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Mechanical stress plays a critical role among development, functional maturation,
and pathogenesis of pulmonary tissues, especially for the alveolar epithelial cells and
vascular endothelial cells located in the microenvironment established with vascular
network and bronchial-alveolar network. Alveolar epithelial cells are mainly loaded by
cyclic strain and air pressure tension. While vascular endothelial cells are exposed
to shear stress and cyclic strain. Currently, the emerging evidences demonstrated
that non-physiological mechanical forces would lead to several pulmonary diseases,
including pulmonary hypertension, fibrosis, and ventilation induced lung injury.
Furthermore, a series of intracellular signaling had been identified to be involved in
mechanotransduction and participated in regulating the physiological homeostasis and
pathophysiological process. Besides, the communications between alveolar epithelium
and vascular endothelium under non-physiological stress contribute to the remodeling
of the pulmonary micro-environment in collaboration, including hypoxia induced injuries,
endothelial permeability impairment, extracellular matrix stiffness elevation, metabolic
alternation, and inflammation activation. In this review, we aim to summarize the current
understandings of mechanotransduction on the relation between mechanical forces
acting on the lung and biological response in mechanical overloading related diseases.
We also would like to emphasize the interplays between alveolar epithelium and
vascular endothelium, providing new insights into pulmonary diseases pathogenesis,
and potential targets for therapy.

Keywords: mechanotransduction, alveolar epithelial cells, vascular endothelial cells, pulmonary diseases,
interplays

INTRODUCTION

As an area of gas exchange, the lung has extensive vascular and bronchial–alveolar networks
and displays tension properties after birth. Accordingly, mechanical stimulation contributes
significantly to maintaining the normal development of pulmonary tissue as well as its functional
homeostasis. The adaptation to mechanical stress is differentially regulated among various parts
of the human body, with surrounding microenvironments providing different physical stimuli that
activate sensory transduction signaling pathways in a tissue-specific manner. The transformation of
external mechanical forces into intracellular signaling is called mechanotransduction. There are two
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common types of mechanosensors—biophysical and
biochemical—located on the cell membrane. Biophysical
sensors help connect the extracellular matrix (ECM) with the
actin cytoskeleton and reshape actin proteins and the nuclear
membrane, ultimately leading to altered chromosomal structure
and patterns of gene expression. Meanwhile, chemical sensors
primarily influence the modification of downstream molecules,
converting external biophysical signals into intracellular
biochemical ones. A stable mechanical environment is required
for development, especially during tissue specialization. Notably,
the pulmonary microenvironment is consisted with airway
structure and vascular vessels. The alveolar epithelium and
vascular endothelium are supposed to subject different injuries
under various pathological mechanical conditions. However,
the stimulation from either epithelial or endothelial cells would
remodel the gas exchange environment in consequence and
affects each other via their communications. Thus, there are
several interplays between alveolar epithelial and endothelial
cells in mechanotransduction manner. Moreover, mesenchymal
transition could both be identified in epithelial (EMT) and
endothelial (EndMT) cells. So that, we would like to summarize
the physiobiological changes under pathological mechanical
stress for lung epithelial and endothelial cells, and also try to
demonstrate how they influence each other.

MECHANICAL STRESS IS CRITICAL
DURING PULMONARY DEVELOPMENT
AND FUNCTIONAL HOMEOSTASIS

The lung is composed of epithelial cells such as the type I and
type II alveolar cells (AT1 and AT2 cells), endothelial cells of the
arteries, veins, and capillaries, stromal cells, and multiple immune
cell types such as the monocytes and macrophages (Travaglini
et al., 2020). Different cell types in the lungs vary in their ability to
withstand mechanical forces during respiration and pulmonary
blood flow. The alveolar unit is the basic functional unit in the
lung for gas exchange and is mostly composed of AT1, AT2, and
capillary endothelial cells, as well as monocytes and macrophages
(Spieth et al., 2014).

During early pregnancy, the pulmonary luminal volume in
the fetus is significantly low. The pulmonary pressure gradient
of the lung fluid increases the elasticity of the fetal lung tissues
and stimulates the lung epithelial cells to actively secrete chloride
ions. These chloride ions are transported into the stroma and
the lung cavity by blood. The chloride ions move along a
concentration gradient toward the lumen through the chloride
channels to form the lung fluid, which prevents the amniotic
fluid from entering the airways; the lung fluid also removes
mucus and other cell debris from the airway cavity (Cotten,
2017). In the animal models, lung fluid secretion increases when
the pressure in the lumen drops below that of the amniotic
fluid. Reduced amniotic fluid volume increases the gradient
between intraluminal pressure and amniotic fluid pressure. This
increases the lung fluid outflow and reduces the expansion
pressure in the lumen and the concentrations of various growth
and maturation factors (Najrana et al., 2017, 2021). The growth

factors are released when the lung tissues stretch in response to
the fetal breathing movements, and stimulate the proliferation
and differentiation of the epithelial cells and the production
of surfactants. Early mammalian airways exhibit spontaneous
transient airway obstructions due to airway peristalsis. Peristaltic
contractions and airway occlusions induce rhythmic stretching
and relaxation of the growing buds by directing the fluid waves
to the apex of the lung. Therefore, the airway peristalsis and
obstruction generate pressure and extension of the developing
lung tip (Jesudason, 2009).

Alveolar development begins before birth and continues until
adolescence. Postnatal periodic stretching is a key determinant
of lung size and is essential for septum extension. During the
respiratory cycle, the lung matrix experiences cyclic stretching
because of the periodic tension that is applied on the developing
lung tissue. Based on in vitro experimental results, 5–12% cyclic
stretching is considered as physiological stress, whereas ≥ 20%
cyclic stretching is considered as pathological stress (Young
et al., 2015). The synthesis and remodeling of the lung matrix
is required for primary and compensatory lung growth. Lung
elastase activity is dependent on the tensile strength. In the
mice, elastase activity increases by two-fold during the alveolar
stage of postnatal lung morphogenesis (Young et al., 2015). This
demonstrates the effects of postnatal respiratory movement on
alveolar development. Furthermore, periodic alveolar tension
is mediated by the release of growth factors via multiple
intracellular signal transduction pathways.

Endothelial cells, fibroblasts, and smooth muscle cells are
continuously stimulated in the pulmonary arteries by mechanical
forces such as shear stress and pulsatile blood pressure. Both
shear stress and pulsatile blood pressure are altered under
conditions of pulmonary hypertension (PH). In response to
blood pressure, pulmonary arterial endothelial cells (PAECs)
align longitudinally to form the inner tunica of the blood
vessels, whereas the pulmonary arterial smooth muscle cells
(PASMCs) align circumferentially to form the median layer. The
composition of the ECM also contributes to arterial stiffness and
modulates the mechanical forces acting on the vessel wall. ECM
is secreted by the PASMCs and pulmonary artery adventitial
fibroblasts (PAAF). ECM interacts with the cells through the
stretch-activated channels (SAC) and receptors such as the
integrins. Therefore, ECM plays a key role in the stiffness-
dependent activation of vascular endothelial cells.

In general, the fetal lung is subjected to gradient lung fluid
pressure and airway peristalsis. After birth, cyclic stretching
stimulates lung development as a result of breathing movements
and shear stress induced by blood flow, which act on the PAECs
and the alveolar epithelium.

