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Assembly of metagenomic samples is a very complex process, with algorithms designed to address
sequencing platform-specific issues, (read length, data volume, and/or community complexity), while also
faced with genomes that differ greatly in nucleotide compositional biases and in abundance. To address
these issues, we have developed a post-assembly process: MetaGenomic Assembly by Merging
(MeGAMerge). We compare this process to the performance of several assemblers, using both real, and
in-silico generated samples of different community composition and complexity. MeGAMerge consistently
outperforms individual assembly methods, producing larger contigs with an increased number of predicted
genes, without replication of data. MeGAMerge contigs are supported by read mapping and contig
alignment data, when using synthetically-derived and real metagenomic data, as well as by gene prediction
analyses and similarity searches. MeGAMerge is a flexible method that generates improved metagenome
assemblies, with the ability to accommodate upcoming sequencing platforms, as well as present and future
assembly algorithms.

T
he rapidly evolving state of Next Generation Sequencing (NGS) data has led to the development of a
multitude of de novo and reference-based assembly tools1. To deal with the sheer number of reads generated
by today’s high-throughput NGS platforms, many of these new assembly tools utilize ‘‘Kmers’’ (words of

length K) and de Bruijn graphs, as the method of choice for generating assembled contiguous sequence fragments
(contigs). Each assembler yields different results (contigs and associated information), with some capable of
generating ordered contigs if mate pair libraries are available2. Additionally, the results of any assembler can vary
when altering any of a number of parameters, such as Kmer size selection, expected coverage, coverage cutoff,
edge trimming or other tool-specific options3.

When a single genome is being sequenced, measuring the quality of the assembly is relatively straightforward,
with a minimal number of large contigs being ideal. Large contig sizes, coupled with the fewest possible mis-
assemblies, are always considered better. Increased sequencing of an isolate genome will eventually exhaust novel
sequence information, as the entire genome is covered by an increasing number of reads; making sequencing, and
therefore assembly, a definable process. Metagenome assembly, in contrast, often has an unclear definition of
assembly quality. Due to the number, frequency, types and sizes of genomes present in highly diverse communit-
ies, additional sequencing of metagenome samples often captures novel genome fragments from increasingly rare
members (or minor variants) of the community. However, even when sequencing reaches or surpasses one
terabase, novel reads continue to be generated when sequencing the most complex communities, such as those
in soil4. This makes metagenomic sequencing and assembly difficult. There are at least two current approaches to
metagenomic assembly, assembly of all data (typically requiring massive computational resources for raw assem-
bly), or selection of a subset of the reads to assemble separately (binning or normalization). There are a number of
issues with both methods, resulting in either poor contiguity despite the information being present in the raw
data, or loss of data altogether. In addition, the methods are generally applied to raw data from a single sequencing
platform. To mitigate these problems, we have designed an algorithmic approach called MetaGenomicAssembly
by Merging (MEGAMerge) to recursively utilize a number of different Kmer based assemblies and combine the
results into a single, merged contig set (Figure 1).
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For metagenomes, contig N50 (size of contig where all contigs of
equal or larger size add up to half the assembly size), and other
traditional assembly metrics are less informative, and frequently
misrepresent the quality of the assembly. For such analysis, it is of
value to include the total assembly size, which can include many very
small contigs (which also shift the contig N50 and some other tra-
ditional statistics to inferior values). Measurements of large contig
sizes remain a useful criterion for judging metagenomic assemblies;
however assembly parameters or assemblers providing large contigu-
ous fragments are rarely the ones that output the largest total assem-
bly size. Additionally, as the size of the largest contig and total
assembly are only two possible criteria for judging assembly, using
these, or any other set of metrics for the selection of the ‘‘best’’
assembly or assembler for metagenomes may result in suboptimal
performance. As there is currently no perfect tool for metagenome
assembly, these assembly variations can be exploited by combining
the results of different assemblies1,5,6.

To take advantage of the varied results generated when using
different parameters and/or assemblers, MeGAMerge takes the
resulting contigs from multiple assemblies and merges them

together, coupled with long reads or other sequence data. The flex-
ibility of this method allows the incorporation of any high-quality
contigs into the process regardless of original source, making it
adaptable to new technologies. The result is a single, merged assem-
bly consisting of contigs of greater length, and with better resolution
than any single assembly. We demonstrate that this method consis-
tently improves assembly metrics when applied to several different
types of metagenomes. To validate that this procedure is applicable to
a wide range of sequencing and assembly technologies, we analyzed
MeGAMerge results for 21 metagenome samples with a minimum of
1 lane of Illumina sequence, some with additional 454 shotgun
sequence data (Supplementary Table S1), as well as a synthetic data-
set using synthetic illumine reads from 1000 reference genomes.

