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Abstract—Goal: This paper introduces an automated
post-traumatic stress disorder (PTSD) screening tool that
could potentially be used as a self-assessment or inserted
into routine medical visits to aid in PTSD diagnosis and
treatment. Methods: With an emotion estimation algorithm
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providing arousal (excited to calm) and valence (pleasure
to displeasure) levels through discourse, we select regions
of the acoustic signal that are most salient for PTSD de-
tection. Our algorithm was tested on a subset of data from
the DVBIC-TBICoE TBI Study, which contains PTSD Check
List Civilian (PCL-C) assessment scores. Results: Speech
from low-arousal and positive-valence regions provide the
highest discrimination for PTSD. Our model achieved an
AUC (area under the curve) of 0.80 in detecting PCL-C
ratings, outperforming models with no emotion filtering
(AUC = 0.68). Conclusions: This result suggests that emo-
tion drives the selection of the most salient temporal re-
gions of an audio recording for PTSD detection.

Index Terms—Emotional digital twin, emotion sensing,
neuromotor coordination, PTSD, vocal biomarkers.

Impact Statement—Vocal biomarkers based on temporal
regions of low-arousal and positive-valence achieve an area
under the curve of 0.80 in detecting PTSD Check List Civil-
ian (PCL-C) ratings.

I. INTRODUCTION

POST-traumatic stress disorder (PTSD) is a disorder that can
occur after experiencing or witnessing a life-threatening or

traumatic event [44]. It is characterized by nightmares or intru-
sive traumatic memories, avoidance, hypervigilance, anxiety, or
depressed mood that persist for more than a month after the
trauma and cause significant disruption to daily living and work
activities [1]. Although often associated with trauma sustained
during military operations, PTSD is prevalent in both civilian
and military populations, impacting nearly 12 million adults
in the U.S. each year [31]. PTSD can be difficult to diagnose
because it is highly individualized and its symptoms can be
subtle and transient. In addition, it shares common diagnostic
features with other conditions, such as depression, anxiety, and
brain injury, and since avoidance is a key feature of PTSD, many
patients may lack awareness or understanding of their symptoms
or may resist speaking of them with medical providers. Yet many
current methods to evaluate PTSD rely on self-report measures
and these are vulnerable to symptom exaggeration for some
individuals [24].

The ability to objectively and non-intrusively detect PTSD
could facilitate diagnostic accuracy and, when used as a self-
screening measure, could provide an opportunity for earlier
detection and intervention. However, simple, objective, non-
invasive tools to screen for PTSD are currently lacking. Such a
tool could augment clinical diagnosis and assist in tracking the
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effectiveness of a therapy. Our vision is a ‘digital emotional twin’
driving measurement of vocal markers that can be incorporated
into a PTSD screening dashboard as a tool for both patients
and healthcare providers in civilian and military populations to
monitor progress and enable interventions as symptoms change.
We can think of the digital emotional twin as, ideally, a person-
alized computational model of the effect of emotion on speech
and language neurophysiology, spanning the human lifecycle,
and updated from real-time, individualized data.

A. Benefits of a Vocal-Based Screening Tool

According to current research, psychological screening tools,
including self- and clinician-based assessments, can be rea-
sonably effective at identifying PTSD in patients, with self-
report assessments such as a PTSD Checklist (PCL) achieving
a classification figure of merit score between 0.77–0.80 out
of 1.00 [43] using the computed area under the curve (AUC)
value from a receiver operating characteristic (ROC) curve [30].
A vocal biomarker-based PTSD screening tool ideally should
exceed current self-report and clinical methods in performance.
However, the use of vocal biomarkers, despite when somewhat
lower performance occurs, provide the benefit of being more
easily scalable to a broader population and lend themselves to
continuous, nonobtrusive assessment. The other clear benefit
is that such a tool, not relying on specialized equipment, aids
self-assessment and can easily be adapted to individual differ-
ences. For many military and civilian applications, particularly
in field-forward environments or less equipped clinics, common
modalities such as video recordings and blood assays may not
be available or feasible (see Supplement).

