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Abstract
Purpose of Review The incidence of type 1 diabetes (T1D) is rising in all age groups. T1D is associated with chronic micro-
vascular and macrovascular complications but improving glycemic trends can delay the onset and slow the progression of 
these complications. Utilization of technological devices for diabetes management, such as continuous glucose monitors 
(CGM) and insulin pumps, is increasing, and these devices are associated with improvements in glycemic trends. Thus, 
device use may be associated with long-term prevention of T1D complications, yet few studies have investigated the direct 
impacts of devices on chronic complications in T1D. This review will describe common diabetes devices and combination 
systems, as well as review relationships between device use and cardiovascular outcomes in T1D.
Recent Findings Findings from existing cohort and national registry studies suggest that pump use may aid in improving 
cardiovascular risk factors such as hypertension and dyslipidemia. Furthermore, pump users have been shown to have lower 
arterial stiffness and better measures of myocardial function. In registry and case–control longitudinal data, pump use has 
been associated with fewer cardiovascular events and reduction of cardiovascular disease (CVD) and all-cause mortality.
Summary CVD is the leading cause of morbidity and mortality in T1D. Consistent use of diabetes devices may protect 
against the development and progression of macrovascular complications such as CVD through improvement in glycemic 
trends. Existing literature is limited, but findings suggest that pump use may reduce acute cardiovascular risk factors as well 
as chronic cardiovascular complications and overall mortality in T1D.

Keywords Type 1 diabetes · Continuous glucose monitor · Insulin pump · Hybrid closed loop · Cardiovascular health · 
Diabetes complications

Introduction

Type 1 diabetes (T1D) is the most common form of diabetes 
in the pediatric population but is diagnosed in all ages, and 
incidence rates are continuing to rise. Currently, 1.6 million 
people are estimated to have T1D in the USA [1] and this 
figure is predicted to increase to 5 million people by the 
year 2050 [2]. T1D is a result of permanent autoimmune 
destruction of insulin-producing pancreatic β-cells leading 
to an absolute insulin deficiency, and thus requires treatment 
with insulin for the remainder of the lifetime [3]. Insulin is 
administered subcutaneously via injection with a syringe or 
pen or via infusion with an insulin pump. Injection therapy 
combines long-acting insulin (LAI, also referred to as basal 
insulin) and short- or rapid-acting insulin (RAI) to create 
a multiple daily injection (MDI) regimen. LAI is admin-
istered once or twice daily to inhibit gluconeogenesis and 
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ketogenesis and RAI is administered multiple times per day 
to correct acute hyperglycemia and/or with meals to prevent 
hyperglycemia from carbohydrate intake [4].

Chronic hyperglycemia increases risk for microvascu-
lar and macrovascular complications, as well as resultant 
increased morbidity and mortality in T1D. The landmark 
1993 Diabetes Control and Complications Trial (DCCT) 
demonstrated in both pediatric and adult populations alike 
that intensive insulin treatment and subsequent improve-
ment in glycemic trends delay the onset and slow the pro-
gression of these complications, but these improvements 
came at the expense of higher rates of hypoglycemia [5, 6]. 
Hypoglycemia is associated with acute complications such 
as cognitive impairment and seizures and can contribute to 
chronic vascular and neurocognitive complications. Conse-
quently, T1D treatment guidelines recommend achievement 
of > 70% time in goal glycemic range (TIR), considered to 
be between 70 and 180 mg/dL), and targeting a hemoglobin 
A1c (HbA1c) of 7% or less [4, 7–10]. Adjunct TIR goals 
include minimizing the amount of time that blood glucoses 
exceed goal range and targeting < 4% of time per day with 
glucoses below the goal range [10].

As diabetes technologies continue to undergo rapid 
advancement, utilization rates are increasing across many 
national registries, particularly for devices related to glu-
cose monitoring and insulin delivery [11–15]. Incorporating 
devices such as insulin pumps and continuous glucose moni-
tors (CGM) into diabetes management is shown to help per-
sons with diabetes (PwD) reduce risk of hypoglycemia and 
improve HbA1c and TIR [16–20], and thus may contribute 
to delaying onset and slowing progression of T1D-associated 
complications. This review will provide an overview of com-
monly utilized diabetes devices and combination systems, 
as well as review relationships between technology use and 
T1D-associated cardiovascular outcomes.

