNA was extracted using the DNeasy blood and tissue kit (Qiagen, Valencia, CA). Libraries were prepared using the Nextera XT kit (Illumina, San Diego, CA) and 1 ng of genomic DNA. Sequences were obtained with the MiSeq Illumina V2 (2×250 bp) or V3 kit (2×300 bp), according to the manufacturer's instructions, and *de novo*-assembled sequences were generated using CLC Genomics Workbench version 7.6.1 (CLC bio, Germantown, MD, USA). Strains were sequenced to a coverage depth ranging from 34 to 118×. We used Ridom SeqSphere+ for *in silico* MLST analysis, and resulting sequences were annotated using the NCBI Prokaryotic Genomes Annotation Pipeline (PGAP) (http://www.ncbi.nlm.nih.gov/genome/annotation_prok).

These genomes varied from 4.7 to 5.4 Mb; the number of contigs per assembly ranged from 52 to 303 (data not shown). Most strains represented 27 previously described sequence types (STs); seven strains were novel STs (Table 1). Using the CGE server at the Technical University of Denmark (10), we ran *in silico* analyses of sero-

types and for the presence of virulence genes (*stx, eae,* and *exhA*). Forty-eight strains (75%) carried stx_1 , and 41 strains (64%) carried stx_2 . A total of 25 strains (39%) carried both *stx* genes (Table 1). Twenty-five strains (39%) carried four different subtypes of *eae*: beta1, epsilon, gamma1, and theta2. The plasmid-borne *exhA* gene was detected in 52 strains (81%). The information we report here will help better understand the evolution of these emergent foodborne pathogens (non-O157 STECs) and improve the accuracy of food-related trace-back investigations outbreaks caused by these pathogens.

Nucleotide sequence accession numbers. The draft genome sequences for these 64 STEC strains are available in GenBank and are listed in Table 1.

ACKNOWLEDGMENTS

The study was supported by the FDA Foods Program Intramural Funds and the ORISE Fellowship Program.

The findings and conclusions in this report are those of the authors and do not necessary represent the official position of the Food and Drug Administration.

We thank Lili Fox Vélez for editorial support.

REFERENCES

- Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. 1983. Hemorrhagic colitis associated with a rare *Escherichia coli* serotype. N Engl J Med 308: 681–685. http://dx.doi.org/10.1056/NEJM198303243081203.
- Rump LV, Gonzalez-Escalona N, Ju W, Wang F, Cao G, Meng S, Meng J. 2015. Genomic diversity and virulence profiles of historical *Escherichia coli* 0157 strains isolated from clinical and environmental sources. Appl Environ Microbiol 81:569–577. http://dx.doi.org/10.1128/AEM.02616-14.
- Blanco JE, Blanco M, Alonso MP, Mora A, Dahbi G, Coira MA, Blanco J. 2004. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing *Escherichia coli* isolates from human patients: prevalence in Lugo, Spain, from 1992 through 1999. J Clin Microbiol 42:311–319.
- 4. Griffin P. 2007. CDC perspective on non-O157 Shiga toxin-producing *E. coli* (STEC) in the United States. Centers for Disease Control and Prevention, Atlanta, GA.

- Ju W, Cao G, Rump L, Strain E, Luo Y, Timme R, Allard M, Zhao S, Brown E, Meng J. 2012. Phylogenetic analysis of non-O157 Shiga toxinproducing *Escherichia coli* strains by whole-genome sequencing. J Clin Microbiol 50:4123–4127. http://dx.doi.org/10.1128/JCM.02262-12.
- Nataro JP, Kaper JB. 1998. Diarrheagenic *Escherichia coli*. Clin Microbiol Rev 11:142–201.
- Karmali MA, Petric M, Lim C, Fleming PC, Steele BT. 1983. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet ii:1299–1300. http://dx.doi.org/10.1016/S0140-6736(83)91167-4.
- 8. Johannes L, Römer W. 2010. Shiga toxins-from cell biology to biomed-

ical applications. Nat Rev Microbiol 8:105–116. http://dx.doi.org/ 10.1038/nrmicro2279.

