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COVID-19 has spread rapidly worldwide since its outbreak and has now become a

major public health problem. More and more evidence indicates that SARS-CoV-2

may not only affect the respiratory system but also cause great harm to the central

nervous system. Therefore, it is extremely important to explore in-depth the impact of

SARS-CoV-2 infection on the nervous system. In this paper, the possible mechanisms of

SARS-CoV-2 invading the central nervous system during COVID-19, and the neurological

complications caused by SARS-CoV-2 infection were reviewed.
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INTRODUCTION

The novel coronavirus is a previously unknown β-coronavirus, which is a single-stranded
positive-strand RNA virus. The World Health Organization named it 2019-nCoV and the
International Committee on Virus Taxonomy named it SARS-CoV-2. The virus belongs to a branch
of the sarcoma virus subfamily of the coronavirus subfamily. SARS-CoV-2 is the seventh member
of the coronavirus family that infects humans (1, 2).

SARS-CoV-2 is the virus that caused COVID-19 in 2019. SARS-CoV-2 infection can
cause severe acute respiratory syndrome. SARS-CoV-2 has a high potential to spread and
infect humans all over the world (3). Since the first case of COVID-19 was diagnosed in
Wuhan, the number of SARS-CoV-2 infections worldwide has increased exponentially in the
past few months. COVID-19 was originally described as a respiratory infection, but now it
is increasingly regarded as a multi-organ disease, including nervous system manifestations.
An updated version of the new guidelines for the diagnosis and treatment of coronary
pneumonia issued by the National Health Council of China (China NHCotPsRo, 2020) points
out that histopathological samples from some COVID-19 patients showed that SARS-CoV-2
invasion involved multiple organs, including lung, spleen and hilar lymph nodes, heart and
blood vessels, liver and gallbladder, kidney, brain, adrenal gland, esophagus, stomach, and
intestine. In particular, edema, and partial neuronal degeneration were observed in brain
tissue (China NHCotPsRo, 2020) Neurodegenerative changes observed in cells infected with
SARS-CoV-2, including cell death and hyperphosphorylation, as well as dislocation of Tau
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protein, these changes can be observed in conditions such as
hyperthyroidism or Alzheimer’s disease (4) However, the specific
mechanism of neurodegenerative changes induced by SARS-
CoV-2 remains to be further studied in the future. The central
nervous system may serve as a reservoir for SARS-CoV-2,
some groups observed that viral particles gradually accumulated
within the neuronal cells of the brain organs from 6 to 72 h
after SARS-CoV-2 infection, indicating that the virus replicated
actively and effectively in the neuronal cells within the first
few days of infection. However, some groups observed that
viral infection did not replicate effectively in the first few days
and suggested that the central nervous system might serve
as a long-term reservoir of the virus (4). More and more
evidence shows that SARS-CoV-2 has a potential neuroinvasive
effect (5). It is estimated that more than 1/3 of COVID-19
patients will have nervous system symptoms, including central
nervous system symptoms (dizziness, headache, disturbance of
consciousness, acute cerebrovascular disease, ataxia, epilepsy).
Peripheral nervous system symptoms (taste disorder, olfactory
disorder, visual impairment, neuralgia) (6).

So far, although the epidemic in China has been effectively
controlled, the COVID-19 epidemic is still very serious
worldwide. According to statistics, there aremore than 54million
confirmed cases worldwide, and more than 15 million existing
confirmed cases. In this global public health emergency, we
are still facing a very serious situation. In the face of SARS-
CoV-2, understanding the impact of SARS-CoV-2 infection
on the nervous system and its invasion mechanism is of
great significance for the reasonable treatment of patients. In
this paper, the effects of SARS-CoV-2 on nervous system are
systematically analyzed and reviewed (Figure 1).

