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Above-threshold scattering about a Feshbach
resonance for ultracold atoms in an optical collider
Milena S.J. Horvath1, Ryan Thomas1, Eite Tiesinga2, Amita B. Deb1 & Niels Kjærgaard 1

Ultracold atomic gases have realized numerous paradigms of condensed matter physics,

where control over interactions has crucially been afforded by tunable Feshbach resonances.

So far, the characterization of these Feshbach resonances has almost exclusively relied on

experiments in the threshold regime near zero energy. Here, we use a laser-based collider to

probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring

the overall atomic loss from colliding clouds as a function of magnetic field, we track the

energy-dependent resonance position. At higher energy, our collider scheme broadens the

loss feature, making the identification of the narrow resonance challenging. However, we

observe that the collisions give rise to shifts in the center-of-mass positions of outgoing

clouds. The shifts cross zero at the resonance and this allows us to accurately determine its

location well above threshold. Our inferred resonance positions are in excellent agreement

with theory.
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Resonances lie at the heart of quantum mechanical scatter-
ing1, 2. They generally result from the occurrence of
a metastable state in the encounter between colliding

particles and can lead to striking modifications of the
scattering cross section. Such metastable states may be
established by barriers in the potential landscape of interactions
between particles leading to so-called shape resonances.
Alternatively, they may take the guise of a quasi-bound
molecular state in a given degree of freedom that is coupled to
other degrees of freedom into which it can decay. In this
scenario, Feshbach resonances arise when the energy of an
interacting atom pair in an incident, energetically open
channel approaches that of the quasi-bound state. The ability to
harness such Feshbach resonance-mediated interactions has
been pivotal for ultracold atomic physics for the past two
decades. For example, magnetic Feshbach resonances3 offer a
way of tuning both the strength and sign of interactions
in ultracold gases and have opened up the opportunity of
studying many important fundamental phenomena. These
include the creation of bright matter solitons4, the investigation
of the crossover from Bardeen–Cooper–Schrieffer pairing to
a Bose–Einstein condensate for strongly interacting
Fermi gases5–12, as well as the coherent formation of ultracold
molecules13, 14.

A Feshbach resonance as a rule modifies the amplitude of
elastic scattering where atoms leave in the internal quantum
states of the incident channel. Generally, however, the
quasi-bound state responsible for the resonance may couple to
additional energetically open channels connected to
separated atoms pairs in states different to the incoming channel.
This describes an inelastic collision. In addition, sufficiently far
above the threshold of the incoming channel, the energy of
the bound state and thus the resonance position relative to the
threshold depend linearly on an applied magnetic field B with a
slope defining the differential magnetic moment δμ of
the channels. This magnetic field dependence opens up the
possibility of tuning the resonance location to the threshold
(Eres(B)→ 0) for atoms in the incident channel and the threshold
regime just above it.

Away from threshold, resonant s-wave scattering at relative
collision energy E= ħ2k2/(2μ) is typically described by the
Breit–Wigner formula with an energy-independent width1. Here,
μ=m/2 is the reduced mass of atoms with mass m, and ħk is the
relative momentum with wavenumber k and the reduced Planck’s
constant ħ. Near threshold, (E→ 0), the coupling between the
bound state of the closed channel to the incident collision channel
is characterized by a width that depends on the relative collision
energy as Γ(E) ∝

ffiffiffi
E

p
. In contrast, the partial widths Γinel

j corre-
sponding to the decay from the bound state to inelastic channels
j are independent of E (as well as B). The s-wave elastic scattering
amplitude at magnetic field B is13, 15, 16

f ðE;BÞ ¼ � abg
1þ ikabg

� e2iδbg
abgγ

E � Eres þ iΓtot=2
; ð1Þ

where Γtot= Γ(E) + Γinel, δbg= −arctan abgk is the background
scattering phase shift with scattering length abg, and the reduced
width γ= Γ(E)/2kabg is independent of both E and B. An essential
insight is that for E→ 0 the regime ΓðEÞ<Γinel ¼ P

j Γ
inel
j will

be reached such that Γtot≈ Γinel. The resonance position depends
on B as Eres= δμ(B − B0), where B0 is the field for which the
resonance at threshold occurs. It is worth noting that the total

(elastic plus inelastic) cross section

σtotðE;BÞ ¼ 4π
k
Im½f ðE;BÞ� ð2aÞ

¼ 4πa2bg 1þ 2 E � Eresð Þγ þ γ2

E � Eresð Þ2 þ Γtot=2ð Þ2
" #

þ 2π
k

abgγΓinel

E � Eresð Þ2 þ Γtot=2ð Þ2 ;
ð2bÞ

is consistent with the optical theorem15. The first and second
terms of Eq. (2b) correspond to the elastic and inelastic
contributions, respectively; in obtaining this expression from
Eq. (1) we have assumed abgk