Since MeGAMerge is designed to combine various assemblies,
including those from different assemblers, it can equally be applied
to data from recently implemented, or upcoming, sequencing tech-
nologies (e.g. the long reads associated with Pacific Biosciences or the
upcoming Oxford Nanopore technology), as well as data obtained
from any assembly algorithm. Such a strategy allows the use of results
from multiple assemblers, the application of multiple different para-

Figure 1 | MeGAMerge pipeline for metagenomes. This diagram provides an overview of the MeGAMerge process, including optional steps for

trimming sequencing data and the inclusion of optional assemblers for Illumina reads. Long read or contig sets may include Sanger libraries, error-

corrected PacBio reads (raw reads are likely to be too error-prone to be merged), and any other source of contigs. Input sequences of size , 200 bp are

removed from this method, but this default value can be changed. The MeGAMerge pipeline currently uses Newbler to assemble short contigs, and

Minimus2 as the final assembly stage.
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meters, as well as the inclusion of sequence data from multiple
sequencing technologies. This method therefore accommodates
future assembly procedures, and novel technologies, to be included
in the MeGAMerge process without significant alteration or updat-
ing of the methodology. Advances in technology, methodology or
metagenomic theory will simply continue to improve metagenome
assembly using this method.

Results
Comparison of Assembly Statistics. All MeGAMerge contigs show
improvement of statistical metrics when compared with individual
assemblies using the same assembler(s) within the same dataset.
Table 1 illustrates the average improvements of assemblies broken
down by data type. Supplementary Table S2 shows all metrics for all
assemblies. Generally, MeGAMerge decreases the total number of
contigs, by producing fewer, larger contigs. The total number of bases
in MeGAMerge assemblies are comparable to the most bases
assembled in the best single Kmer assembly, yet display greater
contiguity (i.e. more bases contained in large (e.g. . 2 kb) contigs.

Of the five de novo Kmer based assemblers tested for this work
(CLC Bio’s denovo assembler (CLC Bio), and open source tools
Velvet, SOAPdenovo, Ray, and IDBA7–10), the two tools with meta-
genome implementations (IDBA and Ray) performed the best. CLC
Bio performs well with respect to producing large numbers of
assembled bases, but seems to assemble smaller contigs, and show
poorer support by read mapping. Individual assembly results for all
metagenome samples examined, along with the results of merging
contigs from one or more assemblies using our process (MeGA-
Merge) can be found in Supplementary Tables S2 and S3.

Analysis of ‘‘small’’ Kmer (,5 31) assemblies indicates that there
does appear to be a trend of improvement of assemblies with increas-
ing Kmer size from 21–31 (Supplementary Tables S2 and S3). It is not
the case, however, that the largest Kmer (K531) contains all data
represented in assemblies with Kmers 21–29. Additionally, use of
larger Kmers (K.71) produces substantial improvements to the
assembly (Supplementary Table S3). In fact, there is a consistent
improvement of results when large Kmers, 454 data, or both, are
utilized for MeGAMerge. Generally, when these data types are
included, MeGAMerge produces a largest contig that is substantially
larger than any produced in individual assemblies. This observation
is likely due to the ability of larger Kmers or longer reads to span
short repeats that shorter Kmers or reads cannot, coupled with the

merging process that uses overlap-based consensus, rather than
deBruijn graph based assembly, to join contigs.

IDBA, an iterative assembler conceptually similar to our method
of merging results of multiple individual assemblies using
MeGAMerge, also shows similar contig improvements. For example,
use of IDBA with a restricted IDBA Kmer range (K521–31, steps of
2) provides results similar to MeGAMerge of individual assemblies
with the same Kmer range (Supplementary Tables S2 and S3).
Similar to observations of using larger Kmers with MeGAMerge
(as stated above), improved assembly statistics resulted from the
use of IDBA default assembly Kmer ranges (K520 to 100, by steps
of 20). Additional improvements were observed when using the
results of two or more assemblers as input to MeGAMerge, above
and beyond the inclusion of multiple Kmers (see below).

Improvement to Assemblies using Small (K,31) Kmers. Results of
representative small Kmer (K # 31) assemblies from each tested
assembler and from MeGAMerge results are shown in Table 1, as
well as in Supplementary Tables S2, S3 and S4. For assemblies
performed with Velvet, SOAPdenovo, or CLCBio, MeGAMerge
produced improvements to the number of assembled bases,
average contig size, and in the number of bases contained in the
largest contigs. Generally for small Kmers, the majority of assem-
bly metrics show improvement as Kmer increases for metagenome
samples (Supplementary Table S2). A consistent trend is seen in the
reduction of the number of small contigs as well as the inclusion of
more bases in the largest contigs of MeGAMerge assemblies
(Supplementary Figure S1).

Using small Kmers, the largest MeGAMerge contig generated
could be identical to a contig within one (or more) of the individual
small Kmer assemblies. When this was not found to be the case,
improvements to total contig length were often modest (Figure 2A).
The presumptive reason for the minimal improvements in large con-
tigs is the small Kmer size, which is unable to span and resolve low
complexity, short repeats in the individual assemblies. However,
alignments of all contigs from any individual assembly to the contigs
produced by MeGAMerge indicates that not all parameters produce
the largest fraction(s) of the largest MeGAMerge contigs (Supplemen-
tary Table S3).