THREE MECHANISMS OF SARS-COV-2
INVADING THE NERVOUS SYSTEM

The central nervous system is protected by a highly complex
brain barrier system, which is the first line of defense against
virus invasion. The brain barrier is composed of the blood-
brain barrier, blood-cerebrospinal fluid barrier, and brain-
cerebrospinal fluid barrier. The blood-brain barrier has a
maximum surface area that can be used for communication
between the brain and blood. It consists of cerebral capillary
endothelial cells, extracellular matrix, and astrocyte podocytes.
The blood-cerebrospinal fluid barrier is located in the choroid
plexus of the ventricle of the brain. The epithelial cells of the
choroid plexus are mainly responsible for the barrier function
of the blood-cerebrospinal fluid barrier. The blood-brain barrier
and the blood-cerebrospinal fluid barrier can inhibit paracellular
diffusion, protect the central nervous system from the influence
of the constantly changing blood environment, infections and
toxins, and are crucial for maintaining the homeostasis of the
central nervous system (7–9).

To cause a central nervous system infection, the virus must
first successfully cross the protective barrier of the brain. Crossing
the blood-brain barrier or the blood-cerebrospinal fluid barrier

requires special adaptation of the virus. Despite this, SARS-COV-
2 can still enter the nervous system rapidly in some special ways
after infection (10–13).

The following three ways may be the main ways for SARS-
COV-2 to invade the central nervous system: (1) SARS-CoV-2
directly infects vascular endothelial cells by means of angiotensin
converting enzyme 2, thus directly crosses the blood-brain
barrier. (2) SARS-CoV-2 enters the central nervous system
through synaptic connections via the olfactory nerve. (3) SARS-
CoV-2 Induces Inflammation to destroy the Brain Barrier System
and enter the central nervous system.

SARS-CoV-2 Directly Infects Vascular
Endothelial Cells and Crosses the
Blood-Brain Barrier
Studies have shown that similar to SARS-COV, SARS-COV-2 can
use ACE2 to enter the cell interior (14, 15). The spike protein
(S protein) in SARS-CoV-2 is a trimer projecting from the viral
membrane and contains a receptor binding domain (RBD) in
each monomer. Through it, the viral protein can directly interact
with ACE2 receptors on the surface of many host cells. S protein
is the main tool for SARS-CoV-2 to bind to the ACE2 receptor
(infect cells), and it can strongly bind to ACE2 (16). Therefore,
the S protein may be used as a key target for the treatment of
COVID-19 and vaccine development.

In addition, host cell protease also plays an important role
in virus entry and infect cells (17, 18). The S1 subunit of S
protein on the surface of SARS-CoV-2 first binds to neuron
ACE2 receptor and adheres to the surface of target cells; then,
the S2 subunit of the virus is activated by the serine protease
TMPRSS2 of host cells, and the virus can enter the nerve cells
(19). Therefore, TMPRSS2 activity is very important for the
infection and transmission of SARS-CoV-2 in host cells and is
important pathogenesis of neurological complications (20–22).

Although the S protein activity of SARS-CoV-2 is weaker
than that of previous coronaviruses (23). However, the binding
affinity of SARS-CoV-2 S protein to ACE2 is 10–20 times higher
than that of SARS-CoV S protein to ACE2 (15). This is due
to the fact that the receptor binding domain of SARS-CoV2
is different from that of previous coronaviruses on several key
amino acid residues (17). It contains 4 positively charged residues
and five negatively charged residues, so SARS-CoV-2 S protein
is slightly more positively charged than SARS-CoV S protein.
Although the charge difference between the S proteins of SARS-
CoV-2 and SARS-CoV is quite small, this effect can be amplified
by the presence of a large number of S proteins on the virus
particles (16).

At the interface between the SARS-CoV-2 RBD and the
cellular ACE2 receptor, the difference in the amino acid content
of the S protein can lead to a more specific interaction
between the S protein and the host cell receptor. Therefore,
compared with SARS-CoV, SARS-CoV-2 is more likely to
establish interactions with different targets in the human body
through non-specific and specific interactions. All of these can
ultimately increase the ability of SARS-CoV-2 to enter human
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FIGURE 1 | The mechanism of SARS-CoV-2 causing nervous system infection and nervous system diseases.

cells (16), which may explain why COVID-19 has stronger
pathogenicity, transmissibility, and greater global influence (17).