MECHANOTRANSDUCTION IN AVEOLAR
EPITHELIAL CELLS AND VASCULAR
ENDOTHELIAL CELLS

Physical strain is characterized by the relative change in
length in response to applied force. Alveolar epithelial cells
are subjected to mechanical strain during breathing, whereas
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vascular endothelial cells are primarily affected by shear stress,
strain, and hydrostatic pressure. Distinct types of cells in the
lungs experience diverse mechanical forces based on their
location. For example, the apical surface of the epithelium
experiences shear stress from the fluid layer in the airways and
the alveoli, whereas the basolateral surface of the epithelium
experiences stretch or strain due to expansion of the basement
membrane. Therefore, two different types of physical forces
act on the same cell type (alveolar epithelial cells) and
regulate distinct biological functions via signal transduction
pathways (Garcia et al., 2006). Furthermore, contraction of
the actin cytoskeleton induces tension that is transmitted
throughout the cell including the nucleus. The pulmonary
cells also interact with the surrounding environment through
adhesion receptors such as the integrins, which function
as a link between the cytoskeleton and the ECM. The
cytoskeleton is an interconnected biopolymer network within
the plasma membrane that exerts a centripetal force on the
surrounding matrix.

Several studies have investigated the mechanisms that
regulate cellular structure, function, proliferation, differentiation,
secretion, movement, and metabolism in response to mechanical
stimulation by physical forces (Liao et al., 2020; Liu et al.,
2021). Aberrant mechanical stretching can result in cellular
barrier dysfunction, metabolic dysfunction, cytotoxicity, and
inflammation (Figure 1).

FIGURE 1 | The schematic diagram of mechanical stresses loading on
pulmonary alveoli and blood vessels. AT1, alveolar type 1 cells; AT2, alveolar
type 2 cells; ECM, extracellular matrix.

Mechanical Forces Regulate the
Homeostasis of Alveolar Cells
AT1 and AT2 are two different types of alveolar epithelial cells.
AT1 cells do not show any proliferative capacity and are mainly
involved in gas exchange, whereas, the AT2 cells can differentiate
into AT1 cells and are the major source of pulmonary surface-
active material. AT1 cells account for more than 95% of the
alveolar surface area and respond to periodic stretches through
genomic changes to modulate paracellular permeability.

Mechanical stretching promotes proliferation (Han et al.,
2005), secretion and metabolism of surface-active substances,
cellular damage or death (Arold et al., 2009), and migration
(Desai et al., 2008) of AT2 cells. The proliferation of alveolar
epithelial cells is essential for maintaining the integrity of the
epithelium, especially during the process of repair after lung
injury. Mechanical forces induce mitotic activity and growth
factor synthesis and secretion by the alveolar epithelial cells
(Noskovičová et al., 2015). AT2 cells subjected to periodic
mechanical stress in FlexCell units display increased DNA
synthesis after exposure to conditioned medium from lung
fibroblasts compared to those cultured under static conditions.
Mechanical strain also activates the expression of platelet-
derived growth factor receptor beta (PDGFRB) in the lungs
during development. Synthesis and secretion of pulmonary
surfactants is the major biological function of the AT2 cells.
Cyclic stretch stimulates the release of surfactant phospholipids
from the AT2 cells by rapidly increasing the intracellular calcium
ion concentrations.

Integrins, growth factor receptors, G-protein-coupled
receptors, mechanoresponsive ion channels (e.g., Ca2+),
and cytoskeletal strain responses are the main mediators of
signal transduction pathways in response to changes in the
extrinsic biochemical environment (Duscher et al., 2014).
Furthermore, mechanical forces also transduce signals through
several mechanosensitive focal adhesion proteins. The integrins
transmit extracellular signals and induce intracellular cytoskeletal
modifications (Figure 2).

Ion Channels
During fetal development, physiological stretching drives lung
growth and maturation. The α-subunit of the alveolar epithelial
sodium channel (ENaC) facilitates the clearance of lung fluid
during the perinatal period. Mustafa et al. (2014) demonstrated
that mechanical stretching induced the expression of ENaC
via p38-mitogen-activated protein kinase (MAPK) and c-Jun
N-terminal kinase (JNK).

Stretching also induces Ca2+ influx by activating the ion
channels. TRPV4 and Piezo1 serve as the main ion channels
that mediate the influx of Ca2+ ions in the alveolar epithelial
cells. Liang et al. (2019) demonstrated that Piezo1 expression
was significantly increased in the AT2 cells of patients with acute
respiratory distress syndrome (ARDS); moreover, Piezo1 induced
Bcl-2 dependent apoptosis via Ca2+ influx, but these effects
were attenuated by inhibiting Piezo1. Mechanical stretching
also induces the protein tyrosine kinases (PTK) to activate
phospholipase C-γ (PLC-γ) through tyrosine phosphorylation
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FIGURE 2 | The molecular signaling of mechanotransduction in alveolar type 1 and type 2 (AT1 and AT2) cells. EMT, epithelial-mesenchymal transition.

(Liu et al., 2014). Active PLC-γ hydrolyzes phosphatidylinositol
4,5-bisphosphate (PIP2) into 1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG). IP3 mobilizes Ca2+ from the intracellular
storage sites such as the endoplasmic reticulum (ER), whereas,
DAG activates protein kinase C (PKC) in the presence of
intracellular Ca2+ (Hsiao et al., 2016; Lu et al., 2021).

Integrins-FAK-MAPK-NF-κB
Activated integrins regulate several intracellular signaling
molecules and pathways by recruiting focal adhesion proteins
and the focal adhesion kinase (FAK). Besides, integrins
function as a bridge between the F-actin cytoskeleton and
the ECM and transduce signals generated through changes
in mechanical stress. The integrin-Talin-F-actin-Nestin-
SUN-nuclear lamina signaling axis modulates the nuclear
envelope and induces transcriptional changes in response to the
extracellular mechanical stress (Sun et al., 2016). Mechanical
forces promote TRE-mediated gene expression via activation
of RAS, ERK1/2, and JNK signaling pathways by reinforcing
integrin-ECM binding (Parsons et al., 2010; Cho et al., 2017).
Furthermore, p38-MAPK and several transcription factors
downstream of various intrinsic signaling pathways are also
activated, subsequently leading to the activation of NF-κB
(Liu et al., 2016). Integrin family members also activate IκB
kinases (IKKs), which induce the release of NF-κB from the
cytoplasm to the nucleus in response to signals for maintaining
lung development and alveolarization. MAPKs and NF-κB
promote the transcription of several early response genes,
which subsequently induce the transcription of inflammation-
related genes via the cyclooxygenase (COX)-2/prostaglandin
E2/Interleukin (IL)-8 signaling pathway (Dong et al., 2015).

Rho GTPase-YAP/TAZ
Rho-associated protein kinase (ROCK), myocardin-related
transcription factor-A (MRTF-A), yes-associated protein 1

(YAP), and transcriptional coactivator with PDZ-binding
motif (TAZ) are key players in the response of the alveolar
epithelial cells to mechanical stimulation (Deng et al., 2020).
Rho guanosine triphosphatase (GTPase) are a family of small
G-proteins of the Ras superfamily such as Rac, Rho, and
CDC42 are small GTP-binding signaling proteins that regulate
cytoskeletal dynamics by mediating actin polymerization and
myosin II-mediated contraction through FAK (Jiang et al., 2012;
Maurer and Lammerding, 2019). RAP2a is a novel Rap GTPase
that responds to mechanical stretch, but its actual function in the
pulmonary system has not been established (Meng et al., 2018).
Rho-mediated actin polymerization induces MRTF-A nuclear
translocation, activation of α-smooth muscle actin (α-SMA) gene
expression, and type I collagen synthesis (Ni et al., 2013).

