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pronounced migration of five different GBM spheroid cul-
tures, but not of the commercial cell line U87MG. An in 
vitro limiting dilution assay showed preserved but reduced 
spheroid formation capacity of migrating cells. Orthotopic 
xenografting in mice showed preserved but reduced tumor-
igenic capacity. Profiling of mRNAs revealed no significant 
deregulation of 16 predefined CSC-related genes and the 
HOX-gene list in migrating cells compared to spheroids. 
Determination of GBM molecular subtypes revealed that 
subtypes of spheroids and migrating cells were identical. 
In conclusion, migrating tumor cells preserve expression 
of stem cell markers and functional CSC characteristics. 
Since CSCs are reported to be highly resistant to therapy, 
these results emphasize that the CSC phenotype should be 
taken into consideration in future treatment of GBMs.
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Introduction

Glioblastoma (GBM) is the most frequent primary malig-
nant central nervous system tumor. Despite multi-modal 
therapy including surgery, irradiation and chemotherapy, 
the median survival is only 14.6 months [1, 2]. GBM tumor 
cells migrate into the normal brain parenchyma along ves-
sels and white matter fiber-tracts [3]. The highly migratory 
capability is thought to be a major reason for the short over-
all survival of GBM patients, since it results in tumor cells 
being left behind after surgery. However, the phenotype of 
migrating tumors cells is poorly described thereby prevent-
ing development of efficient therapies. 

A population of tumor cells with stem cell characteristics 
has been described in GBM and many other cancers [4, 5]. 

Abstract  Glioblastoma (GBM) is the most frequent and 
malignant brain tumor with an overall survival of only 
14.6  months. Although these tumors are treated with sur-
gery, radiation and chemotherapy, recurrence is inevitable. 
A critical population of tumor cells in terms of therapy, the 
so-called cancer stem cells (CSCs), has been identified in 
gliomas and many other cancers. These tumor cells have a 
stem cell-like phenotype and are suggested to be responsi-
ble for tumor growth, chemo- and radio-resistance as well 
as recurrence. However, functional evidence for migrating 
glioma cells having a stem cell-like phenotype is currently 
lacking. In the present study, the aim was to character-
ize the phenotype of migrating tumor cells using a novel 
migration assay based on serum-free stem cell medium 
and patient-derived spheroid cultures. The results showed 
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cultures were used in the current study at the following 
passage (P) numbers: T78, P14; T86, P15; T87, P13; T111 
P16; T113, P14. Use of human tissue in the present study 
was approved by the Regional Scientific Ethical Committee 
(approval number S-VF-20040102).

Migration assay

The migration assay was a flat surface migration assay, 
which allowed migration to be monitored and migrat-
ing cells to be isolated for further investigations. Geltrex 
(Gibco) and serum-free medium was mixed (1 + 49) and 
1.4  ml was added to each well in 12-well plates. Coated 
plates were incubated over night at 36 °C and the follow-
ing morning the supernatant was aspirated. One spheroid 
(100–200 µm) was aspirated into a 0.1–2.0 µl pipette and 
placed on the coating. After incubating the plate for 75 min 
at 36 °C, 1000  µl serum-free medium was added. Each 
spheroid was monitored with time lapse microscopy over 
5 days. We hypothesized that at the highest migration speed, 
genes had reached the highest level of deregulation. Migra-
tion speed was therefore calculated to find the optimal time 
point to isolate the migrating cells. At high migration speed, 
the migrating cells were isolated by removing the “central” 
non-migrating cells/spheroid with a micro-pipette (Fig. 1). 
The migrating cells were then washed twice in phosphate 
buffered saline before they were frozen as a pellet until fur-
ther gene analysis. Migrating cells were trypsinized to sin-
gle cells prior to use in other assays both in vitro and in vivo.

A set of GBM spheres from all five patient-derived cul-
tures were fixed with 4 % formalin and paraffin embedded 
before immunostaining for CD133 and Sox-2. The corre-
sponding migrating cells were trypsinized to single cells and 
re-cultured in neural stem cell medium. The formed spheres 
were fixed and paraffin embedded for immunostaining.