Due to the nature of IDBA, it is not possible to perform
MeGAMerge on IDBA output alone as this program already iterates
over several Kmers to produce a single assembly. Contigs produced
with IDBA (Kmers 21–31, by steps of 2) did produce improved

Table 1 | Median fold change of select metrics for MeGAMerged assemblies compared to the original source assemblies*

Input Data Types

Illumina Only Illumina 1 454**

HMP Only MetaHit Only All MeGAMerge assembliesK,31 K ,105 K,31 K,105

Number of Samples 20 5 4 4 3 17 33
Number Of Contigs 211.65 1.60 213.30 3.08 29.56 284.33 21.77
N50 29.80 3.46 25.86 12.82 12.71 19.99 25.02
N90 54.03 3.71 3.32 1.90 5.54 24.10 35.63
Size of Maximum Contig (bp) 1.36 2.95 6.27 7.66 1.38 1.26 3.03
Total Bases in all Contigs 21.24 1.89 21.34 3.09 21.09 23.62 1.16
Bases in 10 Largest Contigs 1.68 2.55 4.73 5.32 1.79 1.43 2.67
Bases in 20 Largest Contigs 1.80 2.48 4.73 5.06 1.84 1.45 2.72
Bases in 40 Largest Contigs 1.97 2.46 4.42 4.83 1.90 1.46 2.74
Bases in 100 Largest Contigs 2.13 2.45 3.91 4.44 2.07 1.46 2.72
Median Contig Length 12.19 3.87 2.19 1.40 4.29 27.58 8.63
Bases in Contigs . 5 kb 3.08 1.08 2.34 1.54 4.34 2.61 2.62
Bases in Contigs . 3 kb 2.98 1.45 2.29 1.51 4.05 2.26 2.57
Bases in Contigs . 2 kb 2.97 1.43 2.21 1.50 3.67 2.02 2.55
Bases in Contigs . 1 kb 2.39 1.05 1.90 1.39 2.83 1.29 2.08
Bases in Contigs . 300 bp 1.61 21.59 1.33 1.96 1.77 21.41 1.53

*Assemblies were pooled by sequence type (Illumina/454), as well as by study. All metrics display an overall improvement compared to the original assemblies.
**Addition of 454 to an Illumina-only SOAPdenovo assembly helps to generate larger contigs.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6480 | DOI: 10.1038/srep06480 3



contig statistics compared to any of the individual Kmer assemblies
from Velvet, SOAPdenovo, or CLCBio (Table 1). However,
MeGAMerge results, combining the same Kmer-range from these
individual assemblers, outperformed this IDBA assembly.

The more recently available Ray assembler, was able to perform
better with the HMP sample than the other assemblers, and even
produced better metrics than MeGAMerge contigs from other
assemblers (with small Kmer assembly outputs). From read-map-
ping validation (see below), it appears that Ray also generates a class
of contigs with notably higher fold coverage than other assemblers
(Supplementary Figure S2). This improvement is not seen in the oil
spill sample, where Ray performed approximately as well as several
other assemblers. The variation in assemblers’ ability to produce high
quality assemblies illustrates the difficulty of selecting any particular
assembler, or assembly, for the diverse array of possible metagenome
samples. Applying MeGAMerge to multiple Ray assemblies pro-
duced considerable improvements in the number of bases assembled,
the number of coding regions detected, as well as other assembly
statistics (Table 2), indicating that even when Ray appears to be an
individually superior algorithm for one particular sample type for
metagenome assembly, MeGAMerge is able to improve upon any of
these individual assemblies. The computational requirement for Ray
is drastically higher than for any other assembler, however, poten-
tially limiting its use with large datasets.

Longer Read Technology Helps Improve MeGAMerge Assemblies
of Small Kmers. For small Kmers with all assemblers, MeGAMerge
results are greatly improved by incorporation of a different
technology, 454, which generates longer read data (Table 1). For
example, MeGAMerge of Velvet contigs shows 8-fold increase in
the size of the largest contig, with commensurate improvements in
other categories when 454 reads are included into the inputs. Similar
to what was conducted when using only small Kmer assemblies, the
contigs from individual assemblies were aligned with the largest
MeGAMerged contig obtained from the merged individual small
Kmer and long read assemblies. In this case, the inclusion of

longer reads generally results in novel large MeGAMerge contigs
that are not represented in their entirety within any of the
individual input assemblies. These contigs are supported both by
the contig mapping results as well as read mapping-based
validation, which is discussed below. The ability to include long
reads into MeGAMerge natively allows the longer reads to join
multiple contigs into a single contig. This parallels the observation
that larger Kmers used for Illumina assemblies generate better
metagenome assembly statistics than the use of smaller Kmers.