This charge difference between SARS-CoV-2 and SARS-CoV
S proteins can have a significant impact on endothelial cell
adhesion and crossing the blood-brain barrier (16) so that SARS-
CoV-2 infected with vascular endothelial cells of the blood-brain
barrier has a higher efficiency of reaching the brain and can
cross the blood-brain barrier directly into the central nervous
system (16).

Through the study of the distribution of ACE2 in the nervous
system, it was found that ACE2 was expressed in different brain
regions, such as subfornical organs, nucleus tractus solitarius and
ventrolateral region of the medullary head, as well as regions
such as motor cortex and raphe. According to spatial distribution
analysis, ACE2was also expressed in the substantia nigra (24–26).
Due to the existence of ACE2 receptors in glial cells and neurons,
it has become a potential target for SARS-CoV-2 causing brain
injury and neurological symptoms (27).

In addition, ACE2 is widely attached to the extracellular
surfaces of the lungs, arteries, heart, kidneys, intestines, and brain
(cell membranes) (16, 28, 29). In addition to respiratory system

involvement, SARS-COV-2 infection may also cause multi-
organ dysfunction. Despite the predominance of respiratory
symptoms, there is post-infection damage to the myocardium,
kidneys, intestines, and liver, perhaps ACE2 provides a crucial
link between immunity, inflammation, and cardiovascular
disease (17).

The autopsy of novel coronavirus pneumonia showed brain
edema and partial degeneration of neurons (30). However, there
is not enough autopsy evidence to prove that SARS-CoV-2
exists in neurons and glial cells. Further studies are needed to
prove this.

Olfactory Nerve Pathway
Among the 12 pairs of cranial nerves, the olfactory nerve is not a
real nerve but a conduction bundle of the central nervous system.
It can directly contact the brain (31), coupled with the special
location and structure of the olfactory nerve itself, we speculate
that perhaps in the mechanism of SARS-CoV-2 invading the
central nervous system, the virus entering the central nervous
system through the olfactory nerve is also one of the main ways
(32, 33). And the olfactory nerve provides this way to enter
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FIGURE 2 | SARS-CoV-2 invades the brain through the olfactory nerve.

the central nervous system, successfully bypassing the blood-
brain barrier (34–36), effectively making it a channel between
nasal epithelium and central nervous system. In the early stage
of respiratory transmission, SARS-CoV-2 can enter the brain
through the olfactory nerve (37) (Figure 2).

In the nasal cavity, the special olfactory neuroepithelium has
an apical surface mainly composed of support cells, supporting
the dendritic processes of neurons containing olfactory cilia
(38). The dendrites of olfactory neurons are directly exposed in
the airway of the nose (10). Although the olfactory system is
very effective in controlling viral nerve invasion under normal
conditions (39), however, data from several studies indicate that
nasal respiratory epithelial cells express ACE2 and TMPRSS2
(31, 38, 40–42). As mentioned above, SARS-CoV-2 can enter the
cell with the help of ACE2 and the serine protease TMPRSS2 of
the host cell.

The expression of ACE2 and TMPRSS2 located in the
olfactory neuroepithelium indicates a potential entry point for
SARS-CoV-2 into the central nervous system (31), so that
the virus can invade the olfactory nerve. The retrograde or
anterograde transport of neurons is realized by kinesin and
kinesin (37, 43, 44). During the infection process, SARS-CoV-2
uses the olfactory nerve to pass through the cribriform plate of
the ethmoid bone to cause brain invasion (45, 46), which results
in a rapid, transneuronal spread of the SARS-CoV-2 to relevant
regions of the brain, which in turn interacts with ACE2 expressed
on the surface of brain neurons (47–49). This cell tropism may
be the reason why SARS-CoV-2 is highly infectious and related
to olfactory dysfunction (38).