Devices

Continuous Glucose Monitors

A subcutaneous CGM estimates blood glucose concentra-
tions by measuring glucose concentration in the intersti-
tial fluid via a sensor inserted directly under the skin. This 
device serves as an alternative to self-monitoring of blood 
glucose (SMBG) with a single measurement “fingerstick” 
glucometer [21]. CGM sensors are inserted by the user and 
adhered directly to the skin with adhesive. In 2000, the 
MiniMed CGM System was the first to obtain US Food and 
Drug Administration (FDA) approval [22], and since that 
time, newer generations have continued to improve upon 
accuracy, functionality, and ease of use. CGMs can relay 
glucose values to a designated receiver, cellphone, and/or an 

insulin pump, and multiple brands now hold FDA approval 
to replace fingerstick glucose measurements for decision-
making in insulin dosing in pediatric and adult populations 
with diabetes [23]. Current devices have varying durations 
of wear, but typically require removal and replacement 
every 7 to 14 days. These devices are typically equipped 
with optional and customizable alerts for hypoglycemia, 
hyperglycemia, and rapid glycemic change.

CGMs can be divided into two categories based on data 
type: “real time” and “flash.” Real-time CGMs (rtCGM) 
report glucose every 1–5  min through Bluetooth com-
munication to the designated receiver, cellphone, or insu-
lin pump. Flash CGMs, also referred to as intermittently 
scanned CGMs (isCGM), report glucose concentrations 
every 1–15 min, but only download the data to the desig-
nated reader when the user “flashes” the Near Field Com-
munication tag, at which time the previous 8 h of data is 
downloaded [21]. In 2018, the first 90-day implantable real-
time glucose sensor received FDA approval for use in adults 
18 years and older with diabetes, and then in 2019 also 
received approval for use in insulin dosing decision-making 
[24]. This device is implanted under the skin during an out-
patient procedure, requires users to wear a removable trans-
mitter on the skin atop the sensor location, and is replaced 
every 90–180 days. This CGM glucose concentration values 
every 5 min and transmits data via Bluetooth to a cellphone 
app [19, 25•]. CGMs may also be categorized based on cali-
bration need, including factory-calibrated and calibration-
requiring devices. Older CGM devices required 2–3 SMBG 
values per day to calibrate the sensor value against a refer-
ence glucose concentration. Many newer CGM devices are 
factory calibrated, allowing advanced calibration algorithms 
to ensure accuracy without the need for user SMBG entry. 
Table 1 provides an overview of commonly used CGMs.

CGMs are beneficial for all ages of people with T1D, 
regardless of insulin delivery method. Studies performed 
around the world utilizing various CGMs have associated 
CGM use with reductions in hypoglycemia [18, 26–31] 
and HbA1c [12, 14, 19, 30, 32–34], improvements in TIR 
[19], fewer episodes of diabetic ketoacidosis (DKA) [14, 
35], and improvements in psychosocial outcomes [36–38]. 
Furthermore, early initiation of CGM (i.e., within 1 year of 
T1D diagnosis) has shown association with lower HbA1c 
and fewer diabetes-related emergency visits [39, 40]. Few 
studies have directly compared rtCGM and isCGM, but 
limited evidence suggests that rtCGM has greater benefit 
than isCGM in reducing hypoglycemia and improving TIR 
[41–43, 44•]. CGM has become standard of care in diabetes 
management around the world; indeed, US and international 
clinical guidelines for both youth and adults with T1D sup-
port use of CGM, stating that CGMs are safe and effective 
in both populations. The American Diabetes Association 
(ADA) recommends CGM be considered from the time of 
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diagnosis and implementation of insulin therapy [41]. The 
International Society for Pediatric and Adolescent Diabe-
tes (ISPAD) guidelines include that rtCGMs are effective 
in lowering HbA1c, reducing glucose variability, reducing 
hypoglycemia, and increasing TIR [45••]. Similarly, a joint 
statement by from the ADA and the European Association 
for the Study of Diabetes (EASD) describes CGM as the 
standard for glucose monitoring for most adults with T1D 
and an effective method to improve HbA1c and reduce hypo-
glycemia [4].