Long Contig Generation Improves When Using Large Kmers or
Long Reads. Improvements to assembled contigs similar to those
produced with 454 reads are also seen with Illumina-only assemblies
when larger Kmers (85–105) are used as input to MeGAMerge
(Table 2, Supplementary Table S3, Figure 2B). Furthermore,
compared with individual Kmer assemblies, all contig statistics,
including largest contig sizes, are improved once MeGAMerge is
applied to these source datasets. The human microbiome sample
SRS022071 was further examined as it contains both long (100 bp)
Illumina reads and 454 data. Testing the incorporation of 454 reads
together with a range of large Kmer assemblies using MeGAMerge
did not produce substantial improvements, indicating that the
observed differences are primarily due to read and Kmer length,
rather than differential sequencing by platform. These improve-
ments are likely the result of large Kmers mitigating many of the
same assembly issues addressed by the longer 454 reads, as
mentioned previously. The benefit observed, even when using
Illumina reads alone with long Kmers, reiterate the universal need
for longer reads, regardless of sequencing or assembly technology
(assembly Kmer size is limited by read length).

MeGAMerge Improves Assembly when Merging Results from
Multiple Assemblers. As discussed previously, IDBA using either
a range of Kmers 21–31 or using default parameters produced
contigs with metrics consistent with, or better than those produced
by other individual Kmer assemblers. However, MeGAMerging of

Figure 2 | MeGAMerge contigs encompass many smaller contigs from individual assemblies. The largest MeGAMerge contigs produced using input

assemblies from SOAP-denovo with Kmer ranges of 21–31 (A), or 85–99 (B), are shown for sample SRS022071. The underlying contig coverage is

indicated with all contigs from the individual assemblies that are aligned to the MeGAMerge contigs (green and red lines indicate the 59-39 orientation of

the original contigs). The read coverage is also shown using a sliding window of 100 bp. Both contig and read coverage support the MeGAMerge produced

contigs.

www.nature.com/scientificreports
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IDBA contigs with contigs from other assemblers consistently
produces an improved assembly over IDBA alone (Table 1 and
Supplementary Table S4). This supports the premise that
individual algorithms are able to assemble different types of read-
overlaps and produce different groups of contigs. Similarly, applying
MeGAMerge to Ray assemblies in combination with results from
other assemblers also yielded assembly improvements, including
improvements over the merging of Ray contigs alone (Table 2 and
Supplementary Table S4), indicating again that each assembler is
capable of producing distinct contigs (possibly from different
members of the community), even if the assemblies originate from
the same read set(s), and using similar Kmer sizes to construct the
graph. These results indicate that while assembly technology
continues to progress, MeGAMerge can consistently improve upon
the non-deterministic assemblies currently being produced, and
holds promise for continued success.

Sample Type Has Strong Effect on Assembly And MeGAMerge
Improvement. The majority of the samples analyzed in this report
are from human associated metagenomes, and as such, are more
likely to be relatively low in terms of sample complexity. This
means that a much higher proportion of reads can be incorporated
into these assemblies than for more complex metagenomes, such as
available marine or soil metagenomes. When compared to a pelagic
metagenome sample taken during the Horizon oil spill in the Gulf of
Mexico, it can be seen that, there is a consistent improvement in
assembly metrics when using MeGAMerge compared with
individual Kmer based assemblies. Figure 3 shows the variation in
two metrics of assembly (total bases in contigs larger than 2 Kb, and
average contig size in contigs . 2 Kb) for the Horizon oil spill

metagenome, and for a selected sample from the HMP
(SRS022071) for comparison. It can be seen here that different
samples and different assemblers produce highly variable results,
however, MeGAMerge improvements are clear with either sample
type.

Table 2 (and additional details in Supplementary Table S4) sum-
marizes: 1) the use of different Kmer-based assemblers on metagen-
omes with Illumina reads; 2) the value of MeGAMerging the
assembly results of any one assembler with multiple different para-
meters (varying Kmer sizes); and 3) the improvement when com-
bining various assemblers and/or data types (Illumina and 454) with
MeGAMerge.

Read Coverage Validation of Assembly. Read based validation of
assemblies of the metagenome samples reveals what appears to be
assembler specific characteristics, while validating the majority of
assembled and MeGAMerge produced contigs. Figure 4 shows the
results of read mapping to assemblies of a single Kmer and
MeGAMerge of assemblies for both an HMP and the oil spill
datasets (MetaHIT example in Supplementary Figure S3). Larger
contigs with near complete read coverage can be observed. The
lower coverage of small contigs is in part an artifact of read-
mapping edge effects.

The majority of the variation, and read-mapping improvements
shown by MeGAMerge for these samples are due to improvement in
the overall number of bases in large contigs, rather than introduction
of novel data (Table 2). This can be seen much more clearly in the oil
spill sample, where MeGAMerge-produced contigs are able to recruit
more total reads than the number of reads recruited in all input
assemblies (Supplementary Tables S5 and S6).