Immunohistochemistry

Immunostaining of paraffin embedded spheroids were per-
formed on 3 µm paraffin sections. Sections were deparaf-
finized and stained with CD133 (Miltenyi Biotec, clone 
W6B3C1; 1 + 40), and Sox-2 (R&D Systems, clone 245610; 
1 + 400). The poly envision system was used for detection.

Mouse brains were before paraffin embedding manually 
cut in 1 mm coronal sections, which were cut in 3 µm par-
affin sections and immunohistochemically stained with a 
Vimentin antibody (Nordic Biosite, clone EP20; 1 + 200). 
The poly envision system was used for detection.

Automated quantitative analysis

Immunohistochemically stained slides were scanned on a 
Hamamatsu whole-slide scanner using NanoZoomer 2.0HT 

These self-renewing cancer stem cells (CSCs) have been 
suggested to be responsible for tumor growth as well as 
chemo- and radio-resistance and recurrence [6, 7]. Accord-
ing to expression of stem cell markers, we have recently 
shown that migrating tumor cells in glioma biopsy material 
display a stem cell phenotype [8]. However, the functional 
evidence for tumor initiating capabilities of these migrating 
cells is currently lacking.

Different in vitro migration assays have previously been 
used to study migrating glioma cells, but these migration 
assays are based on fetal calf serum as chemoattractant 
[9–12]. A limitation with this approach is that tumor cells 
undergo changes in phenotype including differentiation into 
tumor cells expressing astrocytic, oligodendroglial and neu-
ral markers when exposed to fetal calf serum [13, 14]. Using 
a novel in vitro migration assay based on patient-derived 
GBM spheroid cultures grown in a chemically defined 
serum-free medium, we hypothesized that migrating tumor 
cells had a stem cell phenotype. The CSC phenotype of 
isolated migrating cells were investigated using limiting 
dilution spheroid formation assay as well as using ortho-
topic xenografting at decreasing tumor cell concentrations 
to investigate tumor-initiating capabilities [14–18]. Using 
mRNA profiling of both migrating and sphere cells, two 
predefined stem cell or CSC-related gene-lists were evalu-
ated. The recently established molecular GBM subtypes 
originally described by Verhaak et al. were also addressed 
[19]. A potential change in subtype induced by migration 
has not previously been addressed. We hypothesized that 
this might occur and investigated this by the mRNA profil-
ing data.

Material and methods

Cell culture

GBM cells including the U87MG cell line were cultured 
as free-floating spheroids in serum-free neural stem cell 
medium [16] at 36 °C in a humidified incubator with 5 % 
CO2. The spheroid cultures were established in our labo-
ratory as previously described from patient-derived tissue 
[18]. All spheroid cultures had a karyotype typical of GBMs 
and the ability to form new spheroids at clonal density. 
Moreover, they differentiated into cells expressing neuro-
nal, astrocytic and oligodendrocyte markers upon culturing 
in serum-containing medium. They formed highly invasive 
tumors upon orthotopic xenografting. All GBM spheroid 
cultures (T78, T87 and T111) except the T86 and T113 
culture [16, 18] had a hypermethylated O6-methylguanine-
DNA methyltransferase (MGMT) promoter region and were 
derived from GBMs without mutated isocitrate dehydroge-
nase 1 (mIDH1). In the present study, the GBM spheroid 
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to identify specific staining and avoid background staining for 
each of the chromogenic stainings. The computer-based clas-
sifier calculated the area fraction of tumor cells expressing the 
stem cell marker of interest (CD133 and Sox-2).

software (Hamamatsu, Ballerup, Denmark). The digital images 
were imported to the Visiopharm software module (Visio-
pharm, Hørsholm, Denmark). A computer-based software 
classifier within the Visiopharm software module was trained 

Fig. 1  Migration assay based on stem cell medium and patient-
derived spheroid cultures. Spheroids from the T78 culture were placed 
in Geltrex coated wells and a pronounced migration was observed after 
24 h (a), 48 h (b) and 72 h (c). The migration distance (d) and speed 
(e) illustrated for five different spheroid cultures (T78, T86, T87, T111 
and T113) and the commercial cell line U87MG, which was followed 

for 5 days with time-lapse microscopy. The migration assay allowed 
easy isolation of migrating cells for further studies. In cultures where 
spheroids had started to migrate (f), the spheroid was removed leaving 
the migrating cells behind (g) as illustrated for the T111 culture. Free 
floating spheroids and migrating cells were used for in vitro and in 
vivo limiting dilution assays (h). Scale bar 50 µm
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area was measured using the freehand area tool in the Nano-
Zoomer Digital Pathology V2.3.11 (Hamamatsu).

