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Abstract

The rise of SARS-CoV-2 variants and the history of outbreaks caused by zoonotic coronavi-

ruses point to the need for next-generation vaccines that confer protection against variant

strains. Here, we combined analyses of diverse sequences and structures of coronavirus

spikes with data from deep mutational scanning to design SARS-CoV-2 variant antigens

containing the most significant mutations that may emerge. We trained a neural network to

predict RBD expression and ACE2 binding from sequence, which allowed us to determine

that these antigens are stable and bind to ACE2. Thus, they represent viable variants. We

then used a computational model of affinity maturation (AM) to study the antibody response

to immunization with different combinations of the designed antigens. The results suggest

that immunization with a cocktail of the antigens is likely to promote evolution of higher titers

of antibodies that target SARS-CoV-2 variants than immunization or infection with the wild-

type virus alone. Finally, our analysis of 12 coronaviruses from different genera identified

the S2’ cleavage site and fusion peptide as potential pan-coronavirus vaccine targets.

Author summary

SARS-CoV-2 variants have already emerged and future variants may pose greater threats

to the efficacy of current vaccines. Rather than using a reactive approach to vaccine devel-

opment that would lag behind the evolution of the virus, such as updating the sequence in

the vaccine with a current variant, we sought to use a proactive approach that predicts

some of the mutations that could arise that could evade current immune responses. Then,

by including these mutations in a new vaccine antigen, we might be able to protect against

those potential variants before they appear. Toward this end, we used various computa-

tional methods including sequence analysis and machine learning to design such antigens.

We then used simulations of antibody development, and the results suggest that
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immunization with our designed antigens is likely to result in an antibody response that is

better able to target SARS-CoV-2 variants than current vaccines. We also leveraged our

sequence analysis to suggest that a particular site on the spike protein could serve as a use-

ful target for a pan-coronavirus vaccine.

1 Introduction

Vaccines that protect against severe acute respiratory distress coronavirus 2 (SARS-CoV-2) are

highly effective. However, variants that impact vaccine efficacy are emerging. For example, the

Beta (B.1.351) variant significantly reduces neutralizing antibody titers [1,2], and the Delta

(B.1.617.2) variant both increases transmission and reduces neutralizing antibody titers [3–6].

Although current vaccines still remain effective at preventing severe illness upon infection

with these variants [7], their appearance signals that others more capable at evading antibodies

elicited by the current vaccines may emerge. Indeed, available data on the Omicron variant

suggest that this is true [8,9]. Moreover, other pathogenic coronaviruses could evolve in the

future due to zoonosis. Thus, vaccines that protect against potential SARS-CoV-2 variants and

those that protect against potential zoonotic coronaviruses would serve as a shield against

future outbreaks.

Neutralizing antibodies can prevent infection by binding to a virus’ surface proteins and

preventing the virus from entering cells. In samples taken from convalescent COVID-19

donors, the isolated neutralizing antibodies commonly target the spike’s receptor-binding

domain (RBD) [10–12], which is located in the S1 domain and is responsible for facilitating

viral entry by binding to angiotensin-converting enzyme 2 (ACE2) [13].

In response to antigen (whether from vaccination or natural infection), antibodies are gen-

erated by a Darwinian process known as affinity maturation (AM) that occurs in secondary

lymphoid organs [14]. Activated germline B cells seed structures known as germinal centers

(GC), where they undergo multiple cycles of expansion, mutation, and selection based on the

binding affinity of their B cell receptor (BCR) to antigen. Through this process, B cells increase

their binding affinity to antigen up to 1000-fold or more. B cells can differentiate into plasma

cells that secrete antibodies, which are soluble and modified forms of the BCR that inhibit

pathogens through neutralization or various other effector functions [15].

Previous computational models of AM have focused on the response to single antigens

[16–21] or the development of broadly neutralizing antibodies (bnAbs) for influenza and

human immunodeficiency virus (HIV) upon immunization with variant antigens [22–31].

The latter studies on highly mutable viruses aimed to study strategies for induction of bnAbs

that target the conserved residues of the viral spike.

However, given that SARS-CoV-2 appears to mutate more slowly than influenza and HIV

[32,33], a different strategy is feasible for protection against its variants. Instead of targeting

strictly conserved regions, an immunization scheme that generates an appropriate polyclonal

response against variable regions could protect against mutant strains. Antibodies targeting

the variable class 1 and class 2 RBD epitopes of SARS-CoV-2 tend to be neutralizing, while

antibodies that target the conserved class 4 epitope can be non-neutralizing because of their

inability to compete with ACE2 binding [34]. Thus, targeting variable regions may also be

more likely to generate neutralizing antibodies against SARS-CoV-2 variants. Parenthetically,

this reasoning does not apply to our later use of structural conservation to identify a pan-coro-

navirus vaccine target, which is a distinct analysis geared toward targeting conserved regions

across all coronaviruses.
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At least two significant questions need to be answered in order to design such a vaccine that

can protect against SARS-CoV-2 variants,

1. Which antigens should be used, and in what combination/order should they be adminis-

tered, to optimally produce the desired antibody response?

2. How does previous infection or immunization with SARS-CoV-2 affect antibody evolution

upon administering the chosen antigens?

In this study, we aimed to address these questions pertinent to vaccination that protects

against SARS-CoV-2 variants and beyond. We first developed a method of calculating conser-

vation at different sites of the spike protein by analyzing both structural and sequence data. By

applying it to sarbecovirus spike proteins and combining the results with previous deep muta-

tional scanning results, we designed 6 antigens that may protect against the most significant

RBD escape mutations in SARS-CoV-2. We then determined that these antigens are stable and

bind ACE2 using neural networks that we trained on deep mutational scanning data to predict

RBD expression and ACE2 binding from sequence, Finally, we used a computational model of

AM to study the antibody response to these antigens. Thus, we identified an immunization

scheme which may produce higher titers against current and potential variants than immuni-

zation with the wildtype (WT) antigen alone. But, such a vaccination scheme produces lower

anti-WT titers than the WT vaccine does, illustrating the fact that a strain-specific vaccine is

generally the most effective at protecting against a particular strain. However, a vaccine that

adequately protects a population when diverse new variants emerge can serve as a shield and

provide time for a strain-specific vaccine to be developed.

Our results also highlight factors that impact titers such as previous exposure to WT antigen

and the fraction of GC-seeding cells that are memory cells generated during past exposure. By

applying the conservation analysis to 12 diverse coronaviruses, we also identify the S2’ cleavage

site and fusion peptide as conserved regions, pointing to a potential target for a pan-coronavi-

rus vaccine.

2 Methods

2.1 Spike conservation

In order to identify conserved and variable residues in coronavirus spike proteins, we lever-

aged both sequence and structural data. Structural data can be used to determine structural

conservation (as described below) in a way that does not strongly depend on the number of

insertions or deletions. Inclusion of structural data has a significant impact on which residues

are considered conserved, as illustrated in S1 Fig. In our method, each residue of the spike was

assigned a conservation fraction ranging from 0 to 1, which was the average of the structural

conservation fraction and the biochemical conservation fraction. An overview of the method

that we use to determine these conservation scores is provided in Fig 1.

2.1.1 Structural conservation fraction. Using the structures for the trimeric spike of vari-

ous coronaviruses (S1 Table), atoms were removed from each trimer so that only a monomer

remained. Thus, the structural conservation fraction was calculated using a monomer rather

than the full trimer, but the monomer retained the conformation that it had in the trimer.

Using the monomer also removes redundant structures and is necessary to construct the struc-

tural sequence alignment because sequence alignments use single proteins. The STRAL-SV

server [35] was used to align these monomeric spike protein structures. The STRAL-SV server

addresses the fact that multi-domain proteins can adopt multiple conformations, such as the

spike protein’s RBD being oriented down in one structure and up in another structure, which
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would have confounded a standard global alignment. In STRAL-SV, a sliding-window

approach divided the monomer structures into overlapping fragments of 90 amino acids, and

structural alignments were performed between the fragments. This process identified residues

across different coronavirus spikes that structurally overlap in the alignment. This structural

alignment process tolerates mutations that maintain backbone structure, as single amino acid

substitutions often do, and it penalizes mutations that alter backbone structure. This data was

used to construct a structure-based sequence alignment. A table is first constructed (see Fig 1)

where the residues of the spike proteins are the rows, the column names correspond to corona-

viruses (such as MHV, HKU1, and HKU2), and the entries of the table are the 20 amino acids

or a placeholder entry of “.” The placeholder entry of “.” means that the coronavirus spike pro-

tein was not able to align at that residue.