Metabolic Status
Mechanical stress induces oxidative damage and ER stress in the
alveolar epithelial cells, which release injury-related molecules
with damage-associated molecular patterns (DAMPs) that trigger
tissue repair and fibrotic response (Lionetti et al., 2005; Tanaka
et al., 2017; Valentine et al., 2018). DAMPs and high mobility
group box 1 (HMGB1) released by the injured tissues promote
tissue repair and angiogenesis by inducing the migration and
proliferation of stem cells (Yang et al., 2020). When regeneration
is not successful, HMGB1 induces fibrosis by stimulating
fibroblast activation and endothelial cell proliferation. Patel et al.
(2020) demonstrated that hypoxia induced the activation of host
macrophages via HMGB1, but these effects were attenuated by
the dietary antioxidants.

Mechanical Forces Regulate Functions
of Vascular Endothelial Cells
The mechanical forces associated with cyclical stretching and
shear stress play a key role in regulating vascular function
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and homeostasis of pulmonary circulation. The pulmonary
microvascular endothelium is exposed to continuous or periodic
stretching during spontaneous breathing and blood flow. Shear
stress, stiffness, and cyclic stretch modulate the function
and metabolic status of the endothelial cells. The lung
microvasculature is subjected to mechanical forces including
shear stress and cyclic stretch, which vary with the cardiac and
breathing cycles. Endothelial cells are continuously subjected to
shear stress that range from 10 to 50 dyne/cm2 in the large
arteries, 5 to 20 dyne/cm2 in the microvasculature, and 10-
fold lower in the veins compared to the arteries (Paszkowiak
and Dardik, 2003). Physiological circulatory stretching increases
the expression of the tight junction-associated protein, occludin,
which strengthens the endothelial barrier and upregulates
the expression of integrins in the endothelial cells. This
further enhances cell adhesion in the EC monolayer and
increases the resistance to hemodynamic forces or excessive
vasodilation (Figure 3).

Ca2+ Signaling
In the pulmonary vascular endothelial cells, Ca2+ permeable
non-selective cationic stretch-activated ion channels (SACs)
share similar electrophysiological properties such as linear I–
V relationship of the evoked currents with a reverse potential
about 0 mV and unitary conductance around 30 pS (Ducret
et al., 2010). Transient receptor potential (TRP) channels
represent a superfamily of non-selective cationic channels that
play a significant role in the endothelial cells. TRPV channels
such as TRPV1 and TRPV4 are expressed in the PAECs
(Barbeau et al., 2021). TRPV1-activated signaling pathways
in the PAECs provide counterbalancing effects at the site of
the blood vessel. Furthermore, TRPV4 is widely expressed in
every layer of the pulmonary artery (PA) and participates in
maintaining the normal biological functions of the vessels. In
the PAECs, TRPV4 plays a key role in vasodilation via nitric
oxide (NO) signaling and endothelium-derived hyperpolarizing
factor (EDHF) (Sukumaran et al., 2013). Furthermore, TRPV4
interacts with the endothelial nitric oxide synthase (eNOS) in
the PAECs and induces the release of NO by activating unitary
Ca2+ influx that stimulates the guanylyl cyclase–protein kinase
G pathway (Ottolini et al., 2020). Furthermore, mitochondrial
impairment in PH causes accumulation of reactive oxygen species
(ROS), which induce TRPV4 mediated Ca2+ influx. TRPC1
is expressed in the PASMCs and PAECs of rats, mice, and
humans (Malczyk et al., 2013). TRPC1 is overexpressed in the
PH models. In the pulmonary endothelial cells, TRPC4 regulates
microvascular permeability, agonist-dependent vasorelaxation,
and gene transcription (Firth et al., 2007). TRPP1 and TRPP2
are both expressed in the vascular smooth muscles and ECs of
the cerebral and mesenteric arteries, and regulate blood vessel
functions and myogenic tone. However, the roles of TRPP
channels in the pulmonary vasculature are not known and require
further investigations.

In mammals, two Piezo proteins, namely, Piezo1 and Piezo2
have been reported. Deletion of the Piezo1 gene in mice causes
aberrant vascular development resulting in early embryonic
death around day 10 (Li et al., 2014). Endothelial Piezo1 channels

are necessary for flow-induced vasodilatation through eNOS
activation and release of NO (Wang et al., 2016). Besides, NO
production is also induced by ATP release through the pannexin
channels, which activates the P2Y2 receptors and eNOS (Wang
et al., 2016). By contrast, in the mesenteric vessels, Piezo1 induces
flow-sensitive cationic ion influx in the ECs of the mesenteric
vessels and depolarizes the membrane. This depolarization
spreads to the adjacent PASMCs and activates the voltage gated
Ca2+ channels, thereby inducing vasoconstriction (Rode et al.,
2017). Kang et al. (2019) reported that genetic deletion or
pharmacological inhibition of Piezo1 reduced the endothelial
sprouting and lumen formation when induced by shear stress and
the proangiogenic mediator, sphingosine 1-phosphate. Yoda1
enhanced sprouting angiogenesis by activating Piezo1. Physical
stimuli triggered Piezo1-mediated Ca2+ influx and activated
matrix metalloproteinase (MMP)-2 and membrane type I MMP,
both of which synergistically facilitated sprouting angiogenesis
(Kang et al., 2019). Piezo2 is also present in the human PAECs,
but its function is currently unknown (Lambert et al., 2018).

Krüppel-Like Factor 2 and Krüppel-Like Factor 4
The Krüppel-like factor (KLF) family of transcription
factors regulate integral EC functions, including growth,
inflammation, migration, proliferation, cell differentiation,
plasticity, and apoptosis (Chang et al., 2017). KLF2 and KLF4
are master transcription factors that regulate vasodilatory, anti-
inflammatory, and antithrombotic properties of the quiescent
endothelial cells (Denis et al., 2019). KLF2 and KLF4 are
upregulated by disturbed flow, and subsequently suppressed
PFKFB3 and PFK1, two critical proteins involved in glycolysis
(Doddaballapur et al., 2015). Decreased expression of KLF2
or KLF4 induces the production of inflammatory cytokines
in the endothelial cells. Stable blood flow reduces glycolysis
in a KLF2-dependent manner, and increases mitochondrial
biogenesis through PPARγ/PGC1 signaling (Pollak et al.,
2018). Furthermore, unidirectional flow promotes the
degradation of HIF-1α, which inhibites pyruvate dehydrogenase
kinase 1 (PDK1) and increases mitochondrial complex I
activity. Slegtenhorst et al. (2018) reported the endothelial
atheroprotection role of KLF2 and its inducer, Simvastatin.

Integrins-Cytoskeleton-Lamin A
Cells respond to external forces through integrin-mediated
remodeling of the ECM (Sun et al., 2016). Stretch-induced
activation promotes interactions between integrins and focal
adhesion proteins, thereby converting the mechanical signal into
biochemical cascades. In the endothelial cells, integrins α2 and
β1 stimulated the p38-MAPK signaling pathway (Bix et al.,
2004). Focal adhesion integrates the actin cytoskeleton with the
ECM interface and helps maintain the endothelial cell barrier
integrity. Increased focal adhesion triggers the activation of small
GTPase and Rho kinase signaling pathways. High magnitude
cyclic stretching (18%) stimulates the formation of focal adhesion
complexes that included paxillin, ERK1/2, MAPK, NF-κB, RhoA,
and GEF-H1. Moreover, focal adhesion is redistributed under
shear stress (15 dyn/cm2). In vascular endothelial cells, VE-
cadherin acts as a link between the cytoskeleton and the adherens
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FIGURE 3 | The molecular signaling of mechanotransduction in pulmonary blood vessel endothelial cells. ECM, extracellular matrix.

junctions (Fang et al., 2019). VE-cadherin regulates the cellular
orientation of endothelial cells in response to shear stress through
PECAM-1, VEGFR2, and PI3K signaling (Tzima et al., 2005).
Endothelial cells also sense and transmit the mechanical force-
induced signals via gap junction-mediated propagation of Ca2+

signaling. Connexin-32 responds to mechanical stimulation by
generating intracellular Ca2+ waves through N-cadherin (Ko
et al., 2001). Hence, the interaction between gap and adherens
junctions is critical for establishing cell–cell communications.
The cytoskeleton plays a critical role in transducing mechanical
stress-related signals. Deguchi et al. (2005) demonstrated that
the force should be balanced between the basal actomyosin
stress fibers and focal adhesion complexes in the endothelial
cells. Depolymerization of F-actin, ROCK inhibitor, and PKA
activation results in actin disassembly, attenuation of actomyosin
assembly, and stress fiber formation. Cytoskeletal changes result
in the activation of RhoA and Rac GTPases, which promote
cellular reorientation and transcription responses by altering
lamin A; knock-down of lamin A abolishes the changes of histone
deacetylases (HDAC), thereby demonstrating the role of lamin A
in regulating the chromatin state (Nayebosadri and Ji, 2013).

