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Abstract: Overweight and obesity during pregnancy have been associated with increased birth
weight, childhood obesity, and noncommunicable diseases in the offspring, leading to a vicious
transgenerational perpetuating of metabolic derangements. Key components in intrauterine devel-
opmental programming still remain to be identified. Obesity involves chronic low-grade systemic
inflammation that, in addition to physiological adaptations to pregnancy, may potentially expand
to the placental interface and lead to intrauterine derangements with a threshold effect. Animal
models, where maternal inflammation is mimicked by single injections with lipopolysaccharide
(LPS) resembling the obesity-induced immune profile, showed increased adiposity and impaired
metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal
obesity. Cytokine levels might be specifically important for the metabolic imprinting, as cytokines are
transferable from maternal to fetal circulation and have the capability to modulate placental nutrient
transfer. Maternal inflammation may induce metabolic reprogramming at several levels, starting
from the periconceptional period with effects on the oocyte going through early stages of embry-
onic and placental development. Given the potential to reduce inflammation through inexpensive,
widely available therapies, examinations of the impact of chronic inflammation on reproductive and
pregnancy outcomes, as well as preventive interventions, are now needed.

Keywords: maternal chronic low-grade inflammation; obesity; fetal inflammation; placental inflam-
mation; fetal programming

1. Introduction

Despite the myth of transplant allografts raising the idea that systemic immune sup-
pression is an essential feature of pregnancy, the last decades of research revealed a more
complex fetal–maternal immune interaction, involving both local and systemic inflamma-
tion as a crucial component of healthy pregnancies [1,2]. Starting with local inflammation,
the human maternal–fetal interface involves a high number of immune cells, including
macrophages, regulatory T cells, natural killers, and dendritic cells, which coordinate
critical events of implantation, placental development, and finally delivery [1,3,4]. As a
demonstration, experimental studies on decidual inflammatory cell deletion showed detri-
mental effects on blastocyst implantation and placental development, eventually leading
to pregnancy termination [5,6]. On the other hand, pregnancy is notoriously related to
systemic immunomodulation, with the most accredited theory suggesting a shift from
Th1 to Th2 immunity and suppression of CD4+, CD8+, and natural killer cell response
during pregnancy. As a result, enhanced immune tolerance has been clearly shown in
normal pregnancies, with increased regulatory T cell numbers in response to fetal (paternal)
antigen exposure and a typically more severe course of viral diseases [3,7,8].
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Nevertheless, despite the fact that maternal inflammation plays a pivotal role in
normal pregnancies, several maternal stressors, including malnutrition, environmental
insults, and other pathological conditions driving excessive (prolonged or high-grade)
systemic inflammation, may disrupt intrauterine environment. This may possibly lead to
fetoplacental adaptations that initially aim to maintain pregnancy and fetal maturation, but
secondly may increase the susceptibility to future noncommunicable diseases. This review
summarizes the following points: 1. evidence of maternal low-grade chronic inflammation
related to pregestational obesity; 2. pathogenic mechanisms linking maternal systemic
low-grade chronic inflammation to intrauterine development; and 3. associations with
intrauterine programming of future health and disease in both animal and human models.

2. Pathobiology of Maternal Obesity

Human obesity is exponentially expanding worldwide to almost pandemic propor-
tions, with an estimated prevalence of 30–70% of overweight and 10–30% of obese adults
in European countries [9]. Increased short-term and long-term morbidity and mortality
have been extensively reported for both obese mothers and offsprings, with about 24% of
any pregnancy complication attributable to maternal overweight/obesity and one third
of large-for-gestational-age babies to excessive gestational weight gain [10,11]. These epi-
demiological data well explain the critical need of understanding the biological processes
driving adverse events in obese pregnancies.