The structural conservation fraction was calculated from the structure-based sequence

alignment using a particular coronavirus as a reference. For each residue, the structural con-

servation fraction was the fraction of other coronaviruses that are able to structurally align at

that residue. We illustrate this with an example from Fig 1‘s table, assuming for simplicity that

the first row corresponds to residue 1. If we select residue 1 and MHV as a reference coronavi-

rus, the other coronaviruses are HKU1 and HKU2. Only HKU1 is able to structurally align, so

the structural conservation fraction is 0.5. It is also possible that the reference coronavirus did

not align at the chosen residue, in which case the structural conservation fraction is 0. For

example, consider residue 1 using HKU2 as a reference coronavirus. Since the entry is “.”, then

the structural conservation fraction is 0. Note that Fig 1‘s table is truncated and is shown for

illustration purposes only.

2.1.2 Biochemical conservation fraction from sequence analysis. For each coronavirus,

a set of several hundred spike sequences were collected from the NCBI Protein database and

processed (see SI for details of collection and processing). All coronavirus alignments were

then concatenated together into a single multiple sequence alignment as illustrated in S2 Fig.

The biochemical conservation fraction was calculated from the multiple sequence align-

ment using a particular coronavirus as a reference. For each residue, the biochemical conserva-

tion fraction was the fraction of sequences that have an amino acid in the same class

(hydrophobic, polar, positive, or negative) as the reference coronavirus’s consensus (most

common) amino acid. Thus, this calculation tolerates mutations if they are biochemically

similar.

To illustrate this procedure using S2 Fig, assuming that the first row corresponds to residue

1 for simplicity, suppose we wish to calculate the biochemical conservation fraction of residue

Fig 1. Overview of conservation analysis workflow. Schematic of conservation fraction calculation. Structure analysis

(blue) and sequence analysis (red) are independently carried out and averaged to obtain the final conservation fraction.

https://doi.org/10.1371/journal.pcbi.1010563.g001
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1 using MHV as a reference coronavirus. The consensus amino acid from the MHV alignment

is F, which is a hydrophobic amino acid. The biochemical conservation fraction is the fraction

of amino acids in the first row of the concatenated alignment that are also hydrophobic.

2.1.3 Conservation fraction. The conservation fraction was the average of the structural

conservation fraction and the biochemical conservation fraction. For the design of antigens

that may protect against SARS-CoV-2 variants, only severe acute respiratory syndrome coro-

navirus (SARS-CoV) and SARS-CoV-2 data were considered. Since SARS-CoV and SARS-

CoV-2 are closely related, the threshold conservation fraction below which a residue was iden-

tified as variable was chosen to be 0.99.

For pan-coronavirus vaccine target identification, we considered 12 coronaviruses from

different genera (S1 Table), which constituted an analysis of 12 spike protein structures and

~4000 spike protein sequences. We set a threshold conservation fraction of 0.8, which was cho-

sen because it was the largest value at which we observed a conserved region comparable in

size to an antibody footprint. The footprint size was estimated to be 7.8±0.4 nm2 and was cal-

culated as an average over ten RBD-antibody structures (see SI for details).

2.2 Design of cocktail antigens for protection against SARS-CoV-2 variants

We hypothesized that a cocktail composed of variant SARS-CoV-2 spike sequences can gener-

ate a polyclonal response that protects against variants of SARS-CoV-2. The aim is to generate

a polyclonal response that is composed of strain-specific antibodies that together can protect

against multiple variants. We do not aim to elicit bnAbs that target a particular conserved epi-

tope, as in studies being done in the context of universal influenza and HIV vaccines [22–

25,36–41]. To design antigens that can elicit the desired polyclonal response, we first generated

a list of mutations (with respect to the wildtype Wuhan SARS-CoV-2 sequence) that satisfied

the criteria below. The lists of mutations satisfying each of these criteria are provided at

https://github.com/ericzwang/sars2-vaccine/tree/main/data/cocktail_design_criteria_

mutations.

1. The mutation was in a residue determined to be variable using the calculation outlined in

Section 2.1. The structure and sequence data were restricted to SARS-CoV-2 and SARS,

and the conservation fraction threshold was set to 0.99. SARS-CoV was included because a

calculation exclusively using the structures of SARS-CoV-2 variants and ~300,000 SARS-

CoV-2 sequences classified nearly the entire spike protein as conserved (S3 Fig). In other

words, only a few SARS-CoV-2 mutations have occurred in current SARS-CoV-2 variants,

so we consider residues that are different in SARS-CoV as such mutations have the poten-

tial to emerge because these viruses are closely related. The Omicron variant emerged after

our analyses were completed, but its characteristics support our use of SARS-CoV data. We

considered the 15 RBD mutations in the Omicron variant, and found that 12 out of 15

Omicron RBD mutations are classified as variable residues according to our calculation.

Additionally, all RBD mutations in previous variants (Alpha, Beta, Delta, Gamma) are con-

sidered variable. Therefore, while few SARS-CoV-2 mutations have already emerged, our

choice of including SARS-CoV data appears to be predictive of mutations that may emerge

in the future.

2. The mutation did not significantly decrease RBD stability. This was determined from deep

mutational scanning experiments carried out by Starr et al. [42] that measured the effect of

nearly every single RBD mutation on protein expression, a correlate of protein stability. A

threshold on the change in expression from the WT (expressed as log10(MFI)) was set to

-0.2, which was chosen such that mutations in circulating variants would be considered
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viable. At this stage, multiple-mutation effects were not considered, but they were consid-

ered when the final antigens were evaluated using the expression-prediction neural network

we developed (described in Section 2.3).

3. The mutation did not significantly decrease ACE2 binding. This was determined from deep

mutational scanning experiments [42], which also measured the effects of single mutations

on ACE2 binding. The allowed threshold value of the change in affinity from the WT

(expressed as log10(KD,app) where KD,app was in units of M) was set to -0.2, which was cho-

sen such that mutations in circulating variants would be considered viable. As for protein

expression, multiple-mutation effects on ACE2 binding were evaluated later using the neu-

ral network described in Section 2.3.

4. The mutation significantly abrogated class 1 or class 2 antibody binding. These mutations were

found from various deep mutational scanning experiments over 20 class 1/2 antibodies [43–

47] (S2 Table), in which a mutation’s ability to abrogate binding was quantified as an escape

fraction. In the experiments, many cells are generated which express different RBD sequences,

and there are multiple cells that express the same RBD. The cells are sorted into an antibody-

escape bin based on their inability to bind a fluorescently tagged antibody. The escape fraction

is the fraction of cells expressing a particular RBD that are in the antibody-escape bin. An

escape fraction of 0 indicates that no cells expressing a particular RBD are in the antibody-

escape bin, and a fraction of 1 indicates that all cells expressing that RBD are in the bin. The 34

mutations with the largest mean escape fractions across all antibodies were selected (see SI for

explanation for choosing 34 mutations). Among these 34 mutations, some but not all were also

present in circulating strains. The absence of some escape mutations was due to the low muta-

tion rate of SARS-CoV-2 and the boost in transmissibility provided by certain non-escape

mutations. An example of a prevalent non-escape mutation is N501Y, which first appeared in

the Alpha variant and increased ACE2 binding affinity without significantly affecting antibody

binding. Although some of the 34 escape mutations have not arisen yet, they may arise in the

future as natural and vaccine-induced responses impose selection pressures. So, they were

included in our antigens in order to protect against future variants. Indeed, Q493R, one of the

most significant class 1/2 escape mutations in the Omicron variant, is found among these 34

escape mutations and has not appeared in previous variants of concern. Note again that Omi-

cron emerged after we completed our analyses.

The procedure outlined above resulted in a set of mutations that were in variable residues

and would likely abrogate binding to neutralizing class 1 and 2 antibodies circulating in vacci-

nated and naturally infected persons, and did not diminish ACE2 binding or decrease spike

stability and so would likely be viable viruses. This list of mutations are candidates for inclu-

sion in antigens that may elicit a broadly protective polyclonal antibody response.