Statistics

Data was analyzed in GraphPad Prism version 5.01. The 
comparison of area fraction in the core and periphery was 
performed using an unpaired t test. Comparisons of in vivo 
results were performed using 1-way Anova and unpaired t 
test. Statistical significance was defined as p < 0.05.

Gene expression profiling of cell lines

RNA from different GBM free floating spheroid cultures and 
corresponding migrating cells were purified using RNeasy 
system (Qiagen) and analyzed for global gene expression 
using Affymetrix 133 Plus 2.0 microarrays according to 
manufacturer’s guidelines. Raw CEL file data was normal-
ized using the quantile normalization method in the free R 
package limma [25] using all genes in the data set. The nor-
malized data was used for calculating the paired fold change 
(FC) between migrating cells and spheroids, considering 
genes with FC ≥2 and FC ≤0.5 as being up- or downregu-
lated in the migrating cell lines, respectively.

The normalized data was log2 transformed, and differen-
tial gene expression analysis was performed using a paired 
t test. With the log2 transformed gene expression data, each 
spheroid culture and migrating cell sample was classified 
according to the four molecular GBM subtypes based on 
maximal positive correlation to the respective subtype cen-
troids previously established by Verhaak et al. [19].

The gene expression pattern of the 840-gene signature 
established by Verhaak [19] was visualized using the heat-
map2 function in the gplots R-package. The genes were 
grouped according to subtype cluster where genes constitut-
ing the Neural, Classical, Proneural and Mesenchymal sub-
type were colored green, blue, red and yellow, respectively. 
Spheroid cultures and migrating tumor cells classified as 
Neural, Classical, Proneural and Mesenchymal subtypes 
were colored green, blue, red and yellow, respectively.

Results

All five GBM spheroid cultures showed pronounced migra-
tion (Fig. 1a–c). The highest migration distance was mea-
sured for T111, T113 and T78 (Fig. 1d). T87 had the lowest 
migration distance (Fig.  1d). Peak migration speed was 
found for T111, T113, T78 and T86 cultures after 18 h, which 
is in contrast to T87 peaking after 48 h (Fig. 1e). We also 
evaluated the migration of the commercial cell line U87MG 
but without identifying any migrating cells (Fig. 1d).

In vitro limiting dilution assay

Both free floating spheroids and the corresponding migrat-
ing cells from all five different patient-derived GBM spher-
oid cultures (T78, T86, T87, T111 and T113) were used for 
in vitro limiting dilution assays (LDA) performed as pre-
viously described [20, 21]. Spheroids and migrating cells 
were trypsinized to single cells and seeded in decreasing 
plating density using 96 well plates. After 10 days the per-
centage of wells not containing spheroids for each cell plat-
ing density was calculated and plotted against the numbers 
of cells per well. Data was interpreted in ELDA: Extreme 
Limiting Dilution Analysis software [22]. All experiments 
were performed in duplicate.

Xenograft model

The use of mice in the present study was approved by The 
Animal Experiment Inspectorate in Denmark (permis-
sion J. Nr. 2013/15-2934-00973). Female Balb c nu/nu 
mice 7–8 weeks of age were anesthetized by a subcutane-
ous injection with a mixture of Hypnorm and Dormicum 
(0.12 ml/10 g). The mice were placed in a stereotactic frame 
on a heating pad. A midline incision exposing bregma was 
made. A burr hole 1 mm anterior and 2 mm lateral to bregma 
was made. A syringe with a blunt needle was inserted 3 mm 
into the brain. Cells were injected slowly into the brain over 
several minutes, while the needle was slowly removed to 
prevent a vacuum causing the tumor cells to escape. The 
skin was sutured with resorbable sutures.