2.1. Maternal Systemic Low-Grade Inflammation

Obesity involves a massive expansion of the adipose tissue, which is currently known
as a highly active metabolic tissue with endocrine functions. Starting with the demonstra-
tion of tumor necrosis factor (TNF) production in mouse adipose tissue, going through
the strong association detected between circulating TNF and insulin resistance to the final
discovery that TNF inhibitors and weight loss are able to reverse insulin resistance in the
same model, the cause-effect link between obesity, chronic inflammation, and metabolic de-
rangements was lastly defined [12]. In line with these results, obese animal models showed
improved insulin sensitivity after genetic deletion of singular inflammatory molecules,
thus further confirming the role of chronic inflammation in obesity-induced insulin resis-
tance [13]. The concept of adipose tissue as an endocrine organ was further confirmed
in humans by the discovery of several secretory molecules, including adipokines, cy-
tokines, and chemokines, able to perform the following functions: 1. signalling in an
autocrine, paracrine, and endocrine network; 2. contributing to systemic low-grade chronic
inflammation and endothelial dysfunction; and 3. depicting the so-called metabolic syn-
drome [12,14–16]. In both human and animal obese models, a pivotal role has been given to
the adipose tissue macrophage infiltration (local inflammation) in determining the vicious
cycle of inflammatory molecule secretion, insulin resistance, endothelial dysfunction, and
increased body fat and body mass index (BMI) [17,18]. In contrast to acute responses,
systemic inflammation in obese nonpregnant individuals is a low-grade and chronically
perpetuated response, associated with a reduced metabolic rate and triggered by excessive
nutrient consumption [19].

Fewer and often controversial data are available for investigating maternal systemic
inflammation in obese pregnant women, and physiological adaptations to pregnancy may
additionally obscure the underlying obesity-related inflammation. In fact, due to the central
role of inflammation in the pathophysiology of both obesity and pregnancy, it is conceiv-
able that interactions between maternal adaptations and obesity-related inflammation may
result in aberrant upregulation of inflammatory mediators, thus contributing to short- and
long-term morbidity in obese pregnancies under a threshold effect [20]. In this scenario,
maternal obesity has been characterized as a metabolic inflammation showing increased
circulating proinflammatory cytokines and adipose tissue macrophage accumulation, both
finally extending to the placental interface and leading to an intrauterine proinflamma-
tory environment [21,22]. The combination of obesity and other low-grade inflammatory
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diseases, such as periodontal disease, could synergistically amplify the inflammatory and
pro-oxidative status, which can result in an elevation of local and systemic inflammatory
biomarkers [23]. Furthermore, maternal serum interleukin (IL)-6 concentrations have
been positively associated with fetal growth, thus linking the maternal proinflammatory
environment to intrauterine overgrowth in obese mothers [24]. However, despite increased
serum cytokines, including leptin, C-reactive protein (CRP), IL-6, and ICAM-1, were shown
in obese human pregnancies compared to in matched controls, several reports did not
confirm this result for all inflammatory markers [25–29].

2.2. Placental Inflammation

As the pivotal mediator between maternal and fetal environments, the subsequent step
necessary to investigate associations between maternal chronic inflammation and intrauter-
ine development needs a careful evaluation of placental development into the obesogenic
environment. Pregestational obesity has been generally associated with increased birth
and placental weight, lower placental efficiency (feto-placental weight ratio), accelerated
villi maturation, and placental inflammatory cell infiltration [30–32]. As expected, local
macrophage infiltration and increased proinflammatory mediators, including IL-6, leptin,
and TNF, were shown in obese placentas [27]. Furthermore, increased uterine Treg lym-
phocytes accumulation, NK cell activity, and TNF production have been reported in both
high-fat-fed mice and human models, indicating that maternal obesity promotes local uter-
ine inflammation and cytokine secretion, which further modulate cellular function [33,34].
Since placenta- and adipose tissue-derived cytokines are critical regulators of placental
expression of nutrient transporters, this could represent the causal link between maternal
obesity, systemic and local inflammation, and increased placental substrate transport, lead-
ing to intrauterine overgrowth [27,35,36]. In particular, leptin (increased in obese mothers)
has been shown to promote placental lipolysis, increase system A amino acid transport
activity and stimulate IL-6 and nitric oxide release in cultured human trophoblast cells,
thus potentially explaining increased nutrient transport, fetal overgrowth, and the vicious
cycle resulting in increased local inflammation and oxidative stress [37,38]. In contrast,
adiponectine (reduced in obese mothers) was shown to decrease amino acid transporter
expression and uptake in human trophoblast cells [39,40].