Because SARS-CoV-2 can directly act on nasal respiratory
epithelial cells in the nasal cavity, olfactory dysfunction often
occurs in the early stages of the disease. In mild to moderate
cases, sudden loss of smell and taste is considered to be the
strongest predictive symptom of early infection with the SARS-
CoV-2 virus (50), and this mild, non-specific symptom can
become asymptomatic. Or the only manifestation of a mildly

infected person. The report of symptoms related to anosmia
should be regarded as a sign of SARS-CoV-2 infection and a sign
of COVID-19 (51, 52). If it is accompanied by transient brain
edema and other neurological diseases, the first consideration
should be the neuroinvasiveness of SARS-CoV-2 (38).

The olfactory dysfunction caused by SARS-CoV-2 may be
explained by the following four mechanisms: ① Viral infections
of the nasal mucosa can trigger inflammation of the nasal tissue,
including the olfactory mucosa, thereby creating an obstructive
barrier between odor chemicals and olfactory receptors; ② direct
damage to olfactory receptors could prevent odor signals from
being transmitted; ③ the virus, being neurotropic, can attack
the area of the brain responsible for smell along the path of the
olfactory nerve;④ Loss of sense of smell may actually be a sequela
of brain edema and partial neurodegeneration. Any or all of these
four mechanisms may lead to loss of sense of smell in COVID-19
(53). Therefore, exploring the relationship between early loss of
sense of smell and a long-term sense of smell has special clinical
and prognostic value (54).

Although there have been many studies proving that the
olfactory neuroepithelium expresses ACE2 and TMPRSS2,
there are no sufficient and strong studies to prove that
ACE2, TMPRSS2, and SARS-CoV-2 are widely present in the
transmission bundle from the olfactory bulb to the CNS. In the
future, further research is needed to resolve these inconsistencies,
and more autopsy reports are needed to prove the presence of
SARS-CoV-2 in the olfactory tract. Finally, the distribution of
SARS-CoV-2 infected cells in human olfactory nerve conduction
tracts was determined.

Coronavirus Induces Inflammatory
Responses to Disrupt the Blood-Brain
Barrier System
The destruction of the blood-brain barrier through inflammation
is also one of the ways for SARS-CoV-2 to enter the
central nervous system. Infection with SARS-CoV-2 can destroy
the blood-brain barrier by producing a large number of
inflammatory mediators in the following three ways.

SARS-CoV-2 Directly Induces the Release of

Cytokines by Immune Cells
When SARS-CoV-2 enters the human body, the virus activates
immune cells, such as monocytes/macrophages, neutrophils, T
cells, natural killer cells, and mast cells. The activated immune
cells kill the virus by synthesizing and releasing cytokines (55–
59). These cytokines mainly include interferon (IFN), interleukin
(IL), chemokine, and tumor necrosis factor (TNF) (60). Some
of their functions are to promote the inflammatory response
and some to inhibit the inflammatory response. These cytokines
are maintained in a balanced state in the healthy human body.
Among them, pro-inflammatory factors can activate and recruit
other immune cells, immune cells can secrete more cytokines,
activate, and recruit more immune cells, thus forming a positive
feedback cycle (55).

SARS-CoV-2 can cause immune cells to produce excessive
immunity, cytokines are uncontrolled, a large number of
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cytokines are released, amplifying positive feedback, breaking
the balance, marking an uncontrolled and dysfunctional immune
response, leading to systemic inflammation, further aggravating
the inflammatory response and increasing the severity of the
disease. Although this excessive immune response can kill
the virus, it can also cause some additional damage. Among
them, the blood vessels suffered the most damage. Cytokine
storms make the vessel wall more easily penetrated, and the
blood-brain barrier is disrupted (61), causing neocoronavirus
to enter the brain, inducing corresponding central nervous
system symptoms.