B. Physiological Underpinnings

With the work of others [28], [39], [41], clinical subjec-
tive observations, and our previous work in cognitive state
estimation [34], [47] as grounding, we investigate how PTSD
may be associated with changes in neuromotor coordination in
respiratory, phonatory, and articulatory physiology. Changes in
respiratory muscle activity and in other parts of the respiratory
tract can affect temporal patterns of inhalation and exhalation for
speaking [27], lung pressure for the generation of vocal intensity
(perceived as loudness), and the rate of air flow through the
larynx affecting voice quality (e.g., breathiness, strain). The res-
piratory system is highly coordinated with the laryngeal-based
subsystem [17], [50], together affecting vibratory characteristics
of the vocal folds (e.g., rate for pitch, extent for loudness, and
regularity for quality) and certain characteristics of speech ar-
ticulation (e.g., voiced/voiceless distinction, aspiration for stop
consonants). Likewise, respiratory and laryngeal activity are
coupled to articulation in the oral and nasal cavities [16], affect-
ing resonance (e.g., oral/nasal consonants, perceived nasality).

Changes in emotion have been shown to have strong vocal
correlates. Emotional changes can be quantified along two key
dimensions: arousal (i.e., intensity ranging from calm/sleepy
to excited/alarmed) and valence (i.e., pleasure to displea-
sure) [37]. Emotional changes associated with PTSD such as
re-experiencing traumatic memories, hypervigilance, or sup-
pression of thoughts or feelings may influence respiratory,
phonatory and/or articulatory components of speech production
[39]. However, there is varying evidence of the degree to which
the subsystems correlate with the arousal and valence elements
of emotion (i.e., [7]), or how these emotional components relate

to the severity of PTSD over time, and through the varying nature
of a discourse.

C. Approach

In deriving predictors of arousal and valence of an individ-
ual, i.e., the digital ‘emotional twin’, we train with separate
machine learning models based on a standard emotion dataset.
For generalizability to other datasets, we use only time-varying
energy in the acoustic signal, a proxy for the respiratory speech
subsystem. These continuous estimates of arousal and valence
provide the basis of an ‘emotion filter’ that selects regions of the
acoustic signal most salient for PTSD detection. Specifically,
motivated by the work of Scherer et al. who found that neutral
and positive-polarity questions led to more accurate classifica-
tion models [39], we select regions of low arousal or positive
valence. Additional supporting evidence for this approach comes
from the work of Finucane et al. [12] who reported that the most
important discriminant to determine if an individual is from a
healthy control or is a clinical PTSD case is a lower incidence of
positive emotions (happiness) in the later. Patients with depres-
sion, which is a closely related condition to PTSD, are also found
to show reduced reactivity to positive experiences [2]. Given
PTSD subjects have lower incidence of positive emotions, we
hypothesize that they are less likely to exhibit speech patterns
typically expressed during low arousal and positive valence
emotional states. Therefore, by focusing analysis on those parts
of speech with lowest arousal and most positive valence within
each subject, it is easier to detect PTSD. Given these selected
speech regions, we extract speech features and investigate their
relative importance across respiratory, phonatory and articula-
tory speech production subsystems. These features are then used
in a machine learning model to predict PTSD severity. A system
overview of the predictor is illustrated in Fig. 1.

II. MATERIALS AND METHODS

A. Datasets

Emotion dataset: The emotion models were trained using the
speech portion of the Ryerson Audio-Visual Database of Emo-
tional Speech and Song (RAVDESS) dataset [26], which consists
of 12 actors and 12 actresses repeating a 2 to 3 seconds-long,
neutral-content sentence to convey each of 8 emotion states,
namely neutral, calm, happy, sad, angry, fearful, disgusted and
surprised. The speakers were instructed to speak once at a normal
and then repeat at a strong emotional intensity level. A total of
1440 files (60 trials per actor x 24 actors = 1440) were used
for training the models. An acted emotion dataset was selected
over a naturalistic emotion dataset because the acted emotion
exemplars tend to better reflect prototypical components of an
emotional state than those produced spontaneously by non-
actors [40]. Thus, acted emotion provides a clearer emotional
expression that is more useful for cross-corpus speech emotion
recognition [40], [51].