Additionally, a survey of ~300,000 SARS-CoV-2 sequences from the GISAID database (see

SI for details of collection and processing) revealed several mutations prevalent in circulating

strains. Among these, 3 mutations (K417T, K417N, and T478K) were the most prevalent

mutations that moderately escape antibodies, but they were not among the 34 mutations with

the largest escape fractions from deep mutational scanning. We can quantitatively compare

the 3 GISAID mutations to the 34 most significant mutations. After rescaling the escape frac-

tions so that the maximum value is 1.0, the 34 most significant mutations have escapes ranging

from 0.09 to 1.0 with an average of 0.26, while the K417T, K417N, and T478K mutations have

lower escape fractions of 0.08, 0.08, and 0.009. Other prevalent mutations from GISAID have

much smaller escapes. Variants emerging in the short term are likely to bear some of these

GISAID mutations because they are phylogenetically related to current variants (indeed,
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Omicron bears K417N and T478K), so these GISAID mutations were also considered. In total,

the list contained 37 mutations split among 10 residues.

Multiple mutations from the list generated using the procedure described above were spa-

tially close together on the RBD. The neural networks in Section 2.3 were trained using RBDs

with spatially separated mutations (mean and standard deviation of distances between muta-

tions were 2.47 nm and 0.76 nm respectively). Because of this, making nearby mutations on

the same RBD was undesirable as it could lead to coupled effects affecting ACE2 binding or

RBD stability which are not accounted for using the neural networks. In order to make our

designed sequences more closely resemble the training data, we grouped the mutated residues

such that the residues within a group would be maximally separated in space on the RBD. To

accomplish this, we divided the 10 mutated residues into all possible combinations of 2 groups

of 5 residues, and our goal was to select the combination with the maximum separation

between residues. This was accomplished as follows:

1. For a particular combination of two groups, two numbers, V1 and V2, were calculated. To

determine V1, consider the 5 residues in the first group positioned on the structure of the

RBD. The centers of mass of the 5 residues formed a polygon, and the volume of that polygon

was V1. Similarly, the volume of the polygon formed by the residue centers of mass of the sec-

ond group was V2. The polygons were calculated using the ConvexHull utility in SciPy [48].

2. The combination was assigned a score, which was calculated as the minimum of V1 and V2

(min (V1, V2)).

3. From all possible combinations, the combination with the largest value of min (V1, V2) was

chosen. Selecting the score as min (V1, V2), instead of V1+V2, avoided choosing cases with

severe imbalance between the groups, which may have deleteriously impacted the stability

of half of our antigens.

For each of the two groups thus selected, we generated 3 sequences with 5 mutations per

sequence. Since there are 2 groups, there are 6 sequences total. For each residue, the amino

acid mutations were chosen starting from those with the largest escape fractions (thus, those

that escape antibodies most). However, the mutations were also chosen such that the amino

acids were dissimilar. This means that a potential mutation of the same class (hydrophobic,

polar, positive, negative) as a previously selected mutation was not chosen unless such dissimi-

lar mutations were not available. For example, if the mutation with the largest escape fraction

at residue 490 was F490K, then the first sequence used F490K. For the second sequence, the

mutation with the second-largest escape fraction at residue 490 was F490R. But, F490R was

skipped because R and K are biochemically similar amino acids. The second sequence then

moved to the mutation with the third-largest escape fraction, which was F490E, and this muta-

tion was used because E is not biochemically similar to K. This process repeated for the third

sequence and then moved on to another residue. After all 5 residues in the first group were

thus examined, the process was repeated for the 5 residues in the second group.

Since our antigen design method relied on deep mutational scanning experiments that only

studied RBD substitutions, insertions or deletions in the RBD and mutations outside the RBD

were not considered.

2.3 Neural network-based prediction of RBD expression and ACE2 binding

affinity

The published data for selecting stable mutations was based on single mutation effects [42],

but the designed sequences possessed 5 mutations each. Therefore, it was not known whether
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the designed sequences were still stable or maintained ACE2 binding. We noted that the deep

mutational scanning experiments provided two datasets–one with measured changes in

expression compared to WT for multi-mutant RBDs, and another with measured changes in

ACE2 binding affinity (data found at https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS/

blob/master/results) compared to WT for multi-mutant RBDs. After removing sequences with

no mutations or missing labels, the expression dataset contained ~169,000 mutants with 1–7

mutations, and the binding affinity dataset contained ~135,000 mutants with 1–7 mutations.

For the expression dataset, every sequence was one-hot encoded for the 20 amino acids, with

unmutated residues represented by a zero vector. This one-hot encoding matrix was element-wise

multiplied with a matrix of the single-mutation expression changes to yield a final matrix termed

the expression matrix. In one approach, single-mutation effects were assumed to be additive, and

the overall change in expression was the sum of the expression matrix. By training a neural net-

work on the dataset, additivity of single-mutations effects did not need to be assumed. The net-

work architecture is illustrated in Fig 2. In this approach, the expression matrix was passed into a

1D convolutional layer (32 filters, kernel size 3, same padding, and ReLu activation), a max pool-

ing layer (pool size of 2, stride of 1, and same padding), a 1D convolutional layer (16 filters, kernel

size 3, same padding, and ReLu activation), a max pooling layer (pool size of 2, stride of 1, and

same padding), a flatten layer, a dense layer (64 neurons, ReLu activation), another dense layer

(32 neurons, ReLu activation), and an output layer of 1 neuron. A feed-forward network was also

tested, in which the convolutional and pooling layers were replaced by a dense layer (1024 neu-

rons, ReLu activation), to assess sensitivity to network architecture.

We performed 10-fold cross validation with a 90% train, 5% validation, and 5% test split.

Optimization used Adam, a learning rate of 0.001, a batch size of 100, a mean-squared error

loss, up to 100 epochs, and early stopping on the validation set with a patience of 3. The model

was implemented using Keras version 2.4.0 [49] with the TensorFlow version 2.3.1 backend

[50]. We calculated the test-set Pearson correlation coefficient on the change in expression.

The same approach was used to train a separate network that predicted changes in ACE2

binding affinity. The only differences were that the binding affinity network was trained using

the binding affinity dataset rather than the expression dataset, and the input matrix was the

binding affinity matrix instead of the expression matrix. The neural networks were then used

to predict the expression and ACE2 binding properties of our designed antigens.

2.4 Modeling affinity maturation upon immunization with designed antigens

We simulated the processes that occur during AM using a coarse-grained stochastic model in

order to study how antibodies develop in response to immunization with our designed

Fig 2. Overview of neural network architecture. Neural network architecture used to predict overall expression or ACE2

binding affinity. The input is either an expression or binding affinity matrix, which is the element-wise product of the one-hot

encoded RBD sequence and the matrix of single-mutation changes. The output is the overall expression or binding affinity.

https://doi.org/10.1371/journal.pcbi.1010563.g002
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antigens. The goal of these simulations was not to make quantitative predictions, but rather to

qualitatively compare different antigen formulations and also understand the underlying

mechanisms for the differences. Thus, we aimed to choose the best antigens in a vaccine based

on a mechanistic understanding of the GC processes they elicit. An overview of the model is

illustrated in Fig 3. This model builds on our past work modeling the affinity maturation

response to variant antigens [22–24].

2.4.1 Binding free energy representation. The BCR paratope and antigen epitope were

each represented by a vector of residues. Both the paratope and epitope were 50 residues long,

a length which was chosen based on the number of residues in the class 1 and class 2 epitopes

[34,51–53]. For antibodies that did not have the epitope residues reported, the residues were

found from the RBD-antibody structure using the PISA server [54–56]. This procedure allows

identification of RBD residues at the RBD-antibody interface with buried surface areas greater

than 0 Å2. In order to choose residues that were consistently part of the class 1 or class 2 epi-

tope, only residues that were bound by 3 or more class 1 or class 2 antibodies were included.

Using the conservation analysis described above, 9 of the 50 residues had conservation frac-

tions above 0.99 and were assigned as conserved. The remaining 41 residues were assigned as

variable.