�� �� � 1 so that e2iδbg � 1þ 2iabgk.
In the realm of ultracold atomic gases Feshbach resonances

have, since their inception in these systems17, predominantly
been studied by measuring the loss rate of a trapped, stationary
sample as a function of magnetic field. Here, the temperature of
the sample would define a characteristic collision energy. Varying
the temperature can hence provide some insight into to the
energy dependence of the resonance18–20, but by its nature
this method is associated with thermal broadening.
Measurements in the energy domain have also been achieved by
dissociating Feshbach molecules through a fast and non-adiabatic
magnetic field ramp taking the molecular bound state
considerably above threshold21–23. Here, decay into free atom
pairs ensues in what can be described as a half-collision24.
Obviously, this method relies on the ability to associate atoms
into molecules in the first place, which is not generally applicable.

Recently, both experimental and theoretical collider-type
approaches that consider energy as a tuning parameter
for Feshbach resonances have emerged25–28. For example,
Gensemer et al.27 explored resonant scattering behavior with
respect to the relative collision energy through use of an atomic
fountain that launched ultracold clouds of 133Cs atoms to collide
in free space at a fixed magnetic bias field. In this way, resonances
that would overlap at threshold could be resolved. A collider-like
configuration was also employed to observe scattering from a
Feshbach resonance at a finite energy by Genkina et al. by
splitting a trapped cloud of 40K into two momentum
components28.

In this study, we report on the use of an optical collider29, 30

based on steerable optical tweezers to explore the E and
B-dependent scattering of 87Rb atoms for a Feshbach resonance.
In particular, our approach can determine the differential
magnetic moment δμ of the resonant quasi-bound level when this
strongly couples to outgoing inelastic channels. This setting
usually rules out methods relying on associating atoms into
molecules31, 32. In our experiment, we measure the magnetic field
dependence of the total number of particles lost from the two
colliding clouds for a range of non-zero energies. We observe a
shift of the magnetic Feshbach resonance, but thermal broadening
and the k−1 fall-off of the inelastic cross section, defined in
Eq. (2b), makes the determination of the shifted resonance
position exceedingly difficult. However, by instead measuring
the center-of-mass positions of the outgoing clouds of unscattered
atoms we achieve a dispersively shaped signal, which through its
zero-crossing accurately defines the resonant magnetic field at
collision energies even far above threshold.

Results
System under study. For our demonstration, we consider a
resonance between the |F= 2, mF= 0〉≡ |2, 0〉, and |1, 1〉 spin
states of 87Rb located33, 34 at approximately B0= 0.940(7) mT
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(9.040 G), which is predicted33, 35 to have comparable elastic
and inelastic widths of γ/δμ= 1.1 mG and Γinel/δμ= 2.4 mG
respectively, and a residual magnetic moment of δμ= 1.998μB,
where μB is the Bohr magneton. Figure 1a shows the relevant
interaction potentials for this resonance. The s-wave bound state,
which is supported by the |1, −1〉 + |2, 2〉 potential, is strongly
coupled to the inelastic d-wave channels |1, 1〉 + |2, −1〉 and |1, 1〉
+ |2, −2〉. The excess energy associated with an inelastic event, as
measured in units of the Boltzmann constant kB, is several hun-
dred microkelvin and is gained as kinetic energy as the atoms fly
away from the interaction region. Figure 1b presents the expected
E and B dependence of the total cross section σtot according to
Eq. (2b) for the domain to be covered in our experiments. The
Feshbach resonance gives rise to a peak centered on Bres= B0 + E/
δμ, which shifts linearly with the energy, while its height decreases
due to the k−1 dependence of the inelastic part of σtot.