- Shen J, Rump L, Ju W, Shao J, Zhao S, Brown E, Meng J. 2015. Virulence characterization of non-O157 Shiga toxin-producing *Escherichia coli* isolates from food, humans and animals. Food Microbiol 50: 20–27. http://dx.doi.org/10.1016/j.fm.2015.02.007.
- Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic *Escherichia coli*. J Clin Microbiol 52: 1501–1510. http://dx.doi.org/10.1128/JCM.03617-13.

 TABLE 1 Metadata for Shiga toxin-producing Escherichia coli

CFSAN no.	Isolate name	WGS accession no.	Serogroup/serotype						
			Reported	In silico ^a	ST	stx_1^a	stx_2^a	eae subtype	ehxA
CFSAN026773	5750	LDDW0000000	O6	O6:H34	New1 ^b	+ c	+	-	+
CFSAN026776	2794-3	LGZO0000000	O15	O15:H27	5012	+	+	-	-
CFSAN026777	1245	LGZZ0000000	O22	O22:H8	446	+	+	-	+
CFSAN026778	748-1	LDDV0000000	O38	O38:H21	56	+	+	-	-
CFSAN026779	13950-1	LDDU0000000	O38	O38:H22	New2	-	+	-	+
CFSAN026781	4558-1	LGZW0000000	O74	O74:H42	5013	+	+	-	+
CFSAN026783	1235-1	LGZC0000000	O88	O88:H25	154	+	+	-	+
CFSAN026785	4162	LDDT0000000	O91	O91:H21	442	-	+	-	+
CFSAN026786	3712-2	LGZJ0000000	O96	O96:H19	New3	+	+	-	+
CFSAN026787	497	LDDS0000000	O96	O96:H19	1611	-	+	-	+
CFSAN026788	4	LDDR0000000	O111:NM	O111:H8	16	+	+	θ2	+
CFSAN026789	7726-1	LDDQ0000000	O111	O111:H8	16	+	+	θ2	+
CFSAN026790	7739-1	LDDP0000000	O111	O111:H8	16	+	+	θ2	+
CFSAN026791	7756-1	LDDO0000000	O111	O111:H8	16	+	+	θ2	+
CFSAN026792	8	LGZM0000000	O111	O111:H8	16	+	+	θ2	+
CFSAN026793	1598-2	LGZF0000000	O113	O113:H21	223	-	+	-	+
CFSAN026794	3517	LGZH0000000	O113	O113:H21	56	-	+	-	-
CFSAN026795	1238-1	LGZX0000000	O116	O116:H21	58	+	+	-	+
CFSAN026796	3536-3	LDDL0000000	O117	O117:H4	10	+	+	-	-
CFSAN026798	47	LGZK0000000	O121	O121:H19	655	-	+	e	-
CFSAN026799	48	LDDK0000000	O121	O121:H19	655	-	+	e	+
CFSAN026800	55	LGZT0000000	O121	O121:H19	655	-	+	e	+
CFSAN026801	37	LDDJ0000000	O130:H11	O130:H11	297	-	+	-	+
CFSAN026802	492-1 ^d	LDDI0000000	O130	O130:H38	New4	+	+	-	+
CFSAN026809	9388-1	LDDH0000000	O163	O163:H19	679	+	+	-	+
CFSAN026810	18917-1	LDDG0000000	O163	O163:H19	679	-	+	-	+
CFSAN026812	1044-1	LDDF0000000	O171	O171:H2	332	-	+	-	-
CFSAN026813	9042-1	LDDE0000000	O172	O172	660	-	+	e	+
CFSAN026815	22	LDDD0000000	45:H2	O45:H2	17	+	-	e	+
CFSAN026817	1.2622	LGZP0000000	O45:H12	O45:H16	2217	+	-	-	-
CFSAN026819	2	LGZQ0000000	103:H2	O103:H2	17	+	-	e	+