The in vivo limiting dilution assay was performed using 
the patient-derived GBM spheroid culture T87. The intra-
cerebral growth pattern and growth rate of this culture were 
known from a previous study in Balb c nu/nu mice [23]. 
Mice were injected with tenfold decreasing concentrations 
of free floating sphere cells (300.000 (n = 7), 30.000 (n = 7), 
3.000 (n = 7)) and migrating cells (300.000 (n = 7), 30.000 
(n = 7), 3.000 (n = 7)). Two mice died from anesthesia in the 
30.000 sphere group.

Mouse health status was monitored daily and weight was 
measured twice per week. If any signs of neurological defi-
cit were observed or weight loss more than 20 %, the mice 
were euthanized in a carbon dioxide chamber. When a sin-
gle mouse showed symptoms, the whole group was eutha-
nized. To evaluate early tumor size in all groups we chose 
to euthanize two mice in all groups when the first group 
showed symptoms. The brains were immediately removed 
and fixated in 4 % formalin for 48 h.

To assess tumor volume all slides were scanned with the 
NanoZoomer 2.0-HT slide scanner, Hamamatsu. Applying 
Simpson’s rule [24] the tumor volume was calculated by 
summing the tumor areas from all 1 mm coronal slices. This 
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culture T78, T87 and T86 (both sphere and migrating cells) 
and T113 (sphere cells) but not for the T111 (Fig. 2a–g). 
For all five spheroid cultures, free floating spheroids had 
a significantly higher ability to form spheres compared 

The in vitro limiting dilution assay (LDA) revealed that 
both spheroids and migrating cells trypsinized to single 
cells were capable of forming spheroids. Spheroids were 
formed at clonal cell concentration for GBM spheroid 

Fig. 2  Comparison of spheroid formation and expression of stem cell 
markers for cells derived from free floating spheroids versus migrat-
ing cells. Spheroids were formed both upon trypsinization of spheres 
(a) and migrating cells (b) to single cells. The in vitro LDA revealed 
that both single cells derived from spheroids and migrating cells were 
capable of forming new spheroids (c–g), Statistical significance (p) 
was investigated with Extreme Limiting Dilution Assay (ELDA) 

software. Spheroids derived from an earlier passage of spheroids ver-
sus migrating cells were processed and histological sections stained 
with CD133 (h, i) and SOX-2 (k, l). Both stainings were quantified by 
software-based image analysis CD133 (j) and SOX-2 (m). Data are 
shown as means ± SEM, n = 5, comparisons were made with student’s t 
test. SCF Stem cell frequency. Scale bar 50 µm (a, b), 40 µm (h, i, k, l)
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In the in vivo LDA (Fig. 3a), mice injected with 300.000 
sphere and migrating cells revealed symptoms at day 46. 
Therefore, these mice and two mice from the remaining 
groups were euthanized at that time point, where none of the 
other mice had neurological symptoms or weight loss. This 
was done to evaluate tumor size across all groups. Mice 
injected with 30.000 sphere and migrating cells and 3.000 

to migrating cells. The T113 culture showed the largest 
difference of all cultures between free floating spheroids 
and migrating cells (Fig. 2g). We found a similar immu-
nohistochemical expression of the stem cell markers 
CD133 and Sox-2 in spheroids derived from free-floating 
spheroids versus spheroids derived from migrating cells 
(Fig. 2h–m).