Obesity-driven inflammation has further shown associations with trophoblast devel-
opment and function in animal models, where leptin and low-density lipoproteins are
able to regulate trophoblast apoptosis, proliferation, and migration in culture [2]. Con-
sistently, high-fat-fed animals showed impaired uterine vascular remodeling, placental
angiogenic defects, poor decidualization, and smaller implantation site in obese early
pregnancy [41,42]. Human studies confirmed the role of several adipokines (i.e., leptin) in
regulating placental angiogenesis, protein synthesis, and growth, finally impacting placen-
tal function in obese mothers [43,44]. Transcriptomic analyses of human obese placentas
confirmed an increased expression of genes related to lipid metabolism, angiogenesis, and
hormone/cytokine activity, resulting in a lipotoxic placental environment characterized
by decreased vasculogenesis, increased oxidative stress, and fetoplacental hypoxia [2,45].
Moreover, placental metabolome analysis of obese pregnancies has also recently shown
different patterns of amino acid profiles and mitochondrial function, supporting a shift
towards higher placental metabolism. These placentas also showed a specific a fatty acids
profile suggesting a disruption of LC-PUFA biomagnification [46].

All these alterations, together with a resulting mitochondrial dysfunction and exces-
sive reactive oxygen species (ROS) production, may determine a cascade of events that
lead to placental dysfunction and impaired pregnancy outcomes in obese pregnancies [47].
As a predictable result, newborns of obese mothers have been recently shown to be more
hypoxic, acidemic, and with increased oxidative markers compared to normal-weight
pregnancies [32,48].

Interestingly, despite impaired placentation in early pregnancy, animal experiments
showed increased placental and birth weight at term in obese mice compared to in control
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mice, thus suggesting a compensatory mechanism later in pregnancy [41,42,49]. The
same model found a reversal of adipose tissue and liver macrophage infiltration in obese
pregnant dams compared to the pregestational status, almost to signify a reversal of
the obesity-induced inflammation accordingly to increased immune tolerance during
pregnancy [50]. Accordingly, human studies have recently reported a lower-term placental
IL-6 expression, macrophage infiltration, GLUT1 and SNAT1-2 expression, and leptin
production in obese pregnancies compared to in lean controls, as to signify a possible
placental compensatory adaptation to the maternal obesogenic environment [51].

Finally, despite a decline in antioxidant response, decreased oxidative stress and
damages have been shown in obese nondiabetic placentas compared to in lean controls,
mainly explained by the activation of a nitric oxide-induced alternative pathway as a pro-
tective mechanism [52]. Given these results, it is possible that the feto–maternal interface
may show profound development, structure, and function alterations as a consequence
of maternal obesity, but also that the same plastic and dynamic interface may “sense” the
obesogenic milieu and gradually adapt itself along pregnancy, in order to preserve fetal
development. In agreement with this hypothesis, several studies investigating umbilical
concentrations of inflammatory molecules (i.e., leptin, IL-6, and TNF) showed decreased
or unaffected concentrations in neonates from obese mothers compared to in matched
controls, thus identifying the placenta as an adaptor able to protect the fetus and maintain
pregnancy [53,54]. To make data interpretation and prediction models even more compli-
cated, several data additionally underlined a sex specificity of feto-placental adaptations
to the obesogenic environment, meaning that male and female fetuses might implement
different strategies to cope with the same detrimental stimulus [55–57]. As an example,
placental inflammation and TNF levels were reported to be elevated in female placentas
only, suggesting different placental inflammatory responses to obesity according to fetal
sex [58].