CFSAN026821	3720-1	LGZR00000000	103	O103:H2	1967	+	-	e	+
CFSAN026824	39	LGZL0000000	103	O103:H2	17	+	-	e	+
CFSAN026825	40	LGZS0000000	103	O103:H2	1967	+	-	e	+
CFSAN026826	54 ^d	LDDC0000000	103	O103:H2	17	+	-	e	+
CFSAN026828	2013-3-80A	LDDB0000000	103	O103:H2	1967	+	-	e	+
CFSAN026820	20	LGZU00000000	103:H11	O103:H11	723	+	-	β1	+
CFSAN026830	2013-6-148B	LDDA0000000	104:H7	O104:H7	1817	+	-	-	+
CFSAN026831	2011-5-383-1	LHAA0000000	104	O104:H7	1817	+	_	_	+
CFSAN026835	12662-2	LDCZ0000000	109	O109	New5	+	_	_	+
CFSAN026836	15166-1	LDCY0000000	109	O109	New5	+	-	-	+
CFSAN026838	1939 ^d	LDDN0000000	111	O111:H8	16	+	_	θ2	+
CFSAN026839	11189-1 ^d	LDDM0000000	111	O111:H8	16	+	_	θ2	+
CFSAN026840	19 ^d	LGZG00000000	111	O111:H8	16	+	_	θ2	+
CFSAN026842	1553-1 ^d	LDCX0000000	121	O121:H7	New6	+	_	_	_
CFSAN026843	4709-1 ^d	LGZN0000000	136	O136:H16	329	+	_	_	+
CFSAN026844	$10314-1^{d}$	LDCW0000000	136	O136:H16	329	+	_	_	+
CFSAN026845	$11182-2^{d}$	LDCV00000000	142	O142:H38	154	+	_	_	_
CFSAN026804	53	LGZD0000000	0145	O145	32	+	+	γ1	+
CFSAN026805	1234-1	LDCU0000000	0145	0145	32	+	+	γ_1	+
CFSAN026846	2013-3-279 D ^d	LGZI0000000	145	O145	32	_	+	γ_1	+
CFSAN026847	1 ^d	LGZE00000000	145:NM	0145	32	+	_	γ_1	+
CFSAN026848	2013-3-86 Cd	LHAB0000000	145	0145	32	+	_	γ_1	+
CFSAN026807	9916-1	LHCR00000000	- : H25	- : H25	58	+	+	_	+
CFSAN026808	1932	LHCS00000000	- : H25	- : H25	58	_	+	_	+
CFSAN026782	15484-1	LHCN0000000	O8:H19	O8:H19	2385	+	+	_	+
CFSAN026803	5344-1	LHCP00000000	O8:H49	O8:H49	111	+	+	_	+
CFSAN026775	2089-2	LHCX00000000	O8:H19	O8:H19	201	+	+	_	_
CFSAN026780	7712-3	LHCM00000000	O116:H49	O116:H49	2520	- -	+	_	+
CFSAN026849		LHCW00000000		O142:H38	154	+	_	_	_
	16118-2		O142:H38				+	_	+
CFSAN026806	5710-2 6842-1	LHCQ00000000 LHCO00000000	O183:H18 O185:H7	O183:H18 O185:H7	657 2387	+		_	+
CFSAN026797						_	+	_	_
CFSAN026811 CFSAN026784	1223-4	LHCT0000000	O134:H38	O134:H38	154	+	+	_	+
	1027-4	LHCZ0000000	O22:H8	O22:H8	446	+	+	_	+

^a These results were obtained by using the virulence finder and serotype options in the CGE server (http://cge.cbs.dtu.dk/services) (10).

^b New indicates an ST not described previously/unknown.

^c A plus sign indicates presence and a minus sign indicates absence.

^d Strains sequenced using MiSeq Illumina V3 kit (2 × 300 bp). The remaining strains were sequenced using V2 (2 × 250 bp).