Insulin Pumps

Increasing numbers of PwD are utilizing insulin pumps, 
also referred to as continuous subcutaneous insulin infu-
sion (CSII) systems, for insulin delivery [13, 46]. The first 
insulin pump prototype was designed in 1963 and was a 
large system that was worn by the user similarly to a back-
pack. Wearable insulin pumps have now been commercially 
available since 1976 and have continued to undergo reduc-
tions in size and advancement in ease of use and capabili-
ties [47]. Use of modern CSII replaces the need for insulin 
injections, as these devices continuously infuse RAI into the 
subcutaneous tissue via a small cannula and allow for bolus 
dosing to be administered with carbohydrate intake at meals 

or to correct hyperglycemia. When utilized as a singular 
device without associated CGM, insulin dosing parameters 
for basal and bolus insulin are programmed into the pump. 
Users then input blood glucoses and carbohydrate counts 
for the pump to calculate and deliver the appropriate insulin 
bolus dose. CSII devices can be divided into two categories: 
tubed and patch. Tubed pumps store insulin in a reservoir 
within the pump device. Insulin is then delivered through 
tubing to a small subcutaneous infusion cannula adhered 
to the skin. Patch pumps are an adhesive patch device that 
includes an insulin reservoir that is directly connected to 
an infusion cannula. The cannula is inserted under the skin 
at the time the device is adhered to the body. Most insu-
lin pumps require the entire patch or the infusion site to be 
changed every 3 days, though there are now tubed infusion 
sets approved for 7 days of continuous wear.

CSII is also beneficial for all ages of those with T1D, as 
it is associated with lower HbA1c [14, 20, 28, 33, 48–52]. 
One pediatric study showed that when compared to MDI 
users, pump users had lower HbA1cs for 6 years of treatment 
follow-up [53]. CSII use is also associated with lower rates 
of hypoglycemia [33, 48, 54, 55], lower total daily insu-
lin doses [48], less glycemic variability [56], and improved 
sleep [57] as compared to MDI therapy. In older adults with 
T1D, people using CSII were less likely to exhibit cognitive 

Table 1  Comparison of select continuous glucose monitors

References for Table 1 information: [25•, 138–140]
rtCGM real-time continuous glucose monitor, isCGM intermittently scanned continuous glucose monitor, HCL hybrid closed loop, CIQ Control 
IQ
* At the time of writing, CE marked in Europe but still under review for United States FDA approval
** System not available in the USA

Medtronic Guardian 
Sensor 3

Medtronic Guardian 
Sensor 4*

Senseonics Eversense Dexcom G6 Abbott Freestyle 
Libre 2

Abbott Freestyle 
Libre 3

Sensor type rtCGM rtCGM rtCGM rtCGM isCGM rtCGM
Age of approval 

(years)
2+ 7+ 18+ 2+ 4+ 4+

Subcutaneous or 
implanted

Subcutaneous Subcutaneous Surgically Implanted
Transmitter adhered 

to skin over 
implanted sensor

Subcutaneous Subcutaneous Subcutaneous

Duration of wear 
(days)

7 7 Maximum 180 10 14 14

Calibration status User calibration 
with blood glucose 
meter at least 2 × /
day

Factory calibrated User calibration 
with blood glucose 
meter 2 × /day

Factory calibrated Factory calibrated Factory calibrated

Approved for use for 
insulin dosing

No Yes Yes Yes Yes Yes

Compatible in HCL 
system

MiniMed 670G, 
770G

MiniMed 780G No Tandem t:slim X2 
CIQ

Omnipod 5
CamAPS**
Diabeloop**

No No
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dysfunction compared to those using MDI [33]. Recent data 
from diabetes registries and cohort studies also demonstrate 
associations between insulin pump use and reduced rates of 
DKA [13, 14, 48, 58], although two meta-analyses analyz-
ing results of clinical trials found higher incidence of DKA 
in people using CSII when compared to MDI use [28, 52]. 
Like CGMs, insulin pump use is supported by US and inter-
national T1D clinical treatment guidelines for both pediatric 
and adult populations. Both ADA and ISPAD guidelines rec-
ommend consideration of insulin pump therapy at the time 
of T1D diagnosis, as CSII is safe and effective and helps to 
achieve glycemic targets, reduce risk of hypoglycemia and 
DKA, improve quality of life, and prevent T1D-associated 
complications [41, 45••].