PTSD dataset: To test our detection algorithm, we used a sub-
set of the Defense and Veterans Brain Injury Center/Traumatic
Brain Injury Center of Excellence (DVBIC-TBICoE) 15-year
Longitudinal TBI Study [25]. In addition to the evaluation
of TBI severity and depression, this study measures symp-
toms of PTSD as part of comorbidity background information.
Speech-language assessments took place in a double-walled
sound-attenuating booth with the participant seated in front of
a video monitor and the examiner visible through the exam-
ination window. Recordings were collected onto a laboratory
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Fig. 1. Schematic of PTSD prediction system overview. Continuous estimates of arousal and valence provide the basis of an ‘emotion filter’ that
selects regions of the acoustic signal most salient for PTSD detection.

computer via a cardioid dynamic microphone (Shure PG48) with
a constant mouth-to-microphone distance of 14 cm. Recordings
were made through an internal soundcard (RME Hammer-fall
DSP Multiface II) using a software audio recorder function
(MATLAB 2007). Subjects were asked to perform a series of
speech tasks. These tasks included having the subject watch a
wordless picture story and retell the story for their free-speech
sample. If participants were unable to provide an adequate
storytelling sample, they were asked to tell the examiner about
their day. Participants were then asked to read a pre-scripted
paragraph utilizing a variety of words of increasing length and
complexity called “The Caterpillar passage” [52]. This passage
was designed to examine segmental and prosodic skills related to
speech motor production, and is characterized by contemporary
themes with relatively simple reading requirements.

The current analyses included a total of 141 subjects with no
history of TBI or with mild TBI who completed the read speech
and/or the free speech task. Subjects with Major Depression
Disorder (MDD) were not excluded since this condition highly
correlates with PTSD. PTSD severity was quantified using the
PTSD Checklist-Civilian version (PCL-C) scores [25], [46].
The PCL-C contains three main sections, namely “B”, “C” and
“D” with 17 questions in total, each of which have response
options that range from 1 “Not at all” to 5 “Extremely”. The
total symptom severity score is the sum of all the responses,
thus ranging from 17 to 85. Additional details about this study
are found in the Supplement and also in Lange et al. [25] with
inclusion criteria, group definition, and recruiting procedures.

B. Emotion Estimation

Our emotion models of arousal and valence use univariate
statistics of speech-intensity features for simplicity in
interpretation and transferability in applying to cross-corpus
datasets. Here, speech intensity or energy, an approximate
measure of loudness, refers to the time-domain speech-signal
envelope. It is estimated using a custom MATLAB script that
iteratively filters the speech-signal amplitude until a smooth con-
tour is obtained [22], [36]. This technique captures both the con-
tributions of the respiratory system and resonance-harmonics
interactions to amplitude modulation of a speech envelope
[22], [42].

The speech-intensity timeseries were first normalized within
subject by subtracting the mean and dividing by the standard de-
viation of all recordings from the same subject. The time deriva-
tives of the speech intensity were then computed using the nor-
malized speech intensity time series. Second, univariate statis-
tics were computed for both normalized speech intensity time se-
ries and their time derivatives (using only the voicing regions of
the speech segments), including mean, median, mode, standard
deviation, range, inter-quartile ranges, skew, kurtosis, minimum
and maximum. Lastly, the features were normalized across sub-
jects by subtracting the group mean and dividing by the standard
deviation for each feature. In order to reduce feature dimensions,
principal component analysis (PCA) was applied to the normal-
ized features, and the optimal number of components were cho-
sen, defined as the point 95% of feature variances are explained.