2.3. Fetal Inflammation

Maternal chronic low-grade and placental inflammation have been controversially
linked to feto-neonatal inflammatory derangements. In particular, the maternal cytokine
environment may be specifically important for fetal metabolic imprinting, as cytokines
are transferable from maternal to fetal circulation and have the capability to modulate
placental nutrient transfer [59]. Maternal cytokines can cross the placenta and mediate
a dialogue between the embryo and maternal tissues, which impacts on implantation
success, blastocyst development, and long-term metabolic phenotype through effects on
uterine receptivity, epigenome, cellular stress response, and apoptosis [60]. Increased
placental free fatty acids, cholesterol, and triglycerides transport, reported in maternal
obesity [61], have been shown to upregulate inflammatory pathways in fetal tissue of obese
ewes, thus suggesting an indirect transmission of the inflammatory environment to the
fetal district (i.e., toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB)) [62]. Accordingly,
human offspring from obese mothers showed higher circulating concentration of C-reactive
protein [63,64]. Nevertheless, the maternal proinflammatory environment has not been
unequivocally linked to fetal inflammation. As an example, controversial increases in
TNFα, IL-1, and IL-6 have been detected in fetal liver, brain, and plasma after maternal
lipopolysaccharide (LPS) injection, but the gestational age and timing of injection need to
be considered as impacting placental transport capacity [65,66]. In line with these results,
some reports detected unaffected umbilical vein cytokine concentrations in newborns from
obese mothers [54]. Together with cytokines, animal and human models demonstrated
that also maternal immune cells are capable to cross the placental interface, infiltrate fetal
tissue and persist into adulthood, but studies evaluating transplacental passage in case of
maternal chronic Th-1 inflammation obesity-related are strongly needed [59,67].

Figure 1 summarizes the vicious cycle linking maternal low-grade chronic inflamma-
tion to feto-placental derangements with short- and long-term adverse outcomes.
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Figure 1. Transgenerational perpetuation of metabolic diseases through maternal low-grade chronic inflammation. The
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diabetes mellitus; FGR: fetal growth restriction; IUFD: intra-uterine fetal demise. “↑” means increase; “↓” means decrease;
“+” means additional.

3. Maternal Obesity-Related Inflammation and Developmental Programming

The epidemiological evidence of a strong association between maternal nutritional sta-
tus in pregnancy and metabolic syndrome in the offspring later life represents a keystone in
the last decades of research [68]. In this context, the developmental origins of health and dis-
ease (DOHaD) hypothesis settles the strong association between what happens during the
first period of life during gamete, embryonic, fetal, and early infant phases- and subsequent
health and disease status [69]. The mechanisms underpinning the developmental program-
ming of metabolic diseases still remain matter of debate, but a general pivotal role has been
given to intrauterine adaptations to nutritional challenges that, may be maladaptive in later
life despite maximizing the immediate chance of survival. As a consequence, the degree of
mismatch between pre- and postnatal environments would represent a major determinant
of subsequent disease risk [70,71]. However, a no-answer question has repeatedly been
stressed by researchers: how can opposite nutritional stressors (over- and undernutrition)
lead to the same programmed phenotype of obesity, cardiovascular disease, and insulin
resistance in the offspring? [72,73]. In this scenario, the described systemic and placental
adaptations to the maternal environment may lead to abnormal intrauterine development
and disease programming through suboptimal maternal diet and an acquired proinflam-
matory phenotype during critical periods of development. In fact, growing evidence
supports that maternal obesity-related inflammation might program offspring appetite,
gene expression, immunity, gut microbiota, and adipocyte function [22,74]. The following
sections summarize evidence from animal and human models on this topic, with the lat-
ter trying to provide the biological mechanisms of fetal programming by obesity-related
maternal inflammation.

3.1. Evidence from Animal Models

As human studies involve difficult discrimination between genetic and environmental
contributions to offspring disease status, numerous obesogenic animal models have been
performed in order to detect causative associations between intrauterine exposure to
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obesity and offspring disease, as well as to define the effect magnitude according to the
timing of the nutritional insult and the severity of maternal disease (Table 1).