Evolution of Device Collaboration

CGM and CSII devices may be used as independent devices; 
however, in recent years, technology has advanced to include 
real-time CGM data as a factor in user-directed and auto-
mated pump dosing decisions. Sensor-augmented insulin 
pump therapy (SAP) describes when a PwD uses CGM 
data to inform user-driven real-time decisions in insulin 
dose adjustment via CSII pump. SAP use is associated with 
a lower HbA1c without increasing rates of hypoglycemia 
when compared to MDI [59–61] and CSII alone [62]. Auto-
mated insulin suspension systems allow the insulin pump to 
suspend basal insulin delivery in response to either a cur-
rent low glucose concentration or prediction of an impend-
ing hypoglycemic event, as identified by CGM. Automated 
insulin suspension has been shown to reduce HbA1c [63, 
64], hypoglycemia [65–68], and patient-reported fear of 
hypoglycemia [69].

The concept of a completely closed-loop insulin pump 
and glucose monitoring system has existed since 1974 when 
Dr. Ernst Friedrich Pfeiffer developed a system that com-
bined an intravenous insulin infusion and continuous glu-
cose monitoring [47, 70]. Dr. Pfeiffer’s system at that time 
was too large and complex for commercial use but served 
as a foundation for advancements in diabetes devices. Cur-
rent closed-loop systems are termed automated insulin 
delivery (AID) devices wherein CGM data is incorporated 
in real time into insulin dosing algorithm software to auto-
matically modulate (i.e., increase or decrease) basal insulin 
delivery via CSII pump. Some systems also include AID 
for hyperglycemia correction. The most advanced commer-
cial systems currently available are the hybrid closed loop 
(HCL) devices, which require user input of carbohydrate 
intake at mealtimes as well as some user-initiated correc-
tion doses. The first of such devices (Medtronic MiniMed 
670G) obtained FDA approval in 2016 (Fig. 1). Since the 
novel MiniMed device’s market appearance, multiple other 
AID systems have obtained FDA approval. These devices 

continually undergo rapid advancements in functionality 
and ease of use. Two systematic review and meta-analysis 
studies from 2017 and 2020, respectively, found AID system 
use to be the most effective treatment strategy for achieving 
target range blood glucose concentrations [71, 72]. Figure 2 
depicts a current HCL system.

AID Systems

The first commercial HCL system, the Medtronic MiniMed 
670G, consists of the Medtronic 670G insulin pump paired 
with the Guardian 3 sensor. It received FDA approval in 
2016 based on pivotal trial data demonstrating an average 
TIR of 68.8% in adults and 67.2% in adolescents with T1D 
[73]. The 670G system was subsequently approved in chil-
dren with an average TIR of 65% and the updated 770G 
system later received approval in young children with an 
average TIR of 63.8% [74, 75]. While the 670G and 770G 
systems brought HCL technology from research to real-
world use, the systems were limited by frequent fingerstick 
testing requirements, excessive system alerts, and frequent 
exits from automation [76–79]. A 12-month analysis of real-
world use of the Medtronic 670G at a single center found a 
significant decrease in time spent in HCL mode over time, 
with a decrease from 70.7% at 1 month of use to 49.3% 
at 12 months of use in children with T1D [77]. This same 
analysis demonstrated showed that adults had a higher time 
in HCL mode which was maintained in the 78–76% range 
over 12 months. The updated version of the Medtronic Mini-
Med design, the advanced hybrid closed-loop 780G system, 
appears to have resolved these issues. This system includes 
automated basal insulin delivery based upon total daily insu-
lin requirements over previous days as well as automatic cor-
rection dose delivery. The approval trial of the 780G system 
demonstrated a 75.1% average TIR for adults and 72.7% 
average TIR for adolescents, with adults spending 95.2% 
time in HCL mode and adolescents spending 93.8% time in 
HCL mode over 3 months of system use [80]. Initial trials 
were conducted using the Guardian 3 CGM but the com-
mercially available system pairs with the Guardian 4 CGM. 
At the time of writing, 780G is CE marked in Europe but 
is still under review by the FDA for approval in the USA.