Apparatus and experimental procedure. Our experimental setup
has been previously described36. Briefly, an ultracold ensemble of
≈3 × 106 87Rb atoms in the |2, 2〉 hyperfine ground-state, at a
temperature of T≈1 μK, is loaded into a far-detuned optical
crossed-beam trap. Both the horizontal and vertical beams,
making up the dipole trap, are derived from a 1064 nm fiber laser
and have waists of ≈80 and ≈40 μm, respectively, at the point of
intersection. An acousto-optic deflector (AOD) provides position
control for the vertical beam so that the crossing position can
be moved along the horizontal guide beam. By toggling the
frequency input of the AOD the single cloud of atoms can be split
into two, and one of the samples (the projectile) is moved 1 mm
along the horizontal guide. Here, we evaporatively cool both
samples to below 1 μK by lowering the power of the horizontal
trapping beam and initiate a sequence (see “Methods”) that
prepares the projectile cloud in the |2, 0〉 state and the stationary
cloud (the target) in the |1, 1〉 state. Using the AOD the projectile
cloud is accelerated toward the target cloud to collide at a
nominal relative energy, Enom, in the presence of a homogeneous
magnetic field B. At a separation of approximately 80 μm, both
vertical beams are switched off, so that the collision occurs while
the clouds are confined in the horizontal beam. This procedure
gives rise to a 1–3 ms time window prior to the clouds colliding
during which atoms evolve ballistically. Approximately 10 ms
after the two clouds separate we transfer the atoms in the |1, 1〉
state to the |2, 2〉 state using microwave adiabatic passage. Atoms
that have not been scattered out of the horizontal guide beam are
then detected using standard time-of-flight absorption imaging,

where the sample is exposed to a probe laser beam resonant
with the 87Rb F= 2→ F′= 3 transition of the D2 line. As
remarked previously, atoms involved in inelastic collision
events gain several hundred microkelvin in kinetic energy, which
far exceeds the depth of the horizontal guide and thus leads
to their ejection. In the absence of resonant loss, the imaged
projectile clouds contain ≈5 × 105 atoms at a temperature
of ≈900 nK, while the target clouds contain ≈9 × 105 at a tem-
perature of ≈600 nK.

Collisional loss from a Feshbach resonance. Figure 2 shows loss
spectroscopy data for the |1, 1〉 + |2, 0〉→ |1, −1〉 + |2, 2〉 Feshbach
resonance as a function of B performed for five collision energies,
from Enom/kB= 1.7 μK to 12.0 μK as determined from cloud
positions in time-of-flight images. Two distinct loss features
emerge from this data. First, as expected from Fig. 1b, we observe
a significant peak in atom loss, which shifts with the relative
collision energy of the two clouds. This loss adheres to the dashed
gray line in the figure showing the resonance position predicted
by coupled-channels calculations. With increasing energy the
feature widens and becomes less distinct. This widening is a result
of our acceleration scheme rather than the more fundamental
energy dependence of Γ(E) at threshold. The spread in energies
for the collider depends on the initial cloud temperature and is
given by δE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EnomkBT
p

(see “Methods”). The gray
shaded area in Fig. 2 illustrates δE associated with a cloud tem-
perature of T= 600 nK, characteristic for our experiments.
A second non-trivial loss feature occurs around the threshold
resonant field B0, and follows the vertical dash-dotted line in
Fig. 2. We attribute this loss to second-order scattering, where a
first elastic scattering event transfers (close to) all of the kinetic
energy of a projectile atom to a target atom. Such an event adds a
|1, 1〉 atom traveling along with the |2, 0〉 projectile cloud. It also
adds a |2, 0〉 atom within the stationary |1, 1〉 target cloud.
Hence, from elastic scattering, secondary |2, 0〉 + |1, 1〉 threshold
collisions (E≈ 0) within both target and projectile clouds ensue,
and for the magnetic field B0 a resonant inelastic loss will be
encountered. Of course, s-wave elastic collisions populate an
isotropic halo in momentum space so that secondary scattering
occurs for a range of energies and not only at threshold. However,
the subset of particles elastically scattered into the projectile and
target modes cause the most pronounced loss, since they follow
these high-density clouds axially while being radially confined
by the horizontal trapping laser beam. Numerical modeling of
our collider experiment at Enom/kB= 12.0 μK using the
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Fig. 1 Interaction potentials and scattering cross section. a Relevant long range s-wave and d-wave potential curves52 involved in the Feshbach resonance
between incident atoms in the |1, 1〉 + |2, 0〉 hyperfine states, labeled according to the free atom states to which they connect. The |1, −1〉 + |2, 2〉 potential
curve corresponds to a s-wave closed channel supporting a quasi-bound state to which the interacting atoms can couple during the collision, provided that
the difference in the collision energy of the atoms Enom and the energy of the bound state is small. From the bound state the atoms can elastically scatter
back into the s-wave entrance channel or decay into either of the two dominant d-wave open channels, |1, 1〉 + |2, −1〉 and |1, 1〉 + |2, −2〉 (inelastic scattering).
b The total scattering cross section of the 9.040 G resonance as a function of applied bias field and collision energy of the interacting atoms
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direct simulation Monte Carlo method30, 37 corroborates our
interpretation of the secondary peak.