For a seeding B cell, each residue, k, was associated with a number PAR(k), which was ini-

tially sampled from a uniform distribution between -0.18 and 0.90. After AM began, the value

of PAR(k) changed due to mutations, and the bounds on these values were -1 and 1.5. The epi-

tope residues were represented by a number EPI(k), with values of +1 for WT residues and

negative values for mutated residues depending on how biochemically different the mutated

residue is from the WT. For a mutation in the same class (such as hydrophobic to hydropho-

bic), the epitope residue was -1. For a mutation from hydrophobic to polar, polar to charged,

or vice-versa, the epitope residue was -2. For a mutation from hydrophobic to charged or vice-

versa, the epitope residue was -3. For a mutation from positively charged to negatively charged

or vice-versa, the epitope residue was -4. To illustrate the construction of the epitope vector,

we will use the Delta variant, which is defined using the mutations L452R and T478K, as an

example. L452R is a hydrophobic to positive mutation (corresponding to a value of -3), and

Fig 3. Overview of the affinity maturation model. (a) Schematic of AM within a GC. Activated B cells first undergo

expansion and somatic hypermutation (SHM), and then they undergo selection based on their ability to bind and

internalize antigen presented on FDCs and receive T cell help. A small fraction of positively selected B cells exits as

antibody-secreting plasma cells and memory cells. The others undergo another round of mutation and selection. This

cycle repeats until a termination condition is met. (b) Schematic of seeding new GCs upon new immunizations. For

the first immunization, the seeding cells come solely from naive B cells. For subsequent immunizations, seeding cells

come from both the naive and memory cell populations, and newly generated memory cells join the memory cell

population. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1010563.g003
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T478K is a polar to positive mutation (corresponding to a value of -2). Therefore, one residue

of the epitope vector will have a value of -3, another will have a value of -2, and the remaining

residues will have values of +1. The order of the residues does not matter in our simple model.

Additionally, if the mutated residues are scaled by a factor of 0.5, meaning that the L452R and

T478K mutations correspond to values of -1.5 and -1, then the results of the model do not

change (S4 Fig).

The binding free energy was calculated according to

E ¼
X

k

PAR ðkÞ�EPI ðkÞ ð1Þ

where PAR(k) was the paratope residue at position k and EPI(k) was the epitope residue at

position k. Essentially, the binding free energy is a dot product between the paratope and epi-

tope vectors. Larger values of E corresponded to stronger binding. This coarse-grained repre-

sentation of the binding free energy was not based on structural considerations and had

limitations: (1) the contribution of each residue to the binding free energy was weighted

equally; (2) the order of the residues did not matter; (3) only RBD substitutions could be con-

sidered; (4) biochemically similar mutations were treated equivalently. The first limitation,

that each residue is weighted equally, is a particularly significant assumption since it is known

that certain residues more easily abrogate binding upon mutation than others [46]. The effect

on our model is that our estimates of the potency of antibody responses to variants are likely to

be conservative. Weighting all residues equally enables the virus to evade the response more

easily because mutations at all sites, rather than a few, can abrogate binding. Additionally, we

considered the possibility of reweighting residues according to their experimentally measured

escape fractions. Such an approach is not appropriate because the escape fractions were mea-

sured using antibodies generated from WT infection, but our vaccine will generate different

antibodies corresponding to different escape fractions. Reweighting the residues would then

lead to binding free energies that are inaccurately biased toward WT escape residues. For this

reason, we believe that our approach of equally weighting residues is more conservative.

That said, we emphasize that this limited representation of the binding free energy is not

quantitative and is not meant to accurately reproduce experimental values. Rather, it is a quali-
tative tool meant to facilitate comparison between different antigens and obtain mechanistic

insights into AM when used with the rest of the model. The utility of this approach has been

demonstrated in previous work, which used a very similar model to provide insights into anti-

body evolution against HIV antigens that were then validated in animal models [22,39,57].

2.4.2 B cell expansion and mutation in the dark zone. Upon initial immunization, 10

naive B cells seeded a new GC. Increasing the number of seeding cells does not change our

qualitative results (S5 Fig). The B cells then expanded without mutation or selection until the

population reached 5120 cells. In AM, activation-induced cytidine deaminase (AID) intro-

duces somatic hypermutations (SHMs) into the BCR. This was modeled by mutating the para-

tope residues at a rate of 0.14 per sequence per division (B cells divided twice per GC cycle).

SHMs had a 0.5 probability of being lethal, 0.3 probability of being silent, and 0.2 probability

of modifying the binding free energy [58]. For mutations that modified the binding free

energy, a random residue on the paratope was chosen, and the change in binding free energy

for that residue was sampled from a shifted log-normal distribution:

DE ¼ � � expðmþ srÞ and � d < DE < d ð2Þ

where r was a standard normal random variable, � was a shift parameter, μ was the mean of the

log-normal distribution, σ was the standard deviation of the log-normal distribution, and δ
limited the maximum ΔE. We used the same parameters as Sprenger et. al (� = 3, μ = 1.9, σ =
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0.5, δ = 1), which were set to match experimental distributions of changes in binding free ener-

gies between proteins due to single-residue mutations [59].

2.4.3 Selection in the light zone. In the light zone of the GC, B cells underwent selection

based on their binding affinity to antigen. First, each B cell had a probability of successfully

internalizing antigen according to

Pinternalize ¼

X

i
cie

escaleðEi � EactÞ

1þ
X

i
cie

escaleðEi � EactÞ
ð3Þ

where i was a sum over all antigens that the B cell encounters, ci was the concentration of anti-

gen i, Ei was the binding free energy to antigen i, Eact was a reference free energy, and escale was

a scaling parameter. We used the same parameters as Sprenger et. al (escale = 0.08, Eact = 9kbT).

For a particular immunization scheme, the concentration that produces the highest antibody

titers was chosen. The sum in Eq 3 did not apply for WT doses that only contain a single anti-

gen. For cocktails, Pinternalize depended on whether the B cell encounters one antigen at a time

or all antigens on the FDC. If the B cell encountered one antigen at a time in each cycle, then a

random antigen was chosen, and there was no summation. If the B cell encountered all anti-

gens during each cycle, then the sum included all antigens i. In any given cycle, a B cell has a

few chances to be positively selected. So, if the antigen concentration on FDCs is sufficiently

high, then the sum over all antigens is likely to be more realistic.

B cells that did not internalize antigen underwent apoptosis and were removed from the

population, while B cells that internalized antigen competed for T cell help. To model T cell

selection if B cells encountered one antigen per cycle, the B cells were ranked according to

their binding free energy to the encountered antigen in the last cycle, and the top Fcut,help frac-

tion were positively selected. If B cells instead encountered all antigens per cycle, then the

binding free energy ranking was based on all B cell–antigen pairs. The top Fcut,help fraction of

pairs were selected, and each B cell survived with a probability equal to the frequency that it

appeared in the top Fcut,help pairs. For example, suppose there are 6 antigens and thus 6 B cell–

antigen pairs for a particular B cell. If there are 5000 B cells, then there are 30,000 possible B

cell–antigen pairs in total. If 4 of the B cell–antigen pairs are in the top Fcut,help�30,000 pairs,

then that B cell survives with a probability of 4

6
. Following Sprenger et. al, we set Fcut,help = 0.7.

2.4.4 Recycling, exit, GC reaction termination, and seeding a new GC. Following

Sprenger et. al, positively selected B cells had a 0.7 probability of being recycled for subsequent

cycles and a 0.3 probability of exiting the GC as either a plasma or memory cell. The GC reac-

tion stopped if the B cell population exceeded the initial population of 5120 cells, if the number

of cycles exceeded 250, or if all B cells died. The first condition is a proxy for the B cells inter-

nalizing all the antigen, the second is a proxy for antigen decay over time, and the third is GC

extinction. Sprenger et al. set these parameters, along with the parameters from Section 2.4.3

and the bounds on paratope residues from Section 2.4.1, so that a simulation of single-antigen

immunization matches experimentally measured GC dynamics of single-antigen immuniza-

tion [60]. Upon a second immunization, a new GC was seeded using 10 B cells, which were a

mixture of memory and naive cells. The fraction of memory cells was 1 (all memory cells),

except in Section 3.2.4 where we studied the effect of varying this fraction.