The second HCL system to come to market was the 
Tandem Control-IQ (CIQ) HCL system, which includes 
the Tandem t:slim X2 insulin pump paired with Dexcom 
G6 CGM (Fig. 3). This system expanded on a decade of 
previous research involving the University of Virginia 
Diabetes Assistant algorithm and can adjust basal insulin 
delivery rates as well as administer automatic correction 
doses according to current and predicted future glucose 
concentrations [81–83]. The National Institute of Health 
(NIH)–sponsored randomized controlled trial of the CIQ 
system demonstrated an average 71% TIR for adults and 
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adolescents and a 67% average TIR for children [84, 85•]. 
These studies resulted in FDA approval for adults and 
adolescents in 2019 followed by approval in children in 
2020. Pilot testing of the CIQ system in young children 
demonstrated an average TIR of 71.3% during a brief hotel 
study with additional at-home use [86]. The approval trial 
of this system in young children has been completed but 
not yet published.

The European market has several phone-based HCL 
designs which have received CE mark. The CamAPS FX 
system demonstrated an average TIR of 65% in adults and 
was the first system approved to be controlled from the user’s 
cell phone [87]. The algorithm runs on an Android phone 
and works with the Dexcom G6 CGM and the DANA Dia-
becare RS insulin pump [88]. In an approval trial completed 
in 2017, the Diabeloop system demonstrated an average TIR 
of 68.5% in adults [89] and the commercial version of the 
system is compatible with the Roche Accu-Chek Insight, 
Vi Centra Kaleido, SOOIL Dana-I, and Cellnovo insulin 
pumps [88].

The most recently approved HCL system is the Insulet 
Omnipod 5 patch-pump system which pairs the Omnipod 
tubeless patch pump with the Dexcom G6 CGM (Fig. 4). 
This system can modulate basal insulin delivery rates based 
upon customizable glucose targets and current and predicted 
glucoses, with further basal insulin rate automation over 

the 3-day period of wear as the system recognizes glucose 
trends [90]. The approval trial for Omnipod 5 demonstrated 
an average 73.9% TIR for adults and adolescents and an 
average 68% TIR for children over the course of 3 months 
of use [91]. Additional studies completed in the young child 
age group demonstrated an average 68.1% TIR [92]. Table 2 
provides an overview of HCL systems that are currently 
available and under FDA review in the USA.

Diabetes Technology and Cardiovascular 
Outcomes

Current T1D treatment strategies and goals are largely 
founded upon results from numerous studies from the DCCT 
and its epidemiological follow-up study, the Epidemiol-
ogy of Diabetes Interventions and Complications (EDIC), 
which demonstrated that intensive insulin therapy aimed at 
achieving glycemic control approximating normoglycemia 
is effective at delaying the onset and slowing the progression 
of microvascular and macrovascular complications seen in 
T1D [5]. Delaying and slowing these chronic complications 
are critical, as they contribute significantly to morbidity and 
mortality in T1D.

Macrovascular complications, specifically atherosclerotic 
cardiovascular disease (ASCVD), are the leading cause of 

Fig. 1  Medtronic 670G insulin 
pump (left) with Guardian 
Sensor 3 continuous glucose 
monitor (right)
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morbidity and mortality in diabetes [93, 94]. T1D signifi-
cantly increases the risk for cardiovascular disease (CVD) 
and this occurs independently of other common CVD risk 

factors. Notably, people with T1D are more than twice as 
likely to exhibit cardiovascular mortality than the general 
population, even when meeting glycemic targets [95, 96]. 
Known cardiovascular risk factors also contribute to this 
risk but are not entirely responsible for the excess mortality 
associated with diabetes [97]. Development of atheroscle-
rosis begins in childhood, and youth with T1D may develop 
subclinical CVD even within the first 10 years of diabetes 
diagnosis [98]. CVD contributes to 25–50% of deaths in 
those with T1D of less than 20 years diabetes duration, and 
that percentage increases with longer diabetes duration [93, 
99, 100].