Rho GTPase-YAP/TAZ
Endothelial barrier regulation is dependent on the cytoskeletal
rearrangements (Vogel and Malik, 2012). The small Rho
GTPases, RhoA, and Rac1, are central regulators of vascular
permeability through cytoskeletal reorganization (Asano-
Matsuda et al., 2021). RhoA and Rac1 exert opposing functional

effects. RhoA activation promotes endothelial contraction
and induces barrier disruption, whereas Rac1 stabilizes the
endothelial junctions and increases barrier integrity. Ke et al.
(2019) demonstrated a key role for RhoA GTPase in high
cyclic stretch-induced endothelial cell barrier dysfunction.
Besides, Rap1 GTPase is also involved in the regulation of
cytoskeleton and cell junctions. Rap1-mediated signaling
induced lung vascular EC barrier restoration; inhibition of
Rap1 activity enhanced ventilator-induced lung injury (VILI)
at both low- and high-volume ventilation conditions (Ke et al.,
2019). The Hippo/YAP signaling pathway is also involved in
mechanotransduction. YAP and TAZ are activated by stiff ECM
and serve as a central regulatory hub for cellular proliferation
and survival in multiple organs during tissue growth and
development (Dupont et al., 2011). Furthermore, ECM stiffening
promotes vascular cell growth and migration via YAP/TAZ-
dependent glutaminolysis and anaplerosis, thereby linking
mechanical stimulation to vascular metabolic dysregulation
(Bertero et al., 2016). Therefore, YAP/TAZ pathway is a potential
metabolic drug target in PH therapy. Greater stiffnesses (around
50 kPa) increases the proliferation and migration of endothelial
cells through the YAP/TAZ signaling pathway (Bertero et al.,
2016), TGF-β, Toll-like receptors, and NF-κB (Thenappan
et al., 2018). NF-κB functions as a nuclear effector that
integrates signals from multiple signaling pathways. Membrane
receptors such as Toll-like receptors (Davidovich et al., 2013;
Liu et al., 2013) stimulate the expression of MCP-1, a potent
chemoattractant for monocytes, and increase the expression
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of IL-6 and COX-2. The activation of NF-κB is mediated by
the integrins through the PI3K-PLC-PKC signaling cascade
(Mussbacher et al., 2019).

Metabolic Status
Mitochondria anchor to the cytoskeleton and function as
mechanotransducers by releasing ROS in response to the
cytoskeletal strain (Ali et al., 2004). Besides, ROS play a key
role in the activation of NF-κB and VCAM-1. In the ECs,
mitochondria-derived H2O2 diffuses into the cytosol in response
to shear stress and initiates oxidative signaling that upregulates
hemeoxygenase(HO)-1 and maintains the atheroprotective
EC status (Han et al., 2009). NADPH oxidases (NOXs),
mitochondria, and xanthine oxidases are the main sources of
superoxide in response to mechanical stress (Ichimura et al.,
2003; McNally et al., 2003). Stretch-induced ROS production
in the endothelium upregulates the expression of cell adhesion
molecules and chemokines in collaboration with several ROS-
generating enzymes such as NADPH oxidases and eNOS. In the
pulmonary endothelial cells, NO levels are increased through
PI3K, AKT, and eNOS. Moreover, xanthine oxidoreductase
(XOR) is activated by the p38 and ERK1/2-MAPK signaling
pathways. ROS signaling is regulated by cyclic stretch in an
amplitude-dependent manner and plays a critical role in various
EC responses to cyclic stretch. Long-term cyclic stretching (5–
12%) caused magnitude-dependent downregulation of Nox4,
Cu/Zn superoxidase dismutase (SOD), MnSOD, catalase, and
ROS (Goettsch et al., 2009). Cyclic stretching regulates survival
and angiogenesis of endothelial cells via NOX-induced ROS.

Yamamoto et al. (2020) used real-time imaging technology
to demonstrate the novel role of endothelial mitochondria in
transducing shear stress signals by triggering ATP generation and
release, and purinoceptor-mediated Ca2+ signaling. Glycolysis
is a crucial metabolic pathway that converts glucose first
to pyruvate and then to lactate. Endothelial cells are highly
glycolytic (Wu and Birukov, 2019). Furthermore, the glycolytic
index (lactate/glucose ratio) in cultured human umbilical vein
endothelial cells (HUVECs) is around 1.74, which suggests
that the endothelial cells metabolize glucose entirely into
lactate (Kim et al., 2017). Thus, only a small fraction of
the glycolytic intermediate pyruvate is metabolized by the
mitochondrial OXPHOS. Endothelial cells, in contrary to other
cell types, are as glycolytic as the tumor cells (De Bock et al.,
2013a), and use very little oxygen to generate ATP (De Bock
et al., 2013b). Therefore, glycolysis plays a critical role in
nucleic acid synthesis and survival, whereas electron transport
chain-dependent mitochondrial metabolism is required for cell
proliferation, angiogenesis, and redox balance.

PATHOLOGICAL MECHANICAL STRESS
INDUCES PULMONARY DISEASES

Ventilation Induced Lung Injuries and
Acute Respiratory Distress Syndrome
Exposure to non-physiological stretch disrupts the normal
mechanical stress response mechanisms and triggers aberrant

repair mechanisms during lung injury. Mechanical ventilation
induces or exacerbates ventilation-induced lung injury (VILI).
Dagenais et al. (2018) showed that scratching the AEC monolayer
generates a TRPV4-dependent Ca2+ wave, which spreds from
the margin of the scratch to the distant cells and induces
abnormal activity of the epithelial sodium channel, ENaC;
moreover, TRPV4 agonist, GSK1016790A, abolishes the Ca2+

wave and other downstream signaling events (Dagenais et al.,
2018). Diem et al. (2020) demonstrated that small plasma
membrane invaginations called caveolae in the AT1 cells play
a key mechanotransductive role in the AT1 cells by responding
to mechanical stress at the plasma membrane; these caveolae
are absent in AT2 cells. Ventilation-induced stretch stimulates
Ca2+ entry via caveolae-resident Piezo1-activated pannexin-1
hemichannels and results in ATP release from the AT1 cells.
The released ATP triggers Ca2+ influx in the neighboring AT2
cells and induces inflammation by recruiting the monocytes.
Liang et al. (2019) reported increased expression of Piezo1
in the AT2 cells mediates Ca2+ influx and triggers Bcl-
2 dependent apoptosis during ARDS, but these effects are
abrogated by inhibiting Piezo1. Since the vascular endothelial
cells are subjected to cyclic stretch during alveolar movement,
they are prone to damage during VILI. Zhang et al. (2021)
reported higher Piezo1 expression in the pulmonary endothelial
cells in response to high tidal volume mechanical ventilation
and cyclic stretching. Enhanced expression of RhoA/ROCK1
in the endothelial cells subjected to cyclic stretch or Yoda1
treatment is significantly abrogated by Piezo1 deficiency or
inhibition of Piezo1. Furthermore, inhibition of RhoA/ROCK1
signaling does not affect Piezo1 expression, but the inhibition of
Piezo1 by GSMTx4 alleviates VILI-induced pathological changes
(Zhang et al., 2021).