2.4.5 Titer calculation. The B cell population at the end of each GC reaction was analyzed

for antibody titers. Identical B cells were grouped together as clones, and the binding free

energy against an antigen sequence was calculated for each clone. The antibody titer was the

total number of B cells that bind to the antigen with a free energy above Eth = 17 kbT. Since the

binding free energy representation is based on the class 1 and 2 epitopes, the titer calculated

here theoretically corresponds to neutralizing antibody titer. While the titers quantitatively
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depended on Eth, the rank order of titers for different immunization schemes that we studied

did not. So, the qualitative results did not depend on Eth (S6 Fig). The simulation was carried

out N = 200 times, and the average antibody titer for antigen i was calculated as

titer ¼
1

N

XN X

clone j

size ðjÞ�HðEi
j � EthÞ ð4Þ

where size(j) was the number of B cells belonging to clone j, and H represents the step function.

Error bars were standard deviations across 10 sets of N simulations. The titers thus obtained

may be considered to represent the titers generated on average in a typical vaccinated person.

This model only considered titers upon completion of each GC reaction. In reality, the titers

would be defined by the plasma cells exiting the GC secreting antibodies continuously during

the GC reaction. We carried out simulations where plasma cells producing antibodies are con-

tinuously exported during the GC reaction, and the qualitative results remain the same (S7 Fig).

2.4.6 Mean panel titer calculation. To analyze the coverage provided by antibodies

against multiple different antigens, the binding free energy of each B cell clone with a test

panel of 100 antigens was calculated. Increasing the panel size to 1000 antigens did not change

the results (S8 Fig). The antibody titer against each panel antigen was calculated, and the mean

panel titer was the mean titer across all 100 panel antigens.

Mean panel titers for several antigen panels were calculated. In the most general panel, resi-

dues took values of either +1 or -1, and the probability that the residue is +1 was the conserva-

tion fraction. This panel produced almost always resulted in mean panel titers of 0 because the

panel antigens had too many mutations at the same time, which are unlikely to emerge in a

variant antigen. So, we instead considered panels in which the antigens are restricted to Nmut

mutations and varied Nmut. We considered cases in which the Nmut mutations occur in any

variable residue and in which the mutations only occur in the 10 residues that are also mutated

in the designed antigens. We also considered panels in which mutated residues take on differ-

ent values (-1, -2, -3, and -4).

3 Results

3.1 Designed antigens are stable and maintain ACE2 binding based on

neural network predictions

Using our conservation analysis on SARS-CoV and SARS-CoV-2 spike proteins and applying

the process described in Section 2.2, we obtain the final antigens shown in Table 1. When we

Table 1. RBD substitutions, changes in expression, and changes in ACE2 binding affinity (calculated using the neural networks) for designed antigens and circulat-

ing variants.

Antigen RBD substitutions Change in expression from WT Change in ACE2 binding affinity from WT

Sequence 1 K417F V483R F486P F490Q S494K -0.12±0.04 -0.28±0.07

Sequence 2 K417H V483K F486P F490E S494R -0.09±0.05 -0.53±0.14

Sequence 3 K417Y V483E F486P F490K S494P -0.07±0.05 -0.18±0.05

Sequence 4 L452R T478K E484N Q493K N501A -0.06±0.03 +0.01±0.27

Sequence 5 L452W T478K E484R Q493R N501A -0.13±0.03 -0.20±0.07

Sequence 6 L452E T478K E484K Q493R N501A -0.11±0.03 -0.15±0.06

Alpha Variant N501Y -0.11±0.02 -0.18±0.06

Beta Variant K417N E484K N501Y -0.08±0.02 -0.36±0.08

Delta Variant L452R T478K -0.01±0.02 +0.21±0.23

Gamma Variant K417T E484K N501Y -0.06±0.04 -0.42±0.12

https://doi.org/10.1371/journal.pcbi.1010563.t001
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trained a neural network on a dataset of ~169,000 mutant RBDs with measured expressions,

we obtained a correlation of 0.94±0.01 between measured and calculated values. If the overall

change in expression is assumed to be the sum of the single mutation effects, the correlation is

instead 0.79±0.01. A separate network trained on a dataset of ~135,000 mutant RBDs to pre-

dict ACE2 binding affinity achieves a correlation of 0.97±0.01, compared to 0.78±0.01 for the

additive assumption. Thus, while the additive assumption is correlated to the overall change in

expression or binding, using network models offers a significant benefit. The convolutional

layers are not essential as a feed-forward network alone is also able to achieve correlations of

0.94±0.01 and 0.97±0.01 on expression and ACE2 binding prediction.

Since these neural networks achieve high correlations on test sets, we compared the pre-

dicted expressions and binding affinities for our designed antigens to several circulating vari-

ants (Table 1). None of the designed antigens significantly decrease expression or ACE2

binding affinity more than the corresponding most deleterious circulating variants (Alpha for

expression and Gamma for ACE2 binding). Since these circulating variants produce viable

virions, we conclude that, upon immunization, our designed antigens would generate immune

responses that were relevant for viable viral mutants that may emerge in future. Indeed,

although our antigens were designed prior to the appearance of the Omicron variant, muta-

tions in residues 417, 478, 484, 493, and 501 are shared between our designed antigens and the

Omicron variant. Residue 493 is particularly notable because it was not mutated in previous

variants and is one of the most significant escape residues for evading class 1 and 2 antibodies.

3.2 Modeling the affinity maturation response to antigens

We then used our computational model of AM to study how antibodies develop in response to

our antigens as well as the WT spike protein. The goals were to identify vaccination schemes

using our antigens that may be best at protecting against variants compared to vaccination

with the WT spike alone, and to get mechanistic insights into the pertinent AM processes.

3.2.1 Reduced titers against SARS-CoV-2 variants following WT immunization. We

simulate AM following one WT immunization, which models infection or one vaccine dose,

and two WT immunizations, which models two vaccine doses or infection followed by one

vaccine dose. In Fig 4A, the anti-WT titers are high for one immunization (blue bars in various

panels) and even higher for two immunizations (orange bars in various panels). In contrast,

the titers against variants are reduced depending on the mutational distance between the vari-

ant and WT. For example, following two WT immunizations, anti-Beta/Gamma titers are

reduced ~6-fold relative to anti-WT titers, anti-Delta titers are reduced ~2.5-fold, and anti-

Alpha titers are nearly equivalent to anti-WT titers. This is due to the mutational distances of

these variants as the Beta and Gamma variants have 3 RBD substitutions, the Delta variant has

2 RBD substitutions, and the Alpha variant has 1 RBD substitution. This also recapitulates

experimental data demonstrating that the Alpha variant minimally reduces neutralizing titers

while Beta, Delta, and Gamma significantly reduce titers [1,2,4–6,61–65]. These studies report

differences between anti-Beta and anti-Gamma titers due to the importance of specific muta-

tions or mutations outside of the RBD, but this coarse-grained model is not structurally

detailed enough to recapitulate those differences.

3.2.2 Titers are higher for immunization with a cocktail of designed antigens than WT

and depend on the choice of antigens in the cocktail. We then used our model to identify

an optimal immunization scheme with our 6 designed antigens. We simulated a single immu-

nization with all 6 antigens (Seq1-6), two immunizations with all 6 antigens (Seq1-6 | Seq1-6),

a single immunization with sequences 1–3 (Seq1-3) and an immunization of sequences 1–3

followed by an immunization with sequences 4–6 (Seq1-3 | Seq4-6). We assume that the
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antigens are homogeneously distributed on the FDCs at high concentrations, so a B cell

encounters all antigens in each cycle, but assuming that a B cell encounters one antigen in

each cycle does not affect the results (see SI for details). The titers are reported in Fig 4A using

different colored bars.