Activation of Glial Cells Releases Proinflammatory

Cytokines
Some neurotropic viruses can induce the pro-inflammatory state
of glial cells and make them secrete cytokines (62). As mentioned
earlier, glial cells express ACE2, We speculate that SARS-CoV-
2, which enters the central nervous system through olfactory
nerve, blood-derived, and other pathways, may also activate glial
cells and induce a pro-inflammatory state (37, 63). In addition,
experiments have confirmed that glial cells secrete a large number
of inflammatory factors after being infected with coronavirus,
such as interleukin-6, interleukin-12, interleukin-15, and tumor
necrosis factor α, etc. (52). These cytokines can also damage the
blood-brain barrier, further promote coronavirus to enter the
brain, causing symptoms of central nervous system disease.

So far, the autopsy report on the glial cells of SARS-CoV-2
patients is still insufficient. We propose this possible mechanism
based on the existing literature. In future studies, more autopsy
reports are needed to prove whether SARS-CoV-2 infects glial
cells through ACE2, or whether there are other receptors that can
bind to SARS-CoV-2 in glial cells.

Vascular Endothelial Growth Factor Induces

Inflammation
Vascular endothelial growth factor (VEGF) is widely distributed
in the central nervous system (64). In addition, the combination
of SARS-CoV-2 and ACE2 can activate the renin-angiotensin
system which is involved in inflammation response, and then
further promote the synthesis of VEGF through the binding
of angiotensin II (AngII) and angiotensin II type 1 receptor
(AT1R). In fact, in brain diseases, VEGF not only promotes
angiogenesis but also destroys the blood-brain barrier by
inducing inflammatory responses (64, 65).

Inflammation is the precursor and companion of blood
vessel formation, manifested by increased vascular permeability
and recruitment of inflammatory cells (65). ACE2 is a key
enzyme that catalyzes Ang I and Ang II to Ang 1-9 and
Ang 1-7, respectively (66). When SARS-CoV-2 attacks ACE2,
the inactivation of this enzyme can lead to the enhancement
of the ACE/AngII/AT1R axis signal, followed by excessive
AngII production. In the brain infected with SARS-CoV-2, the
cumulative feedback of Ang II promoted the increase of ACE2.
VEGF in turn reversely enhances Ang II, thus forming a vicious
cycle in the release of pro-inflammatory cytokines, including
TNF-α, IL-1β, IL-6, IL-8, and ICAM-1 (64, 67). In addition,
among these cytokines, interleukin-6 (IL-6) is an important

FIGURE 3 | Inflammation induced by VEGF destroys the blood-brain barrier.

member of pro-inflammatory cytokines, which is positively
correlated with the severity of COVID-19 symptoms. It may be
used as one of the indicators of the severity of COVID-19 (37, 58)
(Figure 3).

CLINICAL MANIFESTATIONS OF NERVOUS
SYSTEM DISEASES CAUSED BY
SARS-COV-2

The neurological diseases possibly caused by SARS-CoV-2 can
be divided into three major categories: ① Nervous system
consequences of related lung and systemic diseases, such as
cerebrovascular disease; ② The virus directly invades the central
nervous system, such as encephalitis; ③ Potential immune-
mediated complications after infection, such as Guillain-Barre
syndrome (GBS) and other types of demyelinating diseases.

Cerebrovascular disease refers to a group of diseases that occur
in the blood vessels of the brain and cause brain tissue damage
due to the disturbance of intracranial blood circulation.

Although the main manifestation of patients infected with
SARS-CoV-2 is a lung disease, there are also cerebrovascular
diseases (68). When the virus proliferates in lung tissue, it causes
diffuse alveolar and interstitial inflammatory exudates, and even
hyaline membrane formation. This will lead to abnormal alveolar
gas exchange, hypoxia of the central nervous system, an increase
of anaerobic metabolism of brain tissue, induction of intercellular
edema, obstruction of cerebral blood flow, causing ischemia of
cerebral circulation, with the increase of intracranial pressure,
the brain function deteriorated gradually. It may even induce
the occurrence of acute cerebrovascular disease, such as acute
ischemic stroke (3, 37).