Inflammation is one of the major causes of lung injury.
High tidal volume mechanical ventilation induces significant
changes in microvascular permeability, neutrophil infiltration,
levels of malondialdehyde, macrophage inflammatory protein-
2 (MIP)-2, and NF-κB, and the activation status of the NF-
κB repressing factor (NKRF). Yehya et al. (2019) showed that
the human epidermal growth factor receptor 3 (HER3) ligand
neuregulin-1 (NRG1) enhances VILI by activating HER2 and
induces increased permeability and upregulation of claudin-7.
HER2 activates the IL-6 receptor and the IL-6 inflammatory loop,
which contributes to lung injuries. Ning et al. (2012) shows that
mechanical stretch induces early apoptosis and IL-8 secretion
in the AT2 cells. Furthermore, mechanical stretch upregulates
ER stress and increases the expression levels of monocyte
chemoattractant protein (MCP)-1/C-C motif chemokine ligand
2 (CCL2) and MIP-1β/CCL4 pro-inflammatory chemokines in
the AT2 cells, thereby enabling monocyte recruitment (Valentine
et al., 2018). Furthermore, EC-derived microparticles (EMPs) are
released during significant lung inflammation and injury. Zhang
et al. (2014) demonstrated that during mechanical ventilation-
induced VILI, NLRP3 inflammasomes released by the endothelial
or epithelial cells mediated the recruitment of pulmonary
macrophages and induced autophagy in the lung epithelial cells.
In the in vivo experiments, mechanical ventilation induces lung
leukocyte recruitment as well as accumulation of cells and

Frontiers in Physiology | www.frontiersin.org 7 February 2022 | Volume 13 | Article 818394

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-818394 February 14, 2022 Time: 16:7 # 8

Lin et al. Mechanotransduction in Lung

cytokines in the alveolar space. Cyclic stretch-induced endothelial
cells activated gVPLA2, which enhances the expression levels of
intercellular adhesion molecule 1 (ICAM-1) and promotes the
adhesion of polymorphonuclear neutrophils to the EC, thereby
inducing EC injury (Meliton et al., 2013).

Ding et al. (2012) showed that mechanical stretch significantly
enhances MAP2K6 activity and HMGB1 protein expression in
alveolar epithelial cells. Wolfson et al. (2014) reported increased
HMGB1 expression in the human lung micro-vessel endothelial
cells exposed to excessive mechanical stress via STAT3 and
Rho GTPase signaling. Gao et al. (2014) demonstrated that
pathological cyclic stretching significantly increases lung cell
apoptosis by repressing Rac and increasing Rho expression levels.

Pathological elevation of lung vascular pressure or regional
or generalized overdistension of pulmonary microvascular and
capillary beds caused by mechanical ventilation at high tidal
volumes are two commonly encountered clinical scenarios in
lung diseases. Elevated mechanical strain on the lungs increases
the production of ROS in both endothelial and alveolar epithelial
cells and causes VILI (Poljsak et al., 2013). Cyclic stretching in
AT1 cells increases the ROS levels, which enhances monolayer
permeability via activation of NF-κB and ERK (Davidovich
et al., 2013). These data suggest that antioxidants may prevent
or alleviate VILI. Song et al. (2016) shows that rat AT2 cell
monolayers generates increased levels of ROS, including NO
and superoxide under mechanical ventilation stress. Tanaka
et al. (2017) demonstrated that non-physiological cyclic stretch
increased oxidative stress by up regulating NOX and DUOX2.
Mitochondria-targeted antioxidant MitoTempo significantly
reduces oxidative stress and prevents the dissociation of Claudin-
4 and Claudin-7 from ZO-1, thereby alleviating VILI (Song
et al., 2016). Ge et al. (2019) demonstrates that hydrogen sulfide
(H2S) significantly alleviates VILI by inhibiting inflammation
and oxidative stress through PERK/eIF2α/ATF4/GADD34 and
NF-κB/MAPK pathways. ROS accumulation triggers FasL/Fas
extrinsic death pathway in the AT2 cells of newborn rats under
prolonged mechanical ventilation (Kroon et al., 2013). miR-
135a protects the endothelial cells from pathological mechanical
stretching by binding to PHLPP2 and activating the PI3K/AKT
pathway (Yan et al., 2018).

Pulmonary Fibrosis
Pulmonary fibrosis is caused by abnormal tissue repair process
driven by the alveolar epithelium, including aberrant fibroblast
and myofibroblast proliferation and excessive deposition of ECM.
AT2 cells play a key role in regeneration and repair after
lung injury because they can differentiate into AT1 cells, the
main epithelial cell type at the alveolar–capillary barrier for
gas exchange. Hence, impaired renewal capacity of AT2 cells
promotes fibrogenesis and the production of profibrotic factors
(Selman and Pardo, 2020).

Yes-associated protein 1 plays a key regulatory role in the
mechanical tension-induced alveolar regeneration in response
to lung injury by activating the CDC42/F-actin/MAPK/YAP
signaling cascade (Liu et al., 2016). Activation of YAP suppresses
inflammation through IκBα-NF-κB signaling and accelerates
alveolar epithelial regeneration and regression of fibrotic lesions.

Furthermore, MAPK-mediated activation of YAP promotes
alveolar regeneration in response to the mechanical tone of
the lung (Liu et al., 2016). YAP also contributes to pulmonary
fibrosis by promoting abnormal cell proliferation, migration,
and polarity of epithelial cells via mTOR/PI3K/AKT signaling
(LaCanna et al., 2019). The profibrotic effects of YAP are exerted
through its interaction with nuclear transcriptional factors and
the activation of genes involved in ECM regulation, such as PAI-
1, connective tissue growth factor (CTGF), TGF-β1, COL1A1 and
COL1A2 in idiopathic pulmonary fibrosis epithelial cells; YAP
also promotes fibroblast growth on stiffness matrix (Giménez
et al., 2017; Lee et al., 2020). In pulmonary fibrosis, MRTF-A
interacts with the serum response factor (SRF) in the nuclear
matrix and promotes transcription of COL1A2 and TGF-β1,
which increases the stiffness of ECM (Luchsinger et al., 2011).

Mechanical stretch activates TGF-β1 pathway in the AT2
cells, which alters the homeostatic pulmonary microenvironment
leading to aberrant wound healing and tissue fibrosis (Kuhn
et al., 2019). In an ex vivo model, mechanical tissue stretching
induces the activation of TGF-β1 signaling via the Rho/ROCK
signaling pathway and interactions with αv integrins (Froese
et al., 2016). Wu et al. (2020) suggested that increased mechanical
tension dysregulates the functions of the AT2 cells and decreases
alveolar renewal capacity; tissue stretching during spontaneous
breathing results in aberrant activation of the TGF-β1 signaling
loop and fibrosis progression (Wu et al., 2020). Furthermore,
loss of CDC42 in the AT2 cells promotes periphery-to-center
progressive lung fibrosis (Wu et al., 2020). CDC42 maintains
the proliferative potential of AT2 cells. Non-physiological
mechanical tension activates the TGF-β1 signaling loop in
the AT2 cells that drives periphery-to-center progressive lung
fibrosis. Besides, Tgfb1 shRNA treatment significantly reduces the
expression of Tgfb1 in the AT2 cells and the expression levels of
type I collagen in the stromal cells. This demonstrates the key
function of TGF-β1 in the AT2 cells and fibrosis progression.
Moreover, the production of free TGF-β ligands is significantly
reduced in the Cdc42-null AT2 cells (Wu et al., 2020).