Table 2 | Metrics of quality of metagenome assembly. HMP project (SRS022071) and Oil spill sample were assembled using multiple
assemblers and MeGAMerge was applied to each assembler separately, or to all assemblies. A single Kmer is selected for each assembler for
each assembly

Project Assembler
Assembly

Size*
Largest
Contig*

Largest 100
Contigs*

# Coding
Genes

Coding
Density

% Reads
Assembled

Contig
Coverage

HMP Velvet K531 43,681 57 2,494 45,182 90.85% 26.77% 100.00%
K585 N/A N/A N/A N/A N/A N/A N/A
MeGAMerge 98,825 397 12,718 99,391 89.02% 77.13% 99.90%

SOAP denovo K531 26,394 33 1,795 27,393 91.17% 20.72% 99.97%
K585 17,057 47 2,134 17,028 90.16% 28.59% 100.00%
MeGAMerge (21–31) 121,119 343 13,538 116,460 89.26% 81.36% 99.89%
MeGAMerge (85–105) 62,989 648 13,927 61,668 89.08% 82.58% 99.89%

CLC Bio K531 50,680 100 3,355 52,559 90.36% 37.40% 99.93%
MeGAMerge 119,872 421 12,314 120,811 90.00% 78.27% 99.64%

Ray K531 101,924 473 12,540 96,464 89.14% 76.84% 99.96%
MeGAMerge 143,479 473 16,785 134,565 89.41% 82.14% 99.88%

IDBA Default Parameters 134,761 278 10,628 99,453 89.28% 77.78% 99.87%
K521–31 100,032 87 4,383 11,914 90.45% 48.78% 99.88%

All MeGAMerge 190,932 473 18,918 171,113 88.97% 84.27% 99.55%
Oil spill Velvet K531 N/A N/A N/A N/A N/A N/A N/A

K585 3,438 38 1,143 3,526 89.46% 2.10% 99.66%
MeGAMerge 12,000 41 1,731 13,111 88.88% 36.37% 99.40%

SOAP denovo K531 2,555 19 659 2,494 90.00% 0.36% 99.58%
K585 2,355 30 886 2,342 90.58% 1.91% 99.96%
MeGAMerge 21–31 5,784 19 783 6,030 92.47% 0.63% 99.20%
MeGAMerge 85–105 8,621 35 1,581 9,109 89.11% 36.73% 99.89%

CLC Bio K531 31,669 52 1,902 35,053 89.60% 30.42% 95.54%
MeGAMerge 162,483 54 3,068 184,678 89.29% 45.92% 81.57%

Ray K5101 2,835 31 824 3,174 87.78% 26.59% 99.12%
MeGAMerge 12,461 35 1,647 13,272 88.38% 48.57% 99.86%

IDBA Default Parameters 41,835 68 2,026 44,918 90.47% 7.50% 99.12%
K521–31 5,522 26 913 5,563 91.45% 0.74% 98.71%

All – CLC MeGAMerge 77255 68 448 83580 89.62% 54.87% 99.10%
All MeGAMerge 225,593 69 3,346 253,968 89.21% 57.95% 82.37%

*Represented as kilobases (kb) for these fields.
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The relatively low complexity of the HMP samples results in a
much higher percentage of read incorporation for all assemblies,
with less of a distinct improvement upon merging assemblies with
MeGAMerge. The microbial diversity of metagenome from the oil
spill sample is much higher, and shows a much greater degree of
variability between assemblers and a more distinct improvement
after using MeGAMerge. The proportion of reads recruited to con-
tigs for the oil spill sample range by more than two orders of mag-
nitude. For this sample, CLC bio produced the second most bases in
contigs . 2 Kb, but read-mapping indicates that a much lower pro-
portion of these contigs are recruiting unique reads. Additionally, the

average contig coverage of individual CLC bio assemblies is much
lower (95%) than expected (.599%), and the resulting
MeGAMerge contigs are also substantially less well covered (85%).
When allowing multiple alignments per read, rather than restricting
to only one per read, improves this number to 88.2%, which is still
much lower than any other assembler, putting to question the ability
of CLC bio to properly assemble complex metagenome samples.
When MeGAMerge is applied to all assemblies of this sample with
the exception of CLC bio, the read-mapping based validation looks
highly similar to the HMP results, with read-mapping again reaching
99% contig coverage and a similar size in the total assembled contigs.

Figure 3 | Comparison of Statistical Metrics of Assembly for HMP and Oil Spill data. Panel 3A shows the results of various assemblers compared to

MeGAMerge for the average contig size (x-axis) and the total assembled bases (y-axis). MeGAMerge performs better than all other assemblers. Panel 3B

shows the same graph for assembly of the oil spill sample. There is less uniformity for this sample, but MeGAMerge continues to produce more bases at a

large average contig size.

Figure 4 | Read-mapping validation of HMP and Oil Spill produced contigs. Percent coverage (y-axis) versus size of contig (x-axis) for MeGAMerge

(black) and a single Ray Assembly (red) are displayed for HMP sample SRS022071 (A), and the oil spill sample (B). MeGAMerge contigs follow a similar

pattern as with Ray contigs, with larger contigs that are validated by reads.

www.nature.com/scientificreports
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While IDBA behaves comparably to MeGAMerge applied to ranges
of Kmer assemblies from other assemblers when using HMP sam-
ples, it performs less well on the more complex oil spill sample.