Glycemic status is a modifiable risk factor for CVD, 
and glycemic status  has been shown to predict coronary 
heart disease events independently of other risk factors 
[101, 102]. Chronic hyperglycemia may promote athero-
sclerosis, endothelial dysfunction, and arterial stiffness 
[103]. Studies also demonstrate associations between 
glucose variability, CVD, and all-cause mortality, regard-
less of mean glucose concentration [103–107]. Alongside 
chronic hyperglycemia and glucose variability, hypogly-
cemia also contributes to cardiovascular complications. 
Hypoglycemia-induced changes in hemodynamics, hemo-
stasis, and coagulation, arterial wall stiffness, and cardiac 
electrophysiology and autonomic function are postulated 
to explain the associations seen between hypoglycemia 
and cardiovascular complications including myocardial 
ischemia and cardiac arrhythmias [108]. Studies have 
found that a history of recurrent hypoglycemia was associ-
ated with reduced survival after a major CVD event such as 
myocardial infarction or stroke [109], and those with T1D 
who report history of repeated hypoglycemia events had 
a higher prevalence of CVD [110]. DCCT/EDIC showed 
that tighter glycemic control can improve cardiovascular 
risk factors such as hypertension, carotid intima-media 

Fig. 2  Illustration of hybrid closed-loop system. A continuous glu-
cose monitor measures the interstitial glucose concentration and 
sends the glucose measurement to the control algorithm. The algo-
rithm calculates the dose of insulin required based on the glucose 
received. The insulin pump then delivers the insulin dose. The cycle 
repeats

Fig. 3  Tandem Control-IQ 
hybrid closed-loop system. A 
Insulin infusion set with subcu-
taneous cannula. B Dexcom G6 
continuous glucose monitor. C 
Tandem t:slim X2 insulin pump 
with infusion tubing
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thickness, and coronary artery calcium scores, and even 
reduce cardiovascular events [111–114].

As diabetes device use may improve glycemic  trends and 
stability, use of diabetes technologies may also have favora-
ble impacts on T1D-associated complications. Indeed, a 
recent prospective cohort study including 515 adults with 
T1D utilizing CGMs and insulin pumps found that TIR and 
HbA1c were independent risk factors for microvascular and 
macrovascular complications, respectively [115••]. Yet, 
few existing studies have assessed for relationships between 
technology use and complication onset or severity in T1D. 
Limited studies suggest that CSII use may reduce micro-
vascular complications seen in T1D, such as retinopathy, 
neuropathy, and diabetic kidney disease [116–123]. There is 
also evidence suggesting insulin pump use may be beneficial 
for cardiovascular risk factors and CVD. A large study from 
the Diabetes-Patienten-Verlaufsdokumentation (DPV) regis-
try involving multiple diabetes centers in Germany, Austria, 
Switzerland, and Luxembourg found that initiation of insulin 
pump therapy within 6 months of diagnosis in people with 
childhood onset T1D was associated with a better cardio-
vascular risk profile compared to those with delayed CSII 
initiation within 2–3 years of T1D diagnosis. Specifically, 
they reported lower mean systolic blood pressure and higher 
high-density lipoprotein cholesterol (HDL-C), although no 
significant relationships were seen with diastolic blood 

pressure, low-density lipoprotein cholesterol (LDL-C), or 
triglycerides [124]. A 12-month, randomized, multicenter 
case–control study found that PwD using insulin pumps 
demonstrated increased HDL-C and decreased total choles-
terol, LDL-C, and triglycerides as compared to MDI users. 
This finding persisted after 8 years of follow-up [56, 125]. 
During the follow-up study, CSII use was also associated 
with fewer cardiovascular events, specifically atrial fibril-
lation, premature ventricular contractions, acute coronary 
infarction, angina pectoris, peripheral vascular ischemia, and 
heart failure, as compared to MDI use [125]. Similar results 
were seen in a large T1D Swedish registry, which found 
pump use was associated with a 45% reduction in fatal coro-
nary heart disease, 42% reduction in fatal CVD, and a 27% 
reduction in all-cause mortality as compared to MDI use 
over a mean follow-up period of 6.8 years. Authors hypothe-
size that the reduction in severe hypoglycemic episodes seen 
with insulin pump use in the study may have contributed to 
the reduction of cardiovascular mortality [126]. Similarly, 
a 2017 study in participants with T1D utilizing CSII found 
that longer duration of CSII use was related to longer dura-
tion of freedom from chronic diabetes complications, fewer 
cardiovascular events, and lower mortality [127].