Clinically, ARDS patients who receive mechanical ventilation
are prone to lung fibrosis via EMT through the Midkine-Notch2-
ACE signaling pathway (Zhang et al., 2015). Furthermore, miR-
19b overexpression promoted EMT in response to mechanical
stretch by down-regulating PTEN (Mao et al., 2017). These
studies suggested that EMT played a significant role in lung
fibrosis due to mechanical stress. Non-physiological mechanical
stretch stimulated excessive ATP release from the lung alveolar
cells; ATP induced the release of IL-1β via activation of the
NLRP3 inflammasome through P2 × 7R receptor binding
and facilitated the progression of lung fibrosis (Gicquel et al.,
2017). Increased pulmonary vascular pressure induced ROS
accumulation due to mitochondrial dysfunction. Moreover,
reduced caveolin-1 (CAV1) prevents pulmonary endothelial
ROS production with cessation of flow (Milovanova et al.,
2008). Mechanical stretching inhibits ERK signaling pathway
by inducing the trafficking of CAV1 from the cell membrane
to the cytoplasm.

EMT is a mechanism for epithelial remodeling and repair,
wherein epithelial cells lose their epithelial characteristics
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and acquire mesenchymal properties (Rout-Pitt et al., 2018).
Therefore, dysregulated EMT promotes pulmonary fibrosis
(Hewlett et al., 2018). Mao et al. (2017) shows that miR-19b
participates in the EMT process in response to mechanical stretch
by activating AKT through inhibition of PTEN. Restoration
of PTEN expression or inhibition of AKT phosphorylation
suppresses mechanical stretch induced EMT phenotype.
Impaired lung mechanics after mechanical ventilation is
associated with increased hydroxyproline content of the lung
tissues, and increased expression levels of TGF-β, β-catenin, and
mesenchymal markers, α-SMA and Vimentin.

Vascular endothelial cells also contribute to pulmonary
fibrosis via inflammation, metabolic alterations, and endothelial
to mesenchymal transition (EndMT). EndMT is dependent
on mechanical forces such as shear stress and stiffness. TGF-
β-induced EndMT occurs preferentially on stiffer substrates and
is inhibited by blocking the β-catenin/Wnt signaling pathway
(Zhong et al., 2018). TGF-β-induced EndMT is accompanied
by inhibition of fatty acid oxidation, which is required for
de novo nucleotide synthesis and endothelial cell proliferation
(Schoors et al., 2015). Inhibition of fatty acid oxidation
reduces intracellular levels of acetyl-CoA, which is required
for maintaining the endothelial phenotype of EV cells (Xiong
et al., 2018). NLRP3 inflammasome activation contributes to
mechanical stretch induced EndMT and pulmonary fibrosis (Lv
et al., 2018). Increasing stiffness of lung parenchyma promotes
the expression of PF-related factors such as TGF-β and HIF-1α in
the endothelial cells (Phan et al., 2021).

Pulmonary Hypertension
Shear stress, stiffness, and cyclic stretch influence the functional
and metabolic states of the endothelial cells. The lung
microvasculature is subjected to mechanical forces due to the
cardiac output including shear stress and cyclic stretch, which
vary according to the cardiac and breathing cycle. Endothelial
cells are continuously subjected to shear stress that can range
from 10 to 50 dyne/cm2 in the large arteries, 5 to 20 dyne/cm2

in the microvasculature, and 10-fold lower in the veins compared
to the arteries (Paszkowiak and Dardik, 2003). The calculated
pressure on the PAECs in the PAH patients is 20.5± 4.0 dyne/cm2

compared to 4.3 ± 2.8 dyne/cm2 in the healthy individuals.
The mechanical stress on the endothelial cells persists during
disease progression. Clinically, pulmonary arterial hypertension
(PAH) involves elevated mean pulmonary arterial pressure,
pulmonary artery wedge pressure, and pulmonary vascular
resistance (Kovacs et al., 2018). The prevalence of PAH among
the pulmonary fibrosis patients is dependent on the severity
of pulmonary fibrosis. In the early stages or when initially
diagnosed, PAH affects < 10% of patients, but as the disease
progresses, the incidence of PAH increases to 32% (Lettieri
et al., 2006). Thus, PAH promotes the progression of lung
fibrosis by exposing the capillary endothelial cells to higher
mechanical stress.

Lhomme et al. (2019) demonstrated that endothelial Piezo1
promotes intrapulmonary vascular relaxation by regulating
endothelial Ca2+ mobilization and NO production. The
inhibition of Piezo1 attenuates the increased expression of NO

and Ca2+ mobilization. Iring et al. (2019) showed that the
endothelial mechanosensitive cation channel Piezo1 mediates
fluid shear stress-induced release of adrenomedullin and
subsequent Gs-coupled receptor-mediated formation of cAMP
that induced eNOS synthase via PKA activation; deletion of
Piezo1 or adrenomedullin impaires vasodilation and induces
hypertension (Iring et al., 2019). Kang et al. (2016) demonstrated
that elevated levels of endothelin-1 (ET-1) and increased
proliferation of PAECs in the PAH patients is regulated by
PPARγ. YAP/TAZ signaling pathway is involved in the responses
of endothelial cells to mechanical stress. For example, in vitro
experiments showed that cells exposed to higher stiffness (50 kPa)
increased glycolysis via YAP/TAZ/Hippo signaling pathway.
Therefore, activation of YAP/TAZ increases the proliferation
and migration of endothelial cells, ECM stiffness, and metabolic
shift from OXPHOS to glycolysis (Wang and Valdez-Jasso,
2021; Woodcock et al., 2021). NOTCH1 is downstream of
bone morphogenetic protein receptor type 2 (BMPR2), which
is implicated in PAH through enhanced glycolysis and histone
acetylation; BMPR2 induces mitochondrial dysfunction in the
endothelial cells and is required for NOTCH1 activation
(Liu et al., 2017).

Furthermore, several miRNAs regulate the apoptosis of
endothelial cells and play a role in PF. MiR-371b-5p increases
proliferation of pulmonary artery endothelial cells (PAECs) via
PTEN-PI3K-AKT signaling pathway (Zhu et al., 2018). MiR-
7 regulates serine and arginine-rich splicing factor 1 (SRSF1),
which promotes PAEC migration and increases the stiffness of
ECM (Wang and Valdez-Jasso, 2021).

THE INTERPLAY BETWEEN ALVEOLAR
EPITHELIAL CELLS AND VASCULAR
ENDOTHELIAL CELLS

Hypoxia Induced Endothelial Dysfunction
In the lungs, oxygen diffuses from the alveoli into blood
circulation and carbon-di-oxide diffuses from the blood into
the alveoli. However, gas exchange is impaired when alveolar
epithelial cells are injured during pathological conditions such
as VILI, ARDS and pulmonary fibrosis resulting in an hypoxic
microenvironment. Furthermore, hypoxia causes injury to the
vascular endothelial cells and activates HIF-1α expression. HIF-
1α regulates critical vascular functions such as angiogenesis,
metabolism, cell growth, metastasis, and apoptosis (Semenza,
2017). Increased HIF-1α stabilization reprograms endothelial
metabolism and activates vascular inflammation by promoting
glycolysis and reducing the mitochondrial respiratory capacity,
thereby increasing NOX4-derived ROS levels and activating the
deubiquitinating enzyme, Cezanne (Wu et al., 2017).