Table 1. Animal models of obesity-related maternal inflammation and offspring outcomes. PPAR-γ: peroxisome proliferator-
activated receptor gamma; TNF: tumor necrosis factor; TLR: toll-like receptor; NF-κB: nuclear factor kappa-light-chain-
enhancer of activated B cells; GLUT: glucose trasporter; G3PDH: glyceraldehyde-3-phosphate dehydrogenase; IL: interleukin;
FGR: fetal growth restriction. “↑” means increase; “↓” means decrease.

Animal Model Inflammation Pathway Offspring Outcomes Maternal Outcomes

Hara et al. (2000) [75]

Rodent/Human
Pro12Ala

PPARgamma2
polymorphism

Diet-induced

• Homozygous PPAR-γ-deficient
embryos

Spontaneous abortion

• Heterozygous PPAR-γ-deficient
mice

↓ fat mass
↑ leptin

• Obese human mothers

↑ insulin sensitivity in
presence of Ala12
↓ Ala12 in the diabetic group

Nilsson et al. (2001) [76] Rodent LPS injection-induced

• male offspring

↑ weight, adiposity, systemic arterial
blood pressure and food intake
↑ circulating leptin, 17beta-estradiol
and progesterone
↑ hippocampal glucocorticoid receptor
expression
↓ insulin sensitivity, corticosterone
response to stress

• female offspring

↑ testosterone and baseline
corticosterone levels
heart and adrenals enlargement

Wei et al. (2007) [77] Rodent LPS injection-induced

↑ systemic arterial blood pressure,
body weight, food intake, adipose
tissue weight
↑ circulating leptin

Perez-Echarri et al. (2008) [78] Rodent
Diet-induced

Eicosapentaenoic (EPA)
omega-3 fatty acid treatment

↑ TNF, IL-6 and haptoglobin in white
adipose tissue
↓ haptoglobin serum levels

• EPA treatment

↓ IL6 mRNA expression in white
adipose tissue;
Reversal of serum
haptoglobin increase;
Prevention of obesity-associated
inflammation in adipose tissue

Samuelsson et al. (2008) [79] Rodent Diet-induced

↑ body weight, blood pressure,
adiposity with adipocyte hypertrophy,
hyperphagia;
↓ locomotor activity and skeletal
muscle mass
↓ adipocyte β 2- and β
3-adrenoreceptor and
PPAR-γ expression;
Systemic artery endothelial
dysfunction and hypertension
↑ fasting insulin and glucose levels

Gregorio et al. (2010) [80] Rodent Diet-induced

Liver modifications:
Insulin resistance and lower
GLUT-2 expression
↑ sterol regulatory element-binding
protein-1c expression;
Hepatic steatosis

Yan et al. (2010) [81] Sheep Diet-induced

Skeletal muscle modifications:
↑ PPAR-γ, TLR2–4, NF-κB, and TNFα
gene expression
↑ intramuscolar adipogenesis and
macrophage infiltration
↑ circulating insulin concentrations
↓ insulin receptor mRNA expression
and insulin sensitivity
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Table 1. Cont.

Animal Model Inflammation Pathway Offspring Outcomes Maternal Outcomes

Park et al. (2010) [82] Rodent Diet-induced

↑ tumor-promoting cytokines IL-6 and
TNF which cause hepatic inflammation
and activation of the oncogenic
transcription factors→ hepatocellular
carcinoma development

Rattanatray et al. (2010) [83] Sheep Diet-induced

↑ body fat mass in female offspring,
reversible by maternal dietary
restriction;
No effect on PPAR-γ, G3PDH,
lipoprotein lipase, leptin and
adiponectin mRNA expression

Kirsten et al. (2013) [84] Rodent LPS injection-induced

↑ IL-1β serum levels

• Male offspring

autism-like behavior (impaired
communication and socialization,
repetitive/restricted behavior)

↑maternal serum
corticosterone levels, higher
postimplantation loss

Murabayashi et al. (2013) [85] Rodent Diet-induced

= fetal weight
↑ plasma glucose and insulin levels
adipocyte hypertrophy
↑ adipocyte expression of chemokine
receptor-2 and TNFα mRNA
↓ adipocyte GLUT-4 expression