Arterial stiffness is a marker of cardiovascular events, 
and pulse wave velocity (PWV) is the gold standard measure 
of arterial stiffness [128]. A prospective study found young 

Fig. 4  Omnipod patch pump 
(top right) with personal diabe-
tes manager (left) and Dexcom 
G6 continuous glucose monitor 
(bottom right)
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adults with T1D of 10 or more years duration had increased 
PWV compared to healthy controls. After 5 years of follow-
up, CSII use was associated with reduced PWV compared 
to MDI users [129]. These results align with previous lit-
erature which showed lower PWV in those with T1D using 
CSII as compared to MDI [130]. Endothelial dysfunction is 
suggested to play a role in development of atherosclerosis 
[131], and a recent study including 123 youth and adults 
with T1D found that pump use may impart cardiac benefit 
through improvements in endothelial function and overall 
myocardial performance. As compared to MDI use, CSII 
users had lower measures of carotid intima-media thickness 
and anteroposterior diameter of the infrarenal abdominal 
aorta via ultrasound assessment, and lower left and right 
Tei index and left E/e′ ratio [132].

Expert Commentary and Conclusions

For over 3 decades, the primary barometer for diabetes man-
agement has been HbA1c, based on established correlations 
between HbA1c and vascular complications. Over the past 
several years, however, TIR has emerged as a viable alter-
native to HbA1c. Analysis within the DCCT demonstrated 
that TIR derived from frequent SMBG measurements can 
hold similar correlations to T1D outcomes as those seen 
with HbA1c [133]. Additional analyses of correlations 
between HbA1c and average glucose concentrations have 
demonstrated wide ranges of average glucose at each HbA1c 
percentage, with potential bias for HbA1c tendencies across 
racial/ethnic groups [134, 135]. These observations have 
driven diabetes assessment to move “beyond HbA1c” to 
include use of other measures such as TIR, glucose man-
agement index (GMI), and glycemia risk index (GRI) [10, 
136, 137]. During the quarantine period due to COVID-19, 
many practices managed PwD using CGM, with an empha-
sis on TIR and other CGM-derived metrics as patients were 
unable to obtain HbA1c measurements in a medical office 
or laboratory. With growth of telemedicine practices, it is 
expected that virtual visits will continue to require glycemic 
assessment via TIR.

AID research uses both HbA1c and TIR as pre-specified 
endpoints, though there is interest in the field to consider 
TIR as a primary glycemic outcome. Technology research 
moves at a rapid pace with new devices developed every 
year. Technology development studies frequently last 
1–4 weeks and thus require a valid metric of glycemic con-
trol that can be assessed within that timeframe. Even within 
pivotal trials, the need for laboratory HbA1c assessments 
necessitates in-person visits and venipuncture, which may 
limit clinical trial participation for some populations. For 

these reasons, it is desirable for TIR- and CGM-based met-
rics to gain acceptance as valid endpoints.

A concern with fully equating CGM-derived metrics 
with established HbA1c targets is that little research exists 
to definitively correlate soft outcomes such as TIR, GMI, 
and GRI with hard outcomes such as diabetes-associated 
retinopathy, nephropathy, neuropathy, and cardiovascular 
disease. While HbA1c is clearly correlated with vascu-
lar hard endpoints, associations between CGM-derived 
metrics and vascular endpoints are limited to inferences 
made through associations with HbA1c rather than direct 
comparisons. This has been a major limitation for both 
regulatory agencies and payers accepting CGM-derived 
endpoints as fully validated surrogates for change in rates 
of vascular disease.

Next steps include combining data from large multicenter 
studies, registries, and national databases to clearly demon-
strate these relationships with CGM metrics obtained over 
the past 5–10 years. Additionally, prospective longitudinal 
studies are needed to examine CGM-derived metrics, CGM 
and AID use, and the rates of vascular disease in order to 
move beyond dependence on HbA1c as the primary indica-
tor of glycemic control in T1D.
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