In conjunction with the inherent energy-dependent resolution
of the optical collider, the reduction in the cross section σtot with
increasing energy, shown in Fig. 1b, makes a more quantitative
comparison between the shifted peak position to theory
increasingly challenging. In an attempt to more accurately
pinpoint the shifting peak, we next focus our attention to
how scattering via a narrow resonance modifies the spatial
distributions of the target and projectile clouds.

Spatial distortions of colliding clouds. As mentioned above,
atoms in the two clouds are allowed to expand freely along
the collision axis, ẑ, for a period of time before they begin to
overlap. They remain confined in the transverse radial directions.
A one-dimensional, axial model of phase-space distributions in
position z and momentum pz along ẑ then suffices to capture the
physics at play. Due to the thermal spread δpz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
the initial (Gaussian) phase-space distribution ρp(z, pz, τ) of the
target cloud stretches with time τ along ẑ as shown in Fig. 3a, b
during the ballistic expansion38, 39. This introduces correlations
between the position and momentum of a particle. Those at the
front of the target cloud (relative to incident projectile atoms)
have mainly negative momentum, while those at the back have
positive momentum.

An incident test particle with momentum pz= pp interacts
resonantly with a particle in the expanding target cloud with
momentum pz= pt, if the difference in their momentum is pp − pt
= [4mEres(B)]1/2 ≡Δpres(B). The resonant interaction removes
atoms from a horizontal strip through ρt(z, pz, τ), with a location
that depends on the magnetic field through Eres(B)—in particular,
this strip is centered on pz= 0 when B ¼ B0 þ p2p=ð4mδμÞ � Bres
as illustrated in Fig. 3d. The loss of particles from the target cloud
is imprinted onto its marginal spatial distribution,
ntðz; τÞ ¼

R
dpzρt z; pz; τð Þ. For B= B+> Bres (Fig. 3c) interactions

involving target atoms with a negative momentum pz< 0, and
thus z< 0 are predominantly lost due to the correlations
introduced by the ballistic expansion. In contrast, B= B−< Bres
(Fig. 3e) leads to a predominant loss of target atoms with pz> 0
and z> 0. Altogether, this means that the distribution nt(z, τ)
shifts in the direction of þẑ or �ẑ, depending on whether B> Bres
or B< Bres, respectively.

We can extend these considerations to a thermal ensemble of
projectile particles with mean momentum pp, and momentum
spread δpz (Fig. 4a). Defining now Bres in terms of pp, Fig. 4b–d
illustrate the resulting interactions during transit of the projectile
cloud for fields B= B+> Bres, B= Bres, and B= B−< Bres,
respectively. As a result of their encounter, the centers of the
projectile and target clouds shift oppositely. For B≷ Bres the target
and projectile shift in directions ± ẑ and �ẑ, respectively, and by
symmetry the shift is zero for B= Bres (Fig. 4c). The shift also
becomes zero well away from the resonance.

Differential magnetic moment from spatially dependent loss.
From the above analysis, we expect to encounter a spatial imprint
of the Feshbach resonance on our clouds. We hence turn to an
investigation of the center-of-mass positions ΔzCM of each of the
two clouds after the collision, as an alternative to monitoring the
total loss in atoms. Figure 5 presents examples of the magnetic
field dependence of ΔzCM as extracted from post-collision
absorption images (see “Methods”) for both target and
projectile for three values of Enom. We see that as B is scanned
across the resonance, ΔzCM(B) carries out an oscillation about
zero and we take the zero crossing to define the resonance
position Bres. The oscillations observed in the target (Fig. 5a–c)
and projectile (Fig. 5d–f) clouds are in antiphase as a result of the
complementarity in loss (see Fig. 4b, d). Since the projectile cloud
contains fewer atoms than the target cloud its center-of-mass
performs a larger excursion. We stress that at the resonant field
B= Bres, no center-of-mass shift is expected in either cloud
(ΔzCM= 0) irrespective of the number of atoms in each cloud.
This independence makes the determination of Bres less sensitive
to initial atom number fluctuations as compared to a simple loss
measurement. From Fig. 5 a clear upward shift in Bres with
increasing Enom can be seen in both target and projectile clouds.
Figure 6 displays the inferred shifts (see “Methods”) from
ΔzCM(B) for our entire data set as well as Bres predicted from
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Fig. 2 Loss spectroscopy in an optical collider. Feshbach loss as a function
of magnetic field B for five collision energies Enom/kB as annotated. Each
data set has been vertically offset proportional to Enom; a data point (circle)
represents the mean of typically five loss measurements with error