For anti-WT titers, WT immunizations provide greater protection than cocktail immuniza-

tions, which is expected because the cocktail antigens are mutated from the WT. However, the

boosted cocktails (Seq1-6 | Seq1-6 and Seq1-3 | Seq4-6) still retain moderately high titers

against WT, indicating that they may still be protective. The immunizations that start with

Seq1-3 (Seq1-3 and Seq1-3 | Seq4-6) have slightly higher anti-WT titers than the analogous

Fig 4. Titers against certain variants are low following WT immunization but high following cocktail

immunizations with designed antigens. (a) Titers against WT and variants following different WT or cocktail

immunization schemes. Sequences 2 and 3 are similar to sequence 1, so they are omitted for clarity. Sequences 5 and 6

are also omitted because they are similar to sequence 4. Beta and Gamma variants carry biochemically similar RBD

mutations, so they are equivalent in this model. (b) Mean panel titers as a function of the number of mutations in panel

antigens for different immunization schemes. Two types of panels are considered: one in which panel antigens can be

mutated in any variable residue (All variable residues), and one in which panel antigen mutations can only occur in the

10 residues that are also mutated in sequences 1–6 (Seq1-6 mutated residues). It is possible for the panel antigens to

have more mutations than in sequences 1–6, which have 5 mutations each. For example, for n = 8, every panel antigen

has 8 mutations among the 10 residues that were mutated in the designed antigens.

https://doi.org/10.1371/journal.pcbi.1010563.g004
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immunization starting with Seq1-6 (Seq1-6 and Seq1-6 | Seq1-6). This is because the antigens

in Seq1-6 are mutated across 10 residues while the antigens in Seq1-3 are mutated across 5 res-

idues, so the antibodies resulting from immunization with Seq1-3 will have more residues that

resemble the WT sequence (more positive in the model). Since more positive residues

increases the binding free energy with WT antigen, immunization with Seq1-3 results in

higher anti-WT titers. The Alpha variant is similar to the WT, so the same reasoning applies to

anti-Alpha titers.

Anti-Seq1 titers are low following WT immunization because sequence 1 contains numer-

ous mutations. Seq1-6 immunization produces lower anti-Seq1 titers than Seq1-3 immuniza-

tion because sequences 2 and 3 contain mutations in the same residues as sequence 1 while

sequences 4–6 contain mutations in different residues from sequence 1. However, immuniza-

tion with Seq1-6 | Seq1-6 versus Seq1-3 | Seq4-6 are nearly equivalent in anti-Seq1 titers. This

is because the anti-Seq1 antibodies provided by the boost with Seq1-6 are much greater than

the anti-Seq1 antibodies provided by the boost with Seq4-6, which compensates for the lower

anti-Seq1 antibodies generated by priming with Seq 1–6 compared to Seq 1–3.

Anti-Seq2 and anti-Seq3 titers showed similar results to anti-Seq1 titers, so they are omitted

for brevity. These titers are similar, even though sequence 2 and 3 have different mutations

from sequence 1, because the mutations are in the same residues. Parenthetically, this phe-

nomenon of titers mostly depending the site of mutation rather than the actual mutation is

observed to some extent in experimental data, as escape residues often can abrogate antibody

binding through numerous possible mutations [44], but there are some cases of biochemically

similar mutations differentially affecting antibody binding. Our finding noted above illustrates

the qualitative, but not quantitative, nature of our model.

For anti-Seq4 titers, immunization with Seq1-6 produces higher titers than immunization

with Seq1-3 because sequences 1–3 are all mutated in different residues from sequence 4.

Immunization with Seq1-6 | Seq1-6 produces higher anti-Seq4 titers than immunization with

Seq1-3 | Seq4-6, which is somewhat unexpected because one might expect that a boost with

Seq4-6 would produce higher anti-Seq4 titers than a boost with Seq1-6. The origin of this

result is that, because Seq 4–6 are very different from Seq 1–3, the memory B cells produced by

priming with Seq 1–3 are poorly adapted to Seq 4–6. Therefore, the boost with Seq4-6 results

in many memory B cells in the secondary GC dying (S9 Fig), which reduces the anti-Seq4 titer

from the boost. Similar to how anti-Seq2 and anti-Seq3 titers are similar to anti-Seq1 titers,

anti-Seq5 and anti-Seq6 titers are similar to anti-Seq4 titers and are not shown for brevity.

For anti-Beta/Gamma and anti-Delta titers, cocktail immunization universally produces

higher titers than WT immunization with the same number of immunizations (e.g. Seq1-6 is

higher than WT and Seq1-6 | Seq1-6 is higher than WT | WT). The titers resulting from immu-

nizations with different cocktails are roughly equivalent, such as the titers resulting from Seq1-

6 | Seq1-6 versus Seq1-3 | Seq4-6.

Fig 4B shows the mean panel titer as a function of the number of mutations in the panel

antigens from immunization with WT and cocktails. Mutated residues change from 1 to -4,

which is chosen because the vaccine should ideally protect against emergent strains with bio-

chemically dissimilar mutations. Using values such as -3, -2, or -1 instead of -4 does not change

the qualitative results (S10 Fig). If the panel mutations occur in any variable residue (Fig 4B,

left panel), then the mean panel titer decreases at a similar rate for the cocktails as for the WT

immunization. This is because there are few conserved residues, so the contribution of con-

served regions to the binding free energy is not sufficient to generate bnAbs that can protect

against strains bearing many mutations at other residues. This is consistent with experiments

showing that few antibodies targeting class 1 or class 2 epitopes of the RBD are broadly protec-

tive against all single RBD substitutions [46] let alone those bearing multiple such mutations.
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We next studied whether immunization with our designed antigens can protect against

panels of variants with mutations only in the residues that are also mutated in the designed

antigens (Fig 4B, right panel). Note that the actual amino acids at the 10 residues can be differ-

ent from those in our designed antigens. In this case, the mean panel titers do not significantly

drop for immunization with Seq1-6 and Seq1-6 | Seq1-6. That is, vaccination using these

schemes protects against variants with up to 10 mutations in particular variable residues. The

mean panel titers for Seq1-3 | Seq4-6 do drop as the number of mutations increases, but less so

than WT immunization. These results suggest that Seq1-6 | Seq1-6 may be an effective immu-

nization scheme that could protect against current variants and some that may emerge in the

future.

3.2.3 Titers against variants depend on previous exposure to WT and the number of

mutations in the variant. Many individuals have been previously exposed to WT SARS-

CoV-2 either through vaccination or natural infection, which might affect the antibody

response generated upon immunization with a cocktail of our designed antigens. This is

because memory B cells generated during prior exposure may compete with naïve B cells that

seed GCs. To study this process, we use our model to predict antibody response given previous

WT immunizations. Fig 5 graphs antibody titer as a function of the number of previous immu-

nizations with WT for different immunization schemes. Although naive cells are likely

involved in seeding new GCs in vivo [66], here we assume that only memory cells seed new

GCs to maximally illustrate the effects of memory. Section 3.2.4 studies the effect of including

naive cells.

First, we compare WT versus WT | WT and WT | WT | WT immunization as well as cock-

tail versus WT | cocktail and WT | WT | cocktail immunization. Intuitively, anti-WT and anti-

Alpha titers steadily increase as the number of previous immunizations with WT increase.

However, titers against variants with numerous mutations are not always higher for WT |

cocktail and WT | WT | cocktail compared to just cocktail immunization. For example, the

anti-Seq1 titers decrease from 0 to 1 previous WT immunization for Seq1-6 | Seq1-6 and Seq1-

3 | Seq4-6. This is because the mutational distance between the previous WT immunizations

and the cocktails induces GC extinction, thereby limiting antibody development. Nonetheless,

the decrease is not large even though GCs are seeded entirely by memory cells.

Fig 5. Titers against variants are affected by previous WT immunizations. Titers against various antigens (indicated

in panel title) as a function of the number of previous WT immunizations. Sequences 2 and 3 are similar to sequence 1,

so they are omitted for clarity. Sequences 5 and 6 are also omitted because they are similar to sequence 4. Beta and

Gamma variants carry biochemically similar RBD mutations, so they are equivalent in this model.

https://doi.org/10.1371/journal.pcbi.1010563.g005
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Next, we compare WT followed by WT immunization versus WT followed by cocktail

immunization (for example, WT | WT versus WT | cocktail). For variants with numerous

mutations, immunization with the cocktails after the first exposure to WT show higher titers

than boosting with WT. For example, anti-Seq1 and anti-Seq4 titers are significantly higher in

the WT | Seq1-6 | Seq1-6 and WT | Seq1-3 | Seq4-6 immunizations than the WT | WT immu-

nization. This is because Seq1 and Seq4 each have numerous mutations, so the WT immuniza-

tions are not protective against Seq1 and Seq4. Anti-Delta, anti-Alpha, and anti-WT titers are

higher for WT | WT immunization than WT | cocktail immunization because of the low num-

ber of mutations in these variants. Since the Beta and Gamma variants have more mutations

than the Delta and Alpha variants, the anti-Beta/Gamma titers are equivalent between WT |

cocktail and WT | WT immunizations.