Fig. 3  Comparison of in vivo tumor growth and survival for mice 
implanted with cells derived from free floating spheroids versus 
migrating cells. Six groups of mice were implanted with glioma cells 
from either spheroids or migrating cells at decreasing cell density 
(a). The survival is illustrated with Kaplan–Meier survival curves for 
orthotopically xenografted mice: 300.000 cells (b), 30.000 cells(c) and 
3.000 cells (d). Only mice implanted with 3.000 migrating cells had a 
significantly longer survival than mice implanted with the correspond-
ing number of sphere cells (d). Brains from the different groups were 
processed and histological sections stained with anti-human specific 
vimentin immunohistochemical staining for visualization of tumor 
size and migration pattern (e–j). Mean tumor size at day 46 for mice 
implanted with 300.000 (n = 7), 30.000 (n = 2) and 3.000 (n = 2) sphere 

and migrating cells (k). Mean tumor size at time of euthanization due 
to symptoms for mice implanted with 300.000 (n = 7), 30.000 (n = 3 
for sphere group and n = 5 for migrating group) and 3.000 (n = 5) 
sphere and migrating cells (l). Mean tumor size for tumor bearing mice 
upon symptoms for mice implanted with 300.000 (n = 7), 30.000 (n = 3 
for sphere group and n = 2 for migrating group) and 3.000 (n = 4 for 
sphere group and n = 2 for migrating group) sphere and migrating cells 
(m). Maximal migration distance for mice implanted with 300.000 
(n = 7), 30.000 (n = 3 for sphere group and n = 4 for migrating group) 
and 3.000 (n = 4) sphere and migrating cells (n). Data were shown as 
means ± SEM, comparison was made with 1-way Anova and unpaired 
t test. Scale bar 5 mm (e–j)
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upregulated in migrating cells (1.2 fold). However, the 
upregulation was not significant when adjusting for multiple 
testing. ID1 revealed the highest fold change being 5.4 fold 
higher in migrating cells. In the HOX-gene-list HOXA3 
was significantly upregulated in migrating cells (1.1 fold) 
(Table 1) but not when adjusting for multiple testing. In total 
the microarray platform revealed the expression of 23.160 
genes. There was no significantly different mRNA expres-
sion between spheroids and migrating cells when adjusting 
for multiple testing. 

The subtypes estimated were similar for each of the dif-
ferent patient-derived GBM spheroid cultures and their cor-
responding migrating cells (Fig. 4).

Discussion

In line with the well-known migration for GBMs in the 
brain, pronounced migration was observed for all investi-
gated GBM spheroid cultures. Supporting the in vivo-like 
features and translational potential of our model, migration 
was not observed for the standard U87MG cell line, thereby 
confirming the growth pattern for U87MG earlier found in 
the orthotopic xenograft model, where U87MG cells form 
a circumscribed tumor with a sharp border between tumor 
and parenchyma [17]. Our major novel finding in vitro 
was that not only the five GBM spheroid cultures but also 
the corresponding in vitro isolated migrating cells had the 

sphere cells revealed symptoms at day 54, which was 1 week 
later than mice injected with 300.000 sphere and migrat-
ing cells. Mice injected with 3.000 migrating cells revealed 
symptoms at day 71 (Fig. 3b–d). Only mice injected with 
this number of migrating cells had a significantly longer sur-
vival compared to the corresponding sphere group, which 
revealed symptoms at day 54 (Fig. 3d).

Tumor size in mice implanted with 300.000 sphere cells 
after 46  days was significantly larger compared to mice 
implanted with 30.000 and 3.000 sphere cells (Fig. 3e, h, 
k). Same results were obtained for mice implanted with 
300.000 migrating cells compared to mice implanted with 
30.000 and 3.000 migrating cells (Fig. 3e, h, k). The tumor 
size in groups implanted with cells from spheroids was not 
significantly larger than groups implanted with migrating 
cells (Fig. 3k). Tumor size at time of euthanization of the 
individual groups tended to decrease with cell numbers 
injected (Fig.  3e–j, l). No significant difference in tumor 
size was observed comparing all tumors per group (Fig. 3m) 
or comparing the mean size of all tumors derived from 
spheroids versus tumors derived from migrating cells. The 
measured migration distance revealed that tumors derived 
from migrating cells had a longer, but not significant mean 
migration distance compared to the corresponding tumors 
derived from spheres (Fig. 3n).