These results indicate that read-mapping is a vital tool for assess-
ment of assemblies, and that there is no uniformly ideal assembler for
different sample types, lending further support to the utility of a
method such as MeGAMerge, which can capitalize on the strengths
of multiple assemblers to produce an improved final assembly.

Gene Prediction Supports Improvement by MeGAMerge. Analysis
of the predicted coding regions from the contigs from individual
assemblies and of MeGAMerge results indicates that coding
regions are found in the majority of assembled contigs. MeGA-
Merge coding density is comparable or even improved when
compared to individual assembly tools, and this coding density
(,90%) falls within the range of what is expected for microbial
genomes. There is a consistent increase in the total number of
predicted genes in MeGAMerge contigs when compared to
individual Kmer assemblies of the same data. The increase in the
number of predicted genes, and the overall increase in average
length in MeGAMerge contigs indicates that not only can more
genes be predicted, but that more of these predicted genes will be
found on large contigs, allowing for the analysis of linked genes (gene
neighborhoods) and their associated functions, a critical element in
metabolic pathway reconstruction.

Validation with Contig Alignments, Read Mapping, and Simi-
larity Searches. To further validate the MeGAMerge process, and
its ability to produce accurate larger contigs, alignments of input
contigs and reads are performed with the output MeGAMerge
contigs as part of the process. In Figure 2, we provide an example
where the largest contig produced by MeGAMerge from HMP
sample SRS022071, under two input assembly parameters
(SOAPdenovo, Kmer ranges 21–31 and 85–99) were examined in
depth. The results of mapping the input contigs from the original
assemblies show that for the small Kmer range (21–31), the overlaps
are normally long, and in this case, there are three input contigs that
can cover the entire length of the contig (Figure 2A). In contrast, the
largest contig produced by MeGAMerge of contigs produced by large
Kmer assemblies (85–99) exhibits a different behavior, with many
additional contig joins, and small contigs providing joins between
larger contigs (Figure 2B). In both cases, there is a wide variation of
the number and size of contigs that overlap with one another.
Additionally, the overlaps between contigs range from near the
minimal allowed overlap (of 80 bp), to thousands of bases.

As expected, read-based coverage across these contigs is variable,
and regions of lowest coverage are not necessarily found within
the regions where contigs are joined, indicating strongly that
MeGAMerge is producing a valid contig that is simply not present
in any of the input assemblies. These regions of lowest read mapping
coverage are widely distributed across the contig, and are frequently
in the center of contigs produced by the initial assembly, indicating
that if errors are present in the original assemblies, they may be
propagated by MeGAMerge, but do not appear to arise because of
the MeGAMerge process.

To further provide support for the contiguity of these long
MeGAMerge contigs, comparisons of these two contigs with other
genomes was performed. It is important to note that this type of
homology-based validation can only be performed if a sufficiently
similar genome exists as an entry within the database. In this case,
both largest contigs when aligned to NT were found to be highly
similar to Bacteroides, known dominant gut microflora. The largest
contig derived from the small Kmer range was aligned to its best hit,
Bacteroides helcogenes P 36–108. This 342.5 kb contig was colinear
along its entire length with a portion of the B. helcogenes chro-
mosome, with a number of gaps where genomic islands or otherwise
dissimilar regions intervened (Supplementary Figure S4). For the

large Kmer contig, complete alignments to the best hits in NR were
not possible as these were to genomic sections of uncultured organ-
isms whose entries in NR were smaller than the MeGAMerge contig.
However, alignments to the four next best completed or drafted
genomes displayed gross similarity throughout the bulk of the
472.5 kb long contig (Supplementary Figure S5). Although a number
of rearrangements can be observed between the MeGAMerge contig
and each of the genomes, many rearrangements also exist between
the genomes themselves. These results support MeGAMerge as a
useful tool in providing longer contiguous contigs, without intro-
ducing any obvious chimeras.

Validation and chimera evaluation using synthetic data. While the
above data support Megamerge as producing longer contiguous
fragments matching known genomes, there is a risk that chimeras
or other erroneous contigs are introduced into the final assembly. In
order to investigate this, an Illumina read set representing a synthetic
community of 1,000 genomes was generated. The data were
assembled using multiple Kmers and also using Megamerge. All
contigs were aligned to the original references to identify chimeras,
to find contigs that did not map to the references, and to calculate
reference genome coverage. The individual Kmer assemblies (Kmers
51 to 71) resulted in contigs that covered from 41% to 73% of the
reference genomes (Supplementary Table S7). The number of
contigs from all individual Kmer assemblies combined totaled 11.7
million after dereplication, and together, covered 80.26% of the
references, with 318 contigs unable to be mapped to any reference.
The MeGAMerge process reduced the total number of contigs to
,3.7 million, covering 80.25% of the references, with only 114
contigs unable to be mapped to the references.