↑ bodyweight, glucose
intolerance and
insulin resistance

Desai et al. (2014) [86] Rodent Diet-induced (during
pregnancy and/or lactation)

↑ adiposity
↑ body weight only when overnutrition
was prolonged during lactation;
Hyperglycemia
↑ systolic blood pressure
↑ plasma corticosterone levels in case
of maternal gestational overnutrition

↑ body fat and plasma
corticosterone levels

Fink et al. (2014) [87] Rodent
Human Diet-induced

Glucose intolerance

• Skeletal muscle modifications:

↑macrophage infiltration by 76%;
Dysregulated muscle inflammatory
gene expression

Desai et al. (2016) [88] Rodent Diet-induced

↑ adiposity despite unaffected body
weight in males
↓ energy sensors (DNA methylase)
↑ appetite and ↓ satiety neuropeptides;
Altered development, neuronal
abnormal differentiation and appetite
dysregulation in hypothalamus and
adult arcuate nucleus

Thompson et al. (2016) [89] Rodent Diet-induced

↑ hepatocyte proliferation and stellate
cell activation;
Hepatosteatosis
↑ susceptibility to development of
steatosis and rapid disease progression
with sustained fibrotic phenotype

Cadaret et al. (2018) [90] Sheep LPS injection-induced

Altered muscle metabolic capacity
with ↓ glucose oxidation capacity
FGR fetuses with –22% in body weight
↓ β cell function

↑ circulating
inflammatory cells

Adams et al.
(2019; 2020) [91,92]

Rodent
(F1 and F2 generations) LPS injection-induced

Glucocorticoid hypersensitivity in F1
offspring with elevated corticosterone
and increased leukocyte glucocorticoid
receptor level, further transmitted to
the F2 offspring without additional
insults (>male offspring)
↑ IL-1β cytokine responses in female
offspring only

Litzenburger et al. (2020) [93] Rodent Diet-induced

↑ white adipose tissue (female > male)
↑ adipocyte size
Sex-dependent metabolic
programming of white adipose tissue
dysfunction with dysregulation of
lipolytic, adipogenic and
stemness-related markers

The most commonly used animal models of developmental programming include
rodents, sheep, and nonhuman primates. Animal models of maternal obesity may involve
maternal inflammation as following: 1. mimicked by injections of lipopolysaccharide
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(LPS, a gram-negative bacteria-derived endotoxin, capable of propagating a type 1-based
immune response similar to the obesity-induced inflammation) or 2. diet-induced (high-fat
diet, high-sugar diet, and “cafeteria diet” mimicking a complex western dietary pattern).
In general, a diet-induced maternal obesity induced obesity, altered brain appetite, insulin
and leptin resistance, hypertensive disorders, reduced pancreatic beta-cell function, hepatic
steatosis, and nonalcoholic fatty liver disease in the offspring [94]. Animal models of LPS
injection are then of particular interest in order to define to what extent these effects are re-
lated to the inflammatory counterpart of maternal obesity. LPS injection in pregnant animal
models has been associated with increased adiposity, systemic arterial blood pressure, and
appetite, with contemporary decreased insulin sensitivity in the offspring, thus mimicking
the same metabolic derangements obtained in the offspring from obese mothers [76,77].

Unbalanced maternal nutrition, particularly if rich in fats, was shown to induce ma-
ternal inflammation, further transmitted to the offspring through the activation of several
inflammatory pathways, including peroxisome proliferator-activated receptors (PPAR) and
NF-κB signaling [75,81]. In line with this result, maternal LPS-stimulated inflammation
in rodents determined a proinflammatory macrophage phenotype and enhanced IL-1β
production in adult progeny under immune challenge [84]. Moreover, a recent animal
model of chronic LPS-induced maternal inflammation found sex-specific leukocyte glu-
cocorticoid hypersensitivity and exaggerated inflammatory cytokine responses in two
generations of progeny [91,92]. In a mouse model, despite a comparable birth weight, a
maternal high-fat diet and normal diet were shown to be associated with inflammatory
changes in the adipose tissue of the offspring, including increased chemokine and cytokine
expression [85]. This suggests an effect of obesity on fetal body composition and inflamma-
tory profile independent on intrauterine growth trajectory. Taken together these models,
simulating the chronic inflammation peculiar of obese mothers suggests that a maladapted
proinflammatory maternal phenotype may be transmitted to the intrauterine environment
and perpetuated to subsequent generations even without additional insults [91].