Profiling of mRNA revealed in general similar levels 
of CSC-related mRNAs in spheres and their correspond-
ing migrating cells (Table 1). Only Bmi-1 was significantly 

Table 1  List of 16 selected CSC markers and the HOX-gene CSC related list investigated at mRNA levels

CSC related genes Fold change P values FDR HOX gene list Fold change P values FDR

EGFR 0.792 0.059 0.642 LOC400043 0.912 0.117 0.704
Nestin 0.898 0.062 0.645 HOXD8 0.922 0.147 0.720
CD36 0.950 0.474 0.882 HOXD10 0.940 0.460 0.879
Musashi-1 0.954 0.456 0.877 HOXA5 0.950 0.461 0.879
NANOG 0.966 0.617 0.923 HOXA2 0.950 0.455 0.877
ALDH1 0.988 0.589 0.916 TSHZ2 0.958 0.586 0.915
C-Met 0.994 0.716 0.945 HOXA7 0.968 0.400 0.859
Podoplanin 1.016 0.852 0.972 HOXD4 0.989 0.741 0.950
SOX2 1.017 0.370 0.844 HOXC6 1.005 0.985 0.997
Integrin α6 1.018 0.863 0.975 FAM110C 1.009 0.929 0.987
CD44 1.054 0.908 0.984 HOXA10 1.013 0.767 0.955
CD133 1.061 0.764 0.954 PROM1 1.061 0.764 0.954
OCT4 1.097 0.475 0.882 HOTAIR 1.076 0.313 0.820
CD15 1.130 0.118 0.704 LOC375295 1.089 0.972 0.995
BMI1 1.196 0.004 0.553 SKAP2 1.120 0.091 0.677
ID1 5.419 0.066 0.655 HOXA3 1.125 0.005 0.553

HOXA10 1.186 0.067 0.656

Left data set represents 16 stem cell/CSC related genes for spheres and isolated migrating cells. Right data set represent the HOX-genes. The 
data revealed no significant change in mRNA expression in migrating cells compared to GBM spheres when adjusting for multiple testing. 
Listed according to fold change
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conditions for tumor cells in the surgical biopsy material 
as well as our migration assay over-preserving stem cell 
features of migrating cells leading to enhanced high spher-
oid formation and tumorigenic capacity of migrating cells. 
Supporting this, Wang et al. has earlier demonstrated that 
CD133− can give rise to CD133+ tumor cells upon culturing 
in serum-free medium [27].

In the xenograft model the tumor take was lower in mice 
implanted with 30.000 and 3.000 migrating cells compared 
to mice implanted with 30.000 and 3.000 sphere cells. Cor-
respondingly, the overall survival was significantly higher 
in mice implanted with 3.000 migrating cells compared to 
mice implanted with 3.000 sphere cells. This is in line with 
our in vitro LDA results. The migrating tumor cells thus 

capacity to form spheroids. Furthermore, there was a simi-
lar expression of the stem cell markers CD133 and Sox-2 
in spheroids derived from a previous passage of spheroids 
as well as migrating cells. The reduced but still preserved 
spheroid formation capacity of migrating cells compared to 
spheroid cells was significant for all five GBM spheroid cul-
tures. Piccirillo et al. suggested the existence of only a very 
poor CSC population in the tumor periphery using surgical 
biopsy material from the periphery of GBMs. Cells obtained 
from the periphery in that study were unable to form spher-
oids in long-term culturing conditions compared to tumor 
cells isolated from the core, but orthotopic tumor forma-
tion in mice was observed [26]. This discrepancy might to 
some degree be explained by critical isolation and survival 

Fig. 4  Heatmap of mRNA profiling results obtained with five differ-
ent GBM spheroid cultures and corresponding migrating cells. Hier-
archical cluster analysis revealed that GBM spheroid cultures and 

corresponding migrating cells all clustered with each other. Molecular 
subtyping revealed three different subtypes: Classical, Mesenchymal 
and Proneural. Migration did not induce a shift in subtype
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explain the limited response to radio- and chemotherapy 
and therefore be a major reason for treatment failure and a 
poor overall survival. The presence of CSCs in the periph-
ery after optimal neurosurgical resection should therefore 
be taken into account in the future development of targeted 
therapies against both CSCs and non-CSCs. The established 
migration assay preserving CSC features of migrating gli-
oma cells is of potential value for discovery of novel targets 
in this critical cell population.
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