The number of chimeras present within each individual Kmer
assembly increased with decreasing Kmer size and ranged from
491 to 3,651 per assembly. After dereplication (see Supplementary
Figure S6 for the effect of dereplication), 10,087 chimeras remained
and all contigs were used as input for MeGAMerge. The
MeGAMerge process reduced the total number to 9,225 chimeras,
of which 6,940 were carried over from the original contigs. Because
several of the 1,000 genomes selected belonged to the same species
(Supplementary Table S8), we further investigated if the chimeras
(both new and carried over) were the result of merging non-contigu-
ous regions within the same genome, or if they were generated
among different genomes. We also investigated if the chimeras over-
lapped at repetitive regions within the genomes. Compared with the
chimeras carried over from the individual Kmer assemblies, the
MeGAMerge process has a higher proportion of chimeras generated
within a genome (Supplementary Figure S7). The proportion of
MeGAMerge chimeras found within repetitive regions is also super-
ior to the proportion of the chimeras carried over from the individual
assemblies.

Discussion
Here we present MeGAMerge, a method to generate improved meta-
genome assemblies by merging suboptimal assemblies of next gen-
eration sequencing data, and which results in accurate and larger,
more contiguous sequences. This method has already been used to
successfully improve many assemblies of metagenome samples11–14.
The speed of Kmer/de Bruijn-based assemblers has made these
methods most practical for metagenome assembly, given the current
state of sequencing, bioinformatics, and computational technologies.
MeGAMerge consistently improves almost all assembly metrics
examined for a wide variety of metagenome datasets, regardless of
data type, assembler, or parameter variation (Table 2). The observed
improvements are highly interesting, as they indicate that the current
tools used for metagenomic assembly do not make full use of the
available data for contig construction regardless of parameter set-
tings. Analysis of the MeGAMerge method has shown that longer
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read data, and use of larger Kmers for assembly, can have a dramatic
effect on the resulting MeGAMerged contigs.

There are known limitations to the number of contigs that can be
merged in this manner: namely, the tools currently in use (see
Methods), overlap based consensus tools’ run-times increase expo-
nentially with increasing input dataset size. However, better cluster-
ing, improved methods overlap consensus based assembly, and
binning of contigs into overlapping groups are all currently being
explored as methods to improve and streamline this strategy.

As part of the MeGAMerge process, very small contigs are
removed from the dataset, in order to ignore poorly covered, difficult
to assemble, or other error-prone data from the individual assem-
blies, which also helps reduce the run time of MeGAMerge. This
removal does not greatly impact any comparative metric, other than
those related to addition of contig number or contig sizes, including
total assembly size (and N50/N90), which are not very useful for
comparing metagenome assembly performance. It is always the case
that the largest MeGAMerge contigs contain more bases than an
equal number of largest contigs from any individual input data set
(i.e. fewer contigs are required to reach a certain number of bases).
This indicates that individual assemblies contain unique sequence
contiguity at each Kmer and generate contigs that overlap, in part or
full, with those in other assemblies (Figure 2).

We have validated the contigs produced from the MeGAMerge
process to be highly accurate based on read and contig mapping
results. Furthermore, using simulated data for 1,000 genomes, we
show that MeGAMerge greatly reduces the total number of (already
dereplicated) contigs originally input into MeGAMerge, while main-
taining reference genome coverage. In addition to this improved
contiguity, MeGAMerge removes a large number of contigs that
could not be mapped to the references (i.e. removes incorrect con-
tigs), and while the merging process does introduce new chimeras,
MeGAMerge reduces the total number of chimeras input into the
process.

MeGAMerge contigs can be produced from any set of related
sequence data (typically, but not necessarily restricted to assemblies
and reads generated from the same sample), and results in more
contiguous assemblies regardless of the original tool(s) used to gen-
erate the input assembly datasets. The use of MeGAMerge to allow
merging of contigs from similar samples (environments) is possible,
and may theoretically allow improved reference contigs for large
studies with many similar samples.

Perhaps most importantly, MeGAMerge is agnostic of the source
of original data (platform), of the assembler(s), and of the parameters
used to generate contigs, allowing the merging of two or more related
assemblies or read sets, including those generated from older Sanger
sequencing or newer Ion Torrent/Proton, or even high quality
PacBio RS data. This method is therefore a powerful novel and
enduring strategy for improving metagenomic assemblies, with the
potential to continue to enable high quality metagenome assembly
despite continuous changes in sequencing chemistries, platform
upgrades, or even technology revolutions, in addition to the constant
introduction of new assembly and clustering tools.

Methods
Samples. Supplementary Table S1 shows all 21 metagenome data sets used for these
experiments, including read length, number of reads, and total bases included in each
sample, including number and types of reads, as well as average read length for
Illumina reads. Briefly, 21 available metagenome samples were selected for this study:
3 from the MetaHit group15 (MH0001, MH0024, MH0042), 17 shotgun sequencing
samples from HMP, including 3 samples with both Illumina and 454 data, and
Illumina data gathered during the Horizon oil spill. Average Illumina read lengths for
these samples varied from 44–150 bp. Additional samples from the Human
Microbiome Project (HMP) are also included.