Besides inflammation programming, animal models of maternal obesity have been
developed in order to characterize the intrauterine programming of metabolic derange-
ments, independently from other pre- and postnatal exposures. As already underlined,
maternal obesity is strongly associated with fetal growth aberrations, from fetal growth
restriction to fetal growth acceleration, i.e., macrosomia [95]. The ending point of these
two opposite situations is a paradoxical common prenatal metabolic programming of
insulin sensitive tissues (i.e., pancreas, adipocytes, and skeletal muscle), which further
explains the common later phenotype of metabolic syndrome in adulthood. In this con-
text, diet-induced animal models have clarified that maternal obesity is associated with
the following changes in the offspring: 1. adipose tissue modifications: increased sex-
dependent adipogenesis (greater in males) with adipocyte hypertrophy, local inflammation
enhanced PPAR-γ expression (obesogenic gene strictly related to lipid metabolism, cy-
tokine production, and adipogenesis), reduced β 2- and β 3-adrenoreceptor expression and
increased cytokine mRNA expression [79,83,93]; 2. central modifications: programmed
hyperphagia (greater in male progeny), independent on postnatal nutrition, as a result of
altered hypothalamic energy sensors and epigenetic responses, leading to altered devel-
opment, neuronal abnormal differentiation, and appetite dysregulation [86,88,96]; 3. liver
modifications: hepatic inflammation, steatosis, and fibrosis, leading to increased risk of non-
alcoholic fatty liver disease, increased triglyceride accumulation and lipogenesis, enhanced
proinflammatory cytokine and serum insulin expression, and premature gluconeogenic
gene activation with impaired carbohydrate metabolism [80,82,89]; 4. skeletal muscle
modifications: enhanced macrophage infiltration, increased inflammatory properties with
upregulation of PPAR-γ, TLR2–4, NF-κB, and TNFα gene expression, intramuscular adipo-
genesis with adipocyte hypertrophy and hyperplasia, and reduced insulin receptor mRNA
expression, together resulting in decreased muscular insulin sensitivity and functional
impairment [77,81,87,90,97].
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Controversial results on the effect of anti-inflammatory nutrients in pregnancy on
reversing maternal obesity-related programming have been reported (i.e., omega 3 fatty
acids, resveratrol, and curcumin) [98]. As an example, animal and in vitro studies on
omega-3 fatty acid administration showed increased muscular GLUT1 expression and
glucose oxidation, decreased macrophage infiltration and adipokine production in the
adipose tissue, inhibition of liver lipogenesis and increased fat oxidation, and decreased
PPAR signaling in insulin sensitive tissues, all reversing the intrauterine programmed
effect of metabolic derangements, but human trials have been less consistent on this
topic [78,99–101].

3.2. Evidence from Human Studies

Although strong associations were shown between intrauterine exposure to obesity
and postnatal cardio-metabolic risk in models considering both prenatal and postnatal
confounding factors, human data are more ambiguous and sparse [102,103]. More and
more epidemiological evidence has suggested causal associations between environmental
and nutritional insults during critical windows of development and permanent effects on
adult individual’s health status [104]. In addition, evidence associating other maternal
conditions, including preeclampsia and diabetes mellitus in pregnancy, with childhood
obesity underlies maternal systemic low-grade chronic inflammation as the common
denominator of metabolic programming [105–107].