Emerging evidence suggests that biomechanical stimuli
also regulate HIF-1α. In the vascular endothelium, disturbed
blood flow significantly stabilizes HIF-1α even under normoxic
conditions. YAP/TAZ pathway is also involved in the metabolic
homeostasis mechanisms of the PAECs. YAP and HIF-1α

promote glycolysis co-operatively because YAP localizes to the

Frontiers in Physiology | www.frontiersin.org 9 February 2022 | Volume 13 | Article 818394

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-818394 February 14, 2022 Time: 16:7 # 10

Lin et al. Mechanotransduction in Lung

nucleus and prevents HIF-1α degradation (Zhang et al., 2018).
In ARDS, insufficient oxygen levels promote HIF-1α-dependent
elevation of lactate levels due to increased glycolysis; moreover,
HIF-1α participates in the upregulation of TNF-α, IL-6, and IL-
8. Pathological mechanical stress also activates HIF-1α, which
protects the endothelial barrier by regulating VEGFR2 and the
vascular endothelial protein tyrosine phosphatase (VE-PTP) that
dephosphorylates TIE2 and ANG2. Several lncRNAs (n335470,
n406639, n333984, and n337322) also regulate pulmonary
inflammation and fibrosis induced by cyclic stretch through
hypoxia and NF-κB signaling (Wang D. et al., 2021).

Long-term exposure to a hypoxic environment alters the
redox balance and increases cellular inflammation via increased
expression of MIP2, IL6, TNF-α and CXCL1, as well as elevated
oxidative stress and apoptosis. Furthermore, ICAM1, vascular
cell adhesion molecule 1 (VCAM1), and selectin mediate the
interactions between the monocytes and endothelial cells via the
NF-κB-ERK signaling pathway (Wohlrab et al., 2018).

Endothelial Permeability Impairment
Causes Fluid Leaking
Endothelial cell injury plays a significant role in the pathology
of VILI and ARDS. Pulmonary edema is caused by impaired
cytoskeleton and permeability of the endothelial cells. Zeinali
et al. (2021) developed an in vitro three-dimensional (3D) micro-
vessel model to investigate the effects of the 3D mechanical
cyclic stretch of different magnitudes and vascular endothelial
growth factor (VEGF) stimulation on a 3D perfusing vasculature;
the results shows that physiological cyclic stretch restored the
vascular barrier tightness and significantly decreases vascular
permeability (Zeinali et al., 2021). Piezo1 activation and calpain-
induced disruption of VE-cadherin adhesion in endothelial
cells subjected to elevated lung micro-vessel pressure resulted
in capillary stress failure and edema (Friedrich et al., 2019).
Dopamine D1 receptor (DRD1) is downregulated in both
surgical patients and mice exposed to mechanical ventilation.
The administration of DRD1 agonist attenuates the mechanical
stretch-induced lung endothelial barrier dysfunction by
inhibiting deacetylation of α-Tubulin via cAMP/EPAC/HDAC6
signaling pathway (Wang Y. et al., 2021). Vascular homeostasis
is regulated by normal shear stress sensing and barrier function,
which are controlled by the adherens junctions (Stanicek
et al., 2020). Endothelial glycocalyx plays a critical role in
maintaining capillary fluidity and perfusion homogeneity in the
microvasculature by interacting with focal adhesion proteins
(Lohser and Slinger, 2015; Knoepp et al., 2020). This suggests
a connection between mechanical sensing, NO production,
and microvascular perfusion. Damage to the glycocalyx layer
causes endothelial dysfunction because of actin cytoskeleton
remodeling. Stanicek et al. (2020) demonstrated that lncRNA-
LASSIE is associated with the platelet endothelial cell adhesion
molecule-1 (PECAM-1) and the intermediate filament protein,
Nestin; lncRNA-LASSIE deletion reduces the interaction between
VE-cadherin and Nestin, thereby destabilizing the cytoskeleton
(Stanicek et al., 2020). Hence, lncRNA-LASSIE is important
for the regulation of barrier function. The pathobiology of

VILI and ARDS involves increased lung vascular permeability
and alveolar flooding because the endothelial cells lose barrier
integrity. MMP-2, MMP-9, RGD-dependent integrins, cell-cell
adhesion proteins, ICAM-1, VCAM-1, and VE-cadherin play
an integral role in maintaining endothelial barrier function
(Wang et al., 2017).

Extracellular Matrix Stiffness Alters Lung
Microenvironment
Substrate stiffness plays an important role in regulating tissue-
specific endothelial response to shear stress. The physiological
stiffness of lung tissue is around 1kPa. Endothelial cells
subjected to higher shear stress exhibit cell quiescence marked
by lower expression of inflammatory markers and higher NO
levels, whereas, ECs subjected to low shear stress demonstrate
activated pro-inflammatory state and low NO levels. Cellular
traction stress should match substrate stiffness through force
sensing at the focal adhesion; therefore, larger tensile stress
is necessary to overcome substrate stiffness (Califano and
Reinhart-King, 2010). Hemodynamic shear sensors are activated
in response to low mechanical force (Fang et al., 2019).
Substrate stiffness promotes EndMT and plays a significant
role in chronic lung fibrosis diseases, which originate from
AEC injury. Elevated ECM stiffness is an independent predictor
of cardiovascular morbidity and mortality (Smulyan et al.,
2016). Endothelial cells subjected to shear stress demonstrate
decreased expression of αv and β3 integrins, which promote
migration and elongation via EndMT. ECM stiffness in cultured
PAECs increases glycolysis and glutaminolysis while reducing
mitochondrial oxygen consumption. Furthermore, stiff ECM
promotes proliferation and collagen deposition in the PAECs
(Bertero et al., 2016). Stiffness is also linked to metabolic
signaling through HIF-1α in the pulmonary microvasculature.
Hypoxic metabolic modeling of endothelial cells promotes
collagen deposition in a HIF-1α-dependent manner (de Jong
et al., 2016). Besides, YAP/TAZ pathway activated by high
stiffness promotes fibrotic signaling pathways that increase
the synthesis of ECM proteins (Totaro et al., 2018). Besides,
increased levels of miR-143-3p in ECs under shear stress induces
the release of TGF-β in collaboration with SRF and ECM
reorganization by targeting collagen V-α2 biosynthesis (Troidl
et al., 2020). Therefore, increased ECM stiffness is observed in
both epithelium or endothelium injuries, and alters transcription,
metabolism, and inflammation in both alveolar epithelial cells
and endothelial cells.

Metabolic Disorders and Oxidative
Stress
Laminar shear stress generated by the blood flow stimulates
endothelial cells and activates signal transduction pathways that
play a significant role in vascular homeostasis (Hirata et al.,
2021). Pathological mechanical stress alters the metabolic status
of pulmonary endothelial cells. Functional lipidomics of human
PEACs showed that laminar shear stress for 24 h significantly
alters the levels of 198/761 (26%) species of lipids (Hirata et al.,
2021). Lipid changes in pulmonary endothelial cells stimulated
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the pro-inflammatory response by inducing the expression
of VCAM-1. Besides, fragmented phospholipids generates
by phospholipid oxidation and nitroxidative stress induces
endothelial barrier dysfunction via pro-inflammatory cytokines
(Hirata et al., 2021). Shear stress also decreases cholesterol in
the plasma membrane, but these effects are secondary to the
release of ATP. In vitro experiments demonstrates that addition
of cholesterol to pulmonary cells restores mitochondrial function
including ATP production. Furthermore, excessive release of ATP
by the alveolar epithelial cells or the endothelial cells affects
the lung micro-environment and influences the functions of
both pulmonary cell types. Moreover, changes in the levels of
metabolic compounds such as cholesterol within the lung micro-
environment impaired the normal communication between the
epithelium and endothelium (Yamamoto et al., 2020).