3.2.4 Sequential immunization of WT and cocktail produces significantly higher titers

against current variants than sequential immunization of WT and WT when naive B cells

also seed new GCs. Anti-Beta/Gamma and anti-Delta titers are not higher for cocktail

immunizations compared to WT immunizations under specific conditions (assuming 1–2 pre-

vious immunizations with WT have been given and new GCs are seeded entirely by memory

cells). However, if naive cells also seed GCs, then the titers for cocktail immunization following

immunizations with WT become significantly higher. Illustrating this, Fig 6 shows titers as a

function of the memory cell fraction given 2 previous WT immunizations. At a memory cell

fraction of 0.5, anti-Beta/Gamma titers are around 10 to 15-fold higher for cocktail immuniza-

tions than WT immunizations. This is a large difference compared to the memory cell fraction

of 1, where the titers are nearly equivalent, suggesting that cocktail immunization is less sensi-

tive to the memory cell fraction. Also, it is noteworthy that decreasing the memory cell fraction

decreases the rank orders of the WT | WT | WT and WT | WT | WT | WT immunizations,

while the rank orders of the WT | WT | cocktail immunizations are preserved. The reason for

this phenomenon is as follows: in the WT | WT | cocktail immunization, the WT and cocktail

antigens are sufficiently different so that naïve cells can better develop against Beta and

Gamma variants than in the WT | WT | WT immunization. Thus, decreasing the memory cell

fraction (increasing naïve cell fraction) increases the difference between WT | WT | cocktail

immunization and WT | WT | WT immunization. A similar, but less pronounced, effect

occurs for anti-Delta titers, as the titers resulting from WT | WT | cocktail immunization are

around 1.5 to 2-fold higher than WT | WT | WT immunization. This decrease occurs but is

less pronounced for anti-Delta titers because the Delta variant has 2 RBD mutations whereas

the Beta and Gamma variants have 3 RBD mutations.

3.3 The S2’ cleavage site is structurally conserved and is a potential pan-coronavirus

vaccine target. Finally, we shift our focus from the designed RBD antigens and consider the

problem of identifying a suitable target for a pan-coronavirus vaccine. To identify a pan-

Fig 6. Titers against current variants are affected by the fraction of GC-seeding cells that are memory cells. Titers

against Beta/Gamma and Delta variants as a function of the fraction of GC-seeding cells that are memory cells. Beta

and Gamma variants carry biochemically similar RBD mutations, so they are equivalent in this model.

https://doi.org/10.1371/journal.pcbi.1010563.g006
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coronavirus vaccine target, we used the method outlined in Section 2.1 to calculate spike con-

servation across 12 coronaviruses from different genera. Fig 7A illustrates conservation using a

threshold fraction of 0.8. None of the coronaviruses are conserved in the RBD with respect to

all other coronaviruses, which is simply because different coronaviruses bind different recep-

tors. For example, SARS-CoV-2 and SARS-CoV both bind to ACE2, leading them to have sim-

ilar RBDs, while the MERS RBD is different because it binds to DPP4 (S1 Table).

In contrast to this, the S2 domain of the spike possesses residues that are structurally con-

served across many coronaviruses. In particular, 9 out of 12 of the coronaviruses share a con-

served region of residues in the S2 subunit despite coming from diverse lineages (the residues

in this region are provided in S3 Table). For example, SARS-CoV-2 and IBV both share this

conserved region even though SARS-CoV-2 is a betacoronavirus that infects humans and IBV

is a gammacoronavirus that infects birds.

We also considered different weights between the structural conservation fraction and the

biochemical conservation fraction in S11 Fig. The effect of decreasing the structural conserva-

tion fraction weight makes some individual residues in the RBD become classified as con-

served, which is because the variability across RBD structures is diminished. Nonetheless, the

conserved patch in the S2’ site is always visible, even when the structural conservation fraction

weight drops to 0.25.

These residues are conserved in many coronaviruses because they overlap with the S2’

cleavage site and fusion peptide (Fig 7B). Following S1/S2 cleavage, further cleavage at the S2’

Fig 7. A conserved epitope in the S2 domain overlaps the S2’ cleavage site and fusion peptide. (a) Spike protein

structures colored by conservation fraction using each coronavirus as a reference. Green residues have conservation

fractions above 0.8, blue residues have conservation fractions below 0.8 and are not in the RBD, and red residues have

conservation fractions below 0.8 and are in the RBD. (b) Spike structure colored by conservation fraction using

SARS-CoV-2 as a reference. The residues corresponding to the S2’ cleavage site and fusion peptide are outlined in

yellow. This structure is shown in a separate panel in order to avoid covering up some residues with the outline.

https://doi.org/10.1371/journal.pcbi.1010563.g007
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site facilitates the release of the fusion peptide, which fuses the viral and host membranes so

that the virus can infect the cell. Since the cleavage site and fusion peptide are functionally

important, they must be conserved. It follows that if the virus is subject to evolutionary pres-

sure by S2’-targeting antibodies, it is more difficult to develop escape mutations because poten-

tial mutations must also preserve S2’ site function.

Lastly, enzymes such as furin, TMPRSS2, and cathepsin [67–69] must be able to access

cleavage sites, which means that the cleavage sites are exposed and accessible to proteins. Fur-

thermore, this limits the virus’s ability to develop spike densities that sterically hinder antibod-

ies from accessing the S2’ site. Electron tomography estimates that SARS-CoV-2 virions have

25–127 spikes and a diameter of 80 nm [70]. Even at the dense estimate of 127 spikes, this pro-

duces a density of 0.6 spikes per 100 nm2, which is half as dense as influenza (1.2 spikes per

100 nm2) [25,71]. Thus, compared to the broadly neutralizing epitope on the stem of the influ-

enza hemagglutinin spike, from a steric point of view, generating antibodies to the stem of the

coronavirus spike may be more feasible. Taken together, these attributes suggest that targeting

the S2’ site could serve as a potential pan-coronavirus vaccine strategy.

4 Discussion

SARS-CoV-2 has evolved variants within a few years since its emergence. Current vaccines

that immunize with the WT spike show reduced efficacy for some of these variants, especially

the Omicron variant. This suggests that vaccines that can protect against multiple variant

strains are becoming increasingly important. However, while SARS-CoV-2 is mutable, it is less

so than influenza and HIV. Therefore, while universal vaccines against influenza and HIV

largely focus on redirecting antibody responses to elicit bnAbs that target conserved regions

only, such an approach may not be necessary to protect against SARS-CoV-2 variants. Target-

ing conserved regions may have disadvantages as well, as antibodies targeting the conserved

class 4 RBD epitope can be non-neutralizing [34]. In this paper, based on analyses of structures

and sequences, we designed antigens that may protect against the most significant antibody-

evading variants. Using a neural network, we check that these antigens are viable and can bind

ACE2, and so may emerge in the future. We also use a computational model of AM to show

that a cocktail of these antigens provides stronger protection against current variants and cer-

tain potential variants than the WT vaccination does. In particular, a specific cocktail

(sequence 1–6) is predicted to be optimal out of several explored possibilities.

Our cocktail vaccination schemes result in lower titers for the WT antigen than vaccination

with the WT antigen alone. It is important to emphasize that our goal is to generate a response

that is protective against different variants that may emerge. Such a vaccine will be less protec-

tive for any given variant compared to a strain-specific vaccine. However, a vaccine that pro-

vides adequate coverage to diverse potential variants would confer protection to a population,

which may sufficiently restrict transmission on its own or buy time for a strain-specific vaccine

to be developed without the need for strict non-pharmaceutical interventions.