Synthetic reads were generated using MetaSim and a customized Illumina error
model, with per-base quality assignments provided based on data derived in-house. A
total number of reads similar to a single Illumina HiSeq 2000 lane were generated for
1000 randomly selected genomes (see Supplementary Table S8), with an even dis-

tribution of input members. Each dataset consisted of 300 million (M) 100-bp,
paired-end reads.

Assembly Methodology. Reads were trimmed using a sliding window based
trimming protocol, with a minimum quality score of 2 to remove data of poor quality.
For the purposes of this paper, SOAPdenovo16, as well as CLC Bio de novo assembler
and Velvet7, were used for all individual Illumina assemblies, with a range of Kmers,
typically from 21–31, for the data described here, and using the ranges from 45–105
for samples with longer Illumina reads. Additionally, the more recently released
assemblers IDBA and Ray were tested for several samples. If 454 reads were available,
the Newbler assembly tool (454 Life Sciences, Roche) was also used to generate
assembly of these reads independently. Assembled contigs are used for the merging
steps described below. Unless otherwise noted, all assemblers were run with default
parameters, utilizing samples as paired-end reads where applicable.

Kmer size is one of the most important parameters in short read assemblers, and as
read length increases for Illumina, larger Kmers can be used for assembly. Since the
read sets available for this publication and used in this paper vary in length from 40 to
100 bp, our initial work was performed consistently with a range of Kmers from 21–
31 for all assemblies. Additional validation of selected 100–150 bp data from the SRA
was performed by merging assemblies with Kmers 85–105. This was performed
primarily to investigate the hypothesis that assemblies show greater improvement in
metrics when merging assemblies performed with longer Kmers.

MeGAMerge Methodology. Several tools are used in succession to combine the
results of multiple assemblies/assemblers into a final contig set. All generated contigs
are pooled and dereplicated to remove exact duplicates of contigs (or contigs that are
subsets) arising from the multiple, different individual assemblies. The effect of
dereplication can be seen in Supplementary Figure S6. Dereplication of contigs is
performed using a custom implemented Perl script, to remove exact duplicates,
reverse compliments, and subsequences. Finally, contigs are binned together based on
a size cutoff of 2.0 kb. Smaller contigs are assembled with Newbler, and this output is
combined with the pool of contigs greater than 2.0 kb. Finally, the sequences
generated by Newbler and the original contigs greater than 2.0 kb in length are
MeGAMerged using Minimus2, a tool from the AMOS toolbox17,18. Minimus2 has
been modified to allow for ambiguous bases to be included in the assembly.
Additional input assemblies using the CLC bio de novo assembler and Velvet7 were
also tested and the pipeline was validated with similar results. A flowchart of the
methodology is shown in Figure 1. The software is freely available at https://github.
com/LANL-Bioinformatics/MeGAMerge.

Validation of Assemblies and MeGAMerge Contigs. There are multiple methods
for measuring the success of a de novo assembly. These are typically statistical
measures of the length of the assembled contigs. The following measures are
frequently used or described as possible metrics for metagenome assembly: size of the
largest contig, number of bases/contigs within a size category above an arbitrary
cutoff (e.g. contigs above 10 kb in size), number of bases in the largest contigs (e.g. top
10, or 100 contigs), or number of contigs required to reach a defined set of bases (e.g.
million). Any one of these metrics only provides a snapshot of a given assembly, and
thus these must be examined holistically to determine the success of an assembly.

Additional statistics are gathered by mapping reads to final MeGAMerged contigs
using BWA19. The resulting BAM file was parsed using SAMtools to provide other
metrics including percentage of each contig covered by reads and average fold cov-
erage of each base of each contig. Figures were generated using the R statistical
package. For further validation of assembly of the large contigs, Bowtie220 was used to
map initial SOAPdenovo and Newbler contigs to the 100 largest merged contigs.

Reference genome coverage was obtained by aligning contigs to the genome
sequences using Nucmer. For the discovery of chimeric locations using synthetic
datasets, the resulting contigs were mapped to the references using BWA mem.
Contigs that did not contiguously align to a single reference genome were flagged and
the locations of the chimeras were identified when any single contig mapped to more
than one reference genome. The chimeric locations located in repeat regions and at
circular genomes’ start/end positions were identified. Based on the reference gen-
omes’ gi numbers, the taxonomy compositions of chimeric sequences were analyzed
to identify if the chimeras were among strain or species near neighbors.

Gene Prediction. The extent of assembled metagenomic contigs to be annotated was
examined by use of the gene prediction tool Prodigal21,22. The types of statistical
measures that can be generated using gene prediction include the number of
predicted genes, as well as the predicted coding density of contigs. While these values
are not expected to change much across assemblies, a substantial change coding
density or in the ability of contigs to be annotated would be indicative of assembly
quality.

For each assembly analyzed, contigs smaller than 2 kb were removed from the
assembly. Contigs were then run through Prodigal Version 2.6 using the parameters
(-c (closed ends) and -p meta) to produce GFF3 files. These files were then parsed to
determine the size, number and coding density of predicted genes in all contigs.
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