On the other hand, cerebral hemorrhage caused by elevated
blood pressure may also be the result of the expression of ACE2
receptor (69, 70). ACE2 is one of the cardio-cerebrovascular
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FIGURE 4 | Cerebrovascular disease caused by SARS-CoV-2.

protective factors, which plays an important role in regulating
blood pressure and anti-atherosclerosis mechanism (71). SARS-
CoV-2 may cause an imbalance of the renin-angiotensin
system (RAS) by acting on the ACE2 receptor, leading to
microcirculation disorder, affects cerebral blood flow regulation
(72, 73), leading to an abnormal increase of blood pressure,
and increases the risk of cerebral hemorrhage and ischemic
stroke (Figure 4).

Encephalitis refers to the inflammatory lesions of brain
parenchyma caused by pathogens, including neuronal damage
and nerve tissue damage. It is characterized by acute episodes and
common symptoms include headache, fever, nausea, vomiting,
fatigue, convulsions, and disturbance of consciousness (37). At
present, the presence of viral encephalitis in many patients
infected with SARS-CoV-2 further speculated the existence of
this neurological complication (74–77).

The treatment team of Beijing Ditan Hospital confirmed the
presence of SARS-CoV-2 in the cerebrospinal fluid of patients
infected with SARS-CoV-2 through genome sequencing, thereby
clinically confirming viral encephalitis (37). This provides a solid
foundation for SARS-CoV-2 to cause encephalitis. However, no
signs of inflammation were found in brain tissue images of
patients infected with SARS-CoV-2 (78). We guess that SARS-
CoV-2 will produce virion vacuoles like MERS-CoV and SARS-
CoV, if this hypothesis holds, then vacuolation may be a defense
against infection. This problem needs further study and more
pathological cases to clarify.

In patients with SARS-CoV-2, SARS-CoV-2 can stimulate
immune cells to produce a variety of cytokines, resulting in
an immune response process that causes nerve demyelination
(79). For example, SARS-CoV-2 can cause Guillain-Barré
syndrome (80, 81). Guillain-Barre syndrome, also known as
acute idiopathic polyneuritis or symmetrical polyradiculitis, is an
acute polyradiculoneuropathy (82). Clinical manifestations are
progressive ascending symmetrical paralysis, quadriplegia, and
varying degrees of sensory disorders (83). The exact pathogenesis
of nerve demyelination caused by SARS-CoV-2 is not clear and
remains to be further studied.

FUTURE PROSPECTS

COVID-19 is a challenge to the world. At present, there is
sufficient evidence that SARS-CoV-2 can invade the central
nervous system and induce nervous system diseases. The
possible pathways of SARS-CoV-2 invasion into the central
nervous system include direct invasion of infected endothelial
cells, invasion through the olfactory nerve, and invasion by
inducing inflammation to destroy the brain barrier system.
These pathways are all related to ACE2 receptors, so the
relationship between SARS-CoV-2 and ACE2 should be further
studied so as to take better measures to protect the central
nervous system in patients with COVID-19. In fact, human
respiratory viruses may also enter the central nervous system
through other different ways, including the trigeminal nerve,
cerebrospinal fluid, lymphatic system, and so on. The three
mechanisms discussed in this article may be applicable to
SARS-CoV-2, but we must be alert to other invasion mechanisms
of SARS-CoV-2 until there is conclusive pathological evidence.
In addition, it can be inferred from the existing data that
encephalitis, cerebrovascular disease, nerve demyelination
symptoms, and olfactory changes in COVID-19 patients
are all likely to be related to SARS-CoV2 infection. These
symptoms can be used as potential indicators of patient
severity and prognosis. Understanding these knowledge
is very important for the prevention and treatment of
central nervous system symptoms and the rehabilitation of
COVID-19 patients.

In addition, recent studies point out that other proteins
expressed in nerve cells, such as Nrp1, may also become
receptors for SARS-CoV-2. Future work needs to verify whether
SARS-CoV-2 can invade the central nervous system using
alternative receptors.
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