The antibodies elicited by our cocktail vaccine are not bnAbs as they are not designed to

target conserved regions. Our AM simulations suggest that the antibodies are broadly protec-

tive against multiple mutations that occur in the residues that are mutated in the designed anti-

gens, but not against mutations that occur outside of those residues. Thus, variants that escape

our cocktail vaccine may arise. However, note that the residues mutated in the designed anti-

gens are predicted by our conservation analyses to be the most likely to emerge. Also, our AM

model weights all residues equally in order to calculate the binding free energy, which is a limi-

tation of the model. In actuality, certain residues easily abrogate antibody binding upon muta-

tion (specifically, class 1 and 2 antibodies elicited from exposure to the WT sequence). These
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WT escape mutations are the ones included in our designed antigens, suggesting that our

cocktail vaccine should protect against WT escape mutations. The contrapositive is that the

mutations required to escape antibodies produced by our designed antigens would be muta-

tions that are not included in the designed antigens. Therefore, the mutations escaping our

designed antigens should not be WT escape mutations. It may be possible that previous expo-

sure to the WT sequence could protect against the mutations that escape our designed vaccine.

A recent study created chimeric spike mRNA vaccines, in which the mRNA sequence con-

tains segments from multiple sarbecoviruses, which induced higher neutralizing titers against

various sarbecoviruses compared to the WT SARS-CoV-2 sequence [72]. However, the chime-

ras induced lower neutralizing titers against SARS-CoV-2 variants of concern than the WT

SARS-CoV-2 sequence. This is not surprising because the chimeras are designed using sarbe-

coviruses, which are more mutated from the variants of concern than WT SARS-CoV-2 is. If

one aims to protect against just SARS-CoV-2 variants, the chimeric vaccine is not better than

the WT SARS-CoV-2 vaccine. Our designed antigens are predicted to generate higher titers

against SARS-CoV-2 variants than the WT by exploiting data specifically for variants. There-

fore, our antigens would be more effective at addressing the immediate threat of vaccine-evad-

ing SARS-CoV-2 variants, while chimeric sarbecovirus vaccines would be more effective at

addressing the long-term threat of future sarbecoviruses.

Looking beyond sarbecoviruses, a vaccine that protects against any coronavirus would be

beneficial. To develop such a pan-coronavirus vaccine, identifying a conserved region of the

coronavirus spike to target is necessary. However, previous conservation analysis of coronavi-

rus spikes has not employed available structural data [73], or has not considered diverse sets of

coronaviruses [74–76]. In this work, we applied our conservation analysis of spike proteins

from diverse coronaviruses and found that the S2’ cleavage site and fusion peptide may serve

as pan-coronavirus vaccine targets. In support of this idea, several other studies have identified

antibodies that bind this epitope [77–80], although not all of these antibodies have potent neu-

tralizing ability. Since the position of the S2’ site is analogous to the position of the stem epi-

tope of influenza hemagglutinin, previous approaches designed to target hemaglutinin’s stem

epitope [25,36,81–84] can be applied to coronaviruses [85]. A limitation of this approach is

that the S2’ site is partially but not perfectly conserved. So, targeting it would likely yield a vac-

cine that is effective against a particular coronavirus but less so than a strain-specific vaccine.

As previously described, such vaccines can be very useful. This is because such a vaccine will

protect the population with a shield against diverse coronaviruses, thus preventing a pan-

demic-like crisis when a new coronavirus emerges and giving time to develop a strain-specific

vaccine.

Taken together, the bulk of our results predict that a specific cocktail of variant antigens

used as an immunogen would offer protection against variants of SARS-CoV-2 that may

emerge in the future. We hope that experimental efforts to test this prediction will follow. We

also suggest one vaccination scheme that may help protect against diverse coronaviruses.
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S3 Table. Residues making up the conserved region in the spike S2 domain. Numbering is

based on the SARS-CoV-2 spike protein (PDB ID: 6VXX).
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S1 Text. Collection and processing of NCBI coronavirus sequences.
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S2 Text. Estimation of antibody footprint area.
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S3 Text. Collection and processing of GISAID SARS-CoV-2 sequences.
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S4 Text. Choice of number of escape mutations considered.
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S5 Text. Titers do not depend on the number of variant antigens encountered in each B

cell—FDC interaction.
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S1 Fig. Spike protein structures colored by conservation fraction (either as an average of

the structural and biochemical conservation fraction or only the biochemical conservation

fraction) using SARS-CoV-2 as a reference. Green residues have conservation fractions

above 0.8, blue residues have conservation fractions below 0.8 and are not in the RBD, and red

residues have conservation fractions below 0.8 and are in the RBD.

(TIF)

S2 Fig. Illustration of the concatenation of individual coronavirus alignments into a single

multiple sequence alignment. The number of coronaviruses and size of the alignments have

been reduced for clarity and to match the example table from Fig 1.

(TIF)

S3 Fig. Spike structure colored by conservation fraction exclusively using SARS-CoV-2

data. Green residues have conservation fractions above 0.8, blue residues have conservation

fractions below 0.8 and are not in the RBD, and red residues have conservation fractions

below 0.8 and are in the RBD. PDB structures used to calculate the structural conservation

fraction include the WT structure (PDB ID: 6VXX), the Alpha variant structure (PDB ID:

7LWI), the Beta variant structure (PDB ID: 7LWS), the Delta variant structure (PDB ID:

7V7Q), and the Gamma variant structure (PDB ID: 7M8K). ~300,000 spike sequences

(obtained from GISAID) were used to calculate the biochemical conservation fraction.

(TIF)

S4 Fig. Titers against WT and variants following WT | WT immunization. Sequences 2 and

3 are similar to sequence 1, so they are omitted for clarity. Sequences 5 and 6 are also omitted

because they are similar to sequence 4. Fmut is the scaling factor for mutated residues.

(TIF)

S5 Fig. Mean panel titers for the Seq1-6 | Seq1-6 immunization scheme using 10 and 20

seeding cells. Mutations occur either in any variable residues (All variable residues) or in the

same residues that are mutated in the sequences 1–6 (Seq1-6 mutated residues). B cells are

assumed to encounter all antigens at a time on the FDC.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Design of immunogens for vaccines against SARS-CoV-2 variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010563 September 26, 2022 21 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010563.s013
https://doi.org/10.1371/journal.pcbi.1010563


S6 Fig. Anti-WT titers for various immunization schemes and energy thresholds for calcu-

lating titers (Eth).

(TIF)

S7 Fig. Titers against WT and variants following WT | WT immunization. Sequences 2 and

3 are similar to sequence 1, so they are omitted for clarity. Sequences 5 and 6 are also omitted

because they are similar to sequence 4. “End” indicates that the antibody titer is calculated

using the B cell population at the end of the simulation, and “Continuous” indicates that the

titer is calculated using the population of B cells that continuously exit the GC as memory or

plasma cells.

(TIF)

S8 Fig. Mean panel titers as a function of the number of mutations in panel antigens.

Mutations occur either in any variable residues (All variable residues) or in the same residues

that are mutated in the sequences 1–6 (Seq1-6 mutated residues). Panel titers are calculated

against panels of 100 antigens and 1000 antigens. Mutated residues take on a value of -4. B

cells are assumed to encounter all antigens at a time on the FDC.

(TIF)

S9 Fig. GC collapse rate for Seq1-3 | Seq4-6 and Seq1-6 | Seq1-6.

(TIF)

S10 Fig. Mean panel titers as a function of the number of mutations in panel antigens.

Mutations occur either in any variable residues (All variable residues) or in the same residues

that are mutated in the sequences 1–6 (Seq1-6 mutated residues). B cells are assumed to

encounter all antigens at a time on the FDC. Mutated residues take on values of -4, -3, -2, or

-1, as indicated.

(TIF)

S11 Fig. Spike protein structures colored by conservation fraction with varying weights of

the structural conservation fraction (Fstruc) and biochemical conservation fraction (Fbio)

using SARS-CoV-2 as a reference. Green residues have conservation fractions above 0.8, blue

residues have conservation fractions below 0.8 and are not in the RBD, and red residues have

conservation fractions below 0.8 and are in the RBD.

(TIF)

S12 Fig. Mean panel titers as a function of the number of mutations in panel antigens.

Mutations occur either in any variable residues (All variable residues) or in the same residues

that are mutated in the sequences 1–6 (Seq1-6 mutated residues). Mutated residues take on

values of -4. B cells encounter either all antigens at a time (All-antigen) or one antigen at a

time (One-antigen) on the FDC.

(TIF)

S13 Fig. Antibody titers against sequences 1–6 as a function of concentration if B cells

encounter all antigens (All-antigen) or one antigen (One-antigen) at a time on the FDC.

(TIF)
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