Using the RAVDESS dataset, two separate machine learning
models were trained to detect high emotional arousal and non-
negative emotional valence, respectively. The RAVDESS study
instructs participants to read sentences in the following emo-
tional states: neutral, calm, happy, sad, angry, fearful, surprise,
and disgust. For each emotional state, they are also instructed to
express at two levels of emotional intensity (normal, strong). For
valence classification, the analysis grouped sad, angry, fearful
and disgusted as negative emotions, and the remaining condi-
tions (neutral, calm, happy, surprised) as positive emotions. For
arousal classification, the analysis grouped normal intensity as
low arousal, and strong intensity as high arousal. Both models
used support vector machine (SVM) classification algorithms to
compute classification scores (signed distance from the decision
boundary for a speech segment to be in a given class). In this
analysis, larger classification scores indicate a higher likelihood
that the speaker exhibited a stronger emotional intensity or a
more positive valence. The scores from the emotional intensity
model were used as estimates of arousal state, and the scores
from the positive emotion model were used as estimates for
valence state. More details of training the predictive emotion
models and application of our emotion models to the DVBIC-
TBICoE data are given in the Supplement.

C. PTSD Detection

As illustrated in Fig. 1, PTSD detection relies on emotion
filtering followed by high-level feature extraction and
classification. Emotion filtering passes low-level feature
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segments that correspond to low arousal or positive valence
(i.e., a calmer or more positive state of the subject) on to
feature processing. Here we describe the feature extraction
and classification for PTSD prediction, leveraging our previous
use of neuromotor coordination-based vocal markers to
detect a variety of neurological and psychiatric conditions
such as depression, cognitive fatigue, traumatic brain
injury, and dementia [34]. The acoustic-derived markers of
speech-production subsystems provide a proxy to the underlying
muscular coordination that influence the behavioral measures.

Feature extraction: Standard low-level features associated
with the various speech subsystems characterize basic
properties of the three vocal subsystem components. For
the respiratory subsystem, the speech envelope is used as a
proxy for vocal intensity. For the phonatory subsystem, we
estimate the fundamental frequency (pitch) and cepstral peak
prominence (CPP), which provides a measure of stability
of vocal fold vibration. For the articulatory subsystem, we
used the mel-frequency cepstral coefficients (MFCCs) as a
proxy of articulatory movements. The high-level features
include representations of correlation structure and dispersion,
characterizing levels and complexity of coordination in these
subsystems. In applying our emotion filter within each time
series, masking was used to exclude speech segments that are
associated with either high arousal or negative valence. (Other
details of both low- and high-level features are provided in the
Supplement).

Prediction models: The prediction models described below
were created independently in five different cross-validation
training folds. Subjects were randomly divided into five test-
ing and training folds containing 20% and 80% of the sub-
jects, respectively. The same number of principal component
features were used in all training folds. For the delta-MFCC,
delta-envelope, and delta-CPP coordination features, 5 principal
components were extracted from each of the eigenvalue feature
vectors, which have dimensionality 780, 60, and 60 respectively.
The dimensionality is determined by the number of channels
(12, 1 and 1) times the number of time delay scales (4, 4
and 4) and the number of delays per scale (15, 15 and 15).
For the dispersion features, a single principal component is
extracted from the delta-CPP feature vector, which has dimen-
sionality 2 (mean path length and mean distance). The follow-
ing summarize the emotion-driven (‘emotion-filtered’) feature
selection.

� Respiration: 30% of data over time with lowest arousal or
highest valence were analyzed for correlation-based delta-
envelope features

� Phonation: 20% of data over time with lowest arousal or
highest valence were analyzed for correlation-based delta-
CPP features; 50% of data over time with lowest arousal or
highest valence was analyzed for dispersion-based delta-
CPP features

� Articulation: 20% of data over time with lowest arousal or
highest valence was analyzed for correlation-based delta-
MFCC features.

Gaussian mixture models (GMMs) and cross-validation train-
ing form the basis of classification (See Supplement for details).
PCL-C prediction results were obtained by training and testing
prediction models on read and free speech data from the DVBIC-
TBICoE data set.