The evidence associating the exposure to the Dutch famine during early gestation
with offspring obesity, insulin resistance, and cardiovascular disease came first to lay the
foundation of the metabolic programming theory [108–110]. In the wake of these results,
several studies proposed maternal pregestational BMI and gestational weight gain as
independent predictors of childhood weight and body composition, considering composite
adjustment for genetic and other environmental confounders [107,111–113]. To corroborate
this thesis, human studies further demonstrated a lower prevalence of obesity among
children born after maternal gastric bypass surgery compared to in children born before
surgery, thus suggesting a long-term metabolic benefit by reversing maternal obesity [114].
The timing of the nutritional insult needs to be also considered. As an example, only first-
trimester gestational weight gain has been shown to affect childhood weight, suggesting a
greater impact of early pregnancy on childhood programming [115].

In line with animal models, newborns from obese and diabetic mothers showed
enhanced intrahepatic fat and adipogenesis potential of umbilical cord mesenchymal
stem cells [116,117]. Furthermore, the transgenerational transmission of obesity has been
confirmed in humans [118].

Epigenetic dysregulation of proinflammatory and metabolic-involved genes has been
reported to mediate the association between early nutrition and adult disease susceptibil-
ity [119,120]. In particular, significant changes in DNA methylation have been detected
in both umbilical cord and children blood of offspring exposed to maternal obesity (with
or without gestational diabetes), thus suggesting permanent postnatal DNA methylation
changes after intrauterine exposure to an obesogenic environment [121,122].

Interestingly, the obesogenic environment has been shown to impact on genes related
to inflammation, oxidative stress, and lipid metabolism already at the oocyte level, thus
potentially affecting not only fertility outcomes, but also subsequent embryonic develop-
ment [123,124]. In fact, the so-called periconceptional period, including crucial biological
processes of gamete maturation, fertilization, and early embryonic development, has been
shown to be particularly critical for developmental programming of health and disease,
as it potentially leads to larger phenotypic shifts on the offspring than later insults [125].
Higher concentrations of insulin, triglycerides, leptin, lactate, and proinflammatory cy-
tokines have been reported in the ovarian tissue of obese women, further associated with
altered ovarian metabolic functions and reduced embryo developmental potential after
fertilization [126–128]. The relevance of the metabolic reprogramming of ovarian cells
has been demonstrated by the evidence that obese oocyte donors negatively affect repro-
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ductive outcomes despite not carrying the pregnancy [129]. During the periconceptional
period, maternal obesity may impact on the offspring lifespan phenotype by perturbating
or inducing compensatory adaptations on oocyte quality and oviduct and uterine luminal
nutrient composition, as well as by inducing epigenetic modifications during early stages
of embryonic and placental development [128,130]. This is in line with the conclusions
by Snider et al. who noticed how the negative impact of obesity on ovarian function and
oocyte quality has linked to increased inflammation and oxidative stress [131].

On the other hand, opposite results showing maternal BMI as strongly associated
as the paternal counterpart with the offspring BMI suggested that the long-term effect
may be independent on the intrauterine environment [132]. Thus, precise mediators and
mechanisms involved in the intergenerational transmission of obesity in humans are still a
matter of debate.

4. Conclusions

Maternal obesity may affect long-term outcomes in the offspring as a result of in-
trauterine derangements and compensatory adaptations to a proinflammatory environment.
Precise mediators of the developmental programming of maternal obesity are extremely dif-
ficult to decipher in humans, due to complex feto-placental–maternal interactions, difficult
adjustment for pre- and postnatal confounding, and additional sex-specific responses.

Nevertheless, establishing associations between obesity-related inflammation and
developmental programming are crucial, also given the potential to reduce inflammation
through inexpensive and widely available therapies. In this context, nutritional inter-
vention remains a promising and cost-effective target to modulate the transgenerational
transmission of metabolic diseases, including the potential effect of antioxidant treat-
ment, such as coenzyme Q10 [133], melatonin [134,135], omega-3, and healthy complex
dietary patterns that could be the future cornerstones of research and clinical activities. In
conclusion, animal and human models compositely provide strong evidence for the devel-
opmental origins of obesity through systemic, placental and fetal intrauterine adaptations
able to perpetuate into adulthood. Cost-effective intervention strategies are now needed to
ameliorate the unfavorable effects of maternal obesity on next generations.
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