Metabolic hemostasis is altered during pathological shear
stress. The abnormal blood flow reduces mitochondrial mass and
function and upregulates glycolysis through HIF-1α activation;
this results in increased accumulation of ROS and defective
synthesis of NO. Elevated levels of ROS prevent the degradation
of HIF-1α through a positive feedback mechanism and promote
the activation of glycolytic genes (Kim et al., 2017; Wu et al.,
2017). In mechanically ventilated septic patients, nitroxidative
stress increases NO production, protein nitration, and lipid
peroxidation. Besides, unidirectional flow increases oxidative
phosphorylation (OXPHOS) and mitochondrial biogenesis via
SIRT1, a key regulator of NOS activity (Wu and Birukov,
2019). Mitochondrial dysfunction increases localized oxidative
stress and stimulated hypoxia. Therefore, injury to either
alveolar epithelial cells or PAECs increases ROS levels and
hypoxia in the microenvironment, which negatively impacts
both cell types. Arachidonic acid (AA) significantly increases
cellular stiffness. AA metabolites such as prostacyclins and
epoxyeicosatrienoic acids are involved in vascular dilation;
AA is metabolized to prostacyclin and epoxyeicosatrienoic
acids by COX and cytochrome P450 epoxygenases, respectively
(Merna et al., 2018). Increased vascular oxidative stress induces
non-enzymatic production of isoprostanes from AA. The
vasoconstrictor metabolites of AA and isoprostanes induced
endothelial damage and impair vascular function. Therefore,
oxidative stress alters the balance between vasodilator and
vasoconstrictor metabolites of AA.

Shear stress modulates mitochondrial ATP production in
vascular endothelial cells by triggering ATP release and
Ca2+ signaling via purinoceptors (Yamamoto et al., 2020).
However, abnormal Ca2+ signaling induces mitochondrial
dysfunction. Lu et al. (2021) demonstrated that inhibition
of TRPV4 disrupts the PAEC barrier via PKC dependent
phosphorylation of Threonine 495 in eNOS. Uncoupling
of eNOS promotes mitochondrial redistribution and impairs
mitochondrial bioenergetics. Furthermore, acetylation is critical
for the stability of the endothelial cytoskeleton. Acetylation of
α-tubulin promotes microtubule stability (Kull and Sloboda,
2014; Szyk et al., 2014). Fatty acid-derived acetyl-CoA is a
major regulator of cellular acetylation. Impaired mitochondrial
function suppresses the acetylation levels in the pulmonary cells.
The levels of HDAC6, which is involved in acetylation via the

canonical Wnt/β-catenin pathway, are elevated in lung injury
caused by disassembling the adherens junctions.

Activation of Inflammation and
Monocyte/Macrophage Recruitment
Mechanical ventilation promotes acute lung injury and
development of multiple organ dysfunction syndrome by
increasing the levels of TNF-α, IL-1β, IL-6, IL-10, MIP-2, and
interferon-γ in the lavage fluid (Belperio et al., 2006). Stretching
induces the production of TNFα, IL-8, and IL-6 by lung-
resident macrophages and AT2 cells; whereas, exposure of lung
endothelium to 20% cyclic stretch upregulates the levels of IL-8,
VCAM-1, ICAM-1, and E-selectin, and mediates the adhesion of
monocytes and macrophages (Iwaki et al., 2009).

Accumulation of monocytes and macrophages in the
perivascular and adventitia space is a notable feature of
remodeling in response to lung injuries (Stenmark et al., 2013).
Monocytes and macrophages play a central role in local lung
inflammation as a result of PH (Chen et al., 2016), and are
associated with disease severity and progression (Willis et al.,
2018). Dysregulation of chemokines such as CCL5, CCL2,
and CXC3CL1, and their homologous receptors are related to
the pathogenesis of PH because the infiltration of monocytes,
macrophage polarization, and vascular remodeling in the
lungs is regulated by these chemokines (Groth et al., 2014).
Hypoxia-induced PH increases the expression levels of CX3CR1,
CCR2, and their corresponding ligands, CX3CL1 and CCL2, in
the mouse pulmonary vessels; moreover, CX3CR1 deficiency
increases the proportion of monocytes and macrophages in
the lungs and promotes M2 to M1 macrophage polarization, a
classic activating proinflammatory phenotype (Amsellem et al.,
2017). Increased strain and frequency of cyclic stretch promotes
the secretion of pro-inflammatory factors by the lung-resident
macrophages. For example, 12% stretching or elongation of
the membrane increases the production of proinflammatory
cytokines, such as TNF-α, IL-6, IL-8, and MMP9 via NF-κB
activation by the human alveolar macrophages. Furthermore,
murine alveolar macrophages subjected to 20% cyclic stretch
induces the release of IL-1β and IL-18 as well as inflammasome
activation through ROS-mediated caspase 1 and TLR4 signaling
(Wu et al., 2013).

The dysfunction of alveolar epithelium induced
inflammation responses and disturbed the blood flow
leading to the downregulation of KLF2 via glycocalyx
sensing mechanotransduction (Huang et al., 2017). Growth
differentiation factor-15 (GDF-15), also known as macrophage
inhibitory cytokine-1 or non-steroidal anti-inflammatory drug-
activated gene has been identified as a biomarker of treatment
response and prognosis in cardiovascular diseases. GDF-15 is
a member of the transforming growth factor-β superfamily
and participates in several pathological conditions such as
inflammation, cancer, as well as cardiovascular, pulmonary, and
renal diseases (Arkoumani et al., 2020). Endothelial cells are the
source of GDF-15, which interacts with the proinflammatory
cytokines and induces localized macrophage accumulation and
fibrosis. The activation of host monocytes and macrophages via
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NF-κB signaling induces fibrosis and alveolar epithelium injuries
through elevated stiffness of the ECM. Stiffness also increases
endothelial inflammation via NF-κB through a positive feedback
mechanism, thereby enhancing lung fibrosis.

FUTURE ASPECTS AND CONCLUSION

In summary, mechanical stress and its related transduction
pathways demonstrates a critical molecular biological function in
development, functional maturation and pathogenesis. Typically,
lung serves as the places for gas exchange, alveoli and blood
vessels are essential for such biological process. The epithelial
cells and endothelial cells would both undergo mesenchymal
transition under various injuries. Besides, the two types of
cell are all sensitive to mechanical stress. Cyclic stretch
is the major source of mechanical stimulation on alveolar
epithelial cells, while cyclic stretch and shear stress are loaded
on vascular endothelial cells in general. In addition, the
stiffness of the epithelium and endothelium is also essential
to maintain the microenvironment for gas exchange. In this
review, we summarized the kinds of mechanical stresses that
are applied to alveolar epithelial cells and endothelial cells.
We demonstrated pulmonary inflammation activation, metabolic
alternation, ECM and cytoskeleton remodeling during non-
physiological mechanical stress. However, the communications
between the microenvironment, the alveolar epithelial cells and
the vascular endothelial cells are rarely analyzed. Therefore,
we propose a mechanistic picture in which several links
are orchestrated for the interplays between epithelium and
endothelium, and to emphasize the possibility of targeting the
communications in dealing with lung injuries. In the future,

more efforts should be directed toward further elucidation
of the regulatory mechanisms of these communications, and
corresponding research and discovery of novel targets on
mechanotransduction signaling as medication therapeutics.
With the newly invented methods to deliver nucleotides
into lung tissues, it is believed that eventually mechanical
pathways under pathological circumstances may be rectified
by genetic editing and gene therapy, which seems to be
a promising strategy for exploring new cures for lung
injury and disease.
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