TABLE I
MODEL PREDICTION PERFORMANCE

III. RESULTS

Classification resulted in an area under the curve (AUC)
performance of 0.80, based on labeling PCL-C scores > 35 as
positive cases. A threshold of 35 was selected to allow for a
sufficient number of positive cases (n = 33) in doing classifica-
tion (e.g., increasing to 43.5 and 49.5 result in n = 17 and 11,
respectively). (A cutoff score near 35 has also been suggested as
an appropriate choice for screening a population by a primary
care or non-mental health clinician: https://learn.livingwell.org.
au/mod/page/view.php?id=65.) As seen in Table I, this result
was achieved by fusing across eight feature sets, that consist of
four underlying feature sets combined with two methods of emo-
tion filtering, using arousal and valence estimates, and by fusing
across predictions from read speech and free speech tasks. We
see in Table I the relative importance of speech subsystems (res-
piration, phonation, articulation) in PCL-C score prediction. We
also see that the prediction performance of each subsystem tends
to be both feature- and task-dependent. Fusion across all sub-
systems provides the highest prediction performance in contrast
to using any one individual subsystem. Fig. 2 illustrates the re-
lationship between PCL-C scores and fused scores, while Fig. 3
shows the ROC curve (true detections versus false alarms) for de-
tecting PCL-C > 35 with emotion filtering. Various cost-benefit
tradeoffs occur as we move along the ROC curve: for example,
we achieve 80% detection accuracy at a 25% false alarm rate.

IV. DISCUSSION

The proposed PTSD detection algorithm benefits significantly
from the incorporation of emotional valence and arousal filtering
(low arousal and positive valence), resulting in an AUC of 0.80.
This AUC represents an improvement over no emotional filtering
(AUC of 0.68), as well as over an emotional filter using high
arousal and negative valence (AUC = 0.70). Previous studies of
PTSD detection from speech either did not consider emotional
state changes [28], [39], [41] or elicited emotion-specific speech
via an external stimuli [39]. Our result suggests that a digital
emotional twin can be used to select the most salient tempo-
ral regions of an audio recording to improve PTSD detection

https://learn.livingwell.org.au/mod/page/view.php?id=65
https://learn.livingwell.org.au/mod/page/view.php?id=65


QUATIERI et al.: EMOTION-DRIVEN VOCAL BIOMARKER-BASED PTSD SCREENING TOOL 625

Fig. 2. Prediction/ground truth scatter plot corresponding to the fusion
of all eight feature sets. A linear fit is shown as a visual aid while the
Spearman correlation yields R = 0.47. The corresponding AUC (Fig. 3)
is 0.80.

Fig. 3. ROC curves corresponding to the comparison of PTSD detec-
tion performance with positive emotion filtering (low arousal & positive
valence) (AUC = 0.80), negative emotion filtering (high arousal & nega-
tive valence) (AUC = 0.70), and no emotion filtering (AUC = 0.68).

performance. This novel usage of an emotional twin may be ex-
tended to improve detections of other psychological conditions.

Our results also provide insight into the relative importance
of speech subsystems (respiration, phonation, articulation) for
PTSD prediction indicating that this importance is feature- and
task-dependent. Furthermore, when using features associated
with each subsystem separately, respiration gave the lowest
performance while phonation and articulation were overall
similar in performance. Nevertheless, the fusion of classifiers
that included all three subsystems resulted in the highest
performance of AUC equal to 0.80 in detecting the PTSD
self-report PCL-C ratings.

Further investigation with additional data is needed to assess
if the algorithm can distinguish PTSD from other conditions,
such as anxiety disorder, or distinguish subtypes of PTSD.
Limitations of the study and a future vision are provided in the
Supplement.

V. CONCLUSION

With a level of performance of 0.80 AUC in detecting the
PTSD PCL-C ratings, our next step is to validate with broader
datasets and incorporate the algorithm into a clinical prototype

and evaluate the concept of operations of this non-invasive
PTSD detection tool with patients and clinicians. Use cases
where the tool is stand-alone or applied synergistertically with
standard self-report and clinical assessments will be considered.
Algorithm enhancements could include targeted collection of
female participants, as well as other under-represented groups
in current PTSD datasets, to ensure sensitivity robustness across
the entire population. Other future directions include investi-
gating motor coordination across speech subsystems as well
as within subsystems, aspects of emotion beyond arousal and
valence, the effects of different environmental conditions and
platforms, and the refinement of the algorithm to better address
specificity concerns with comorbid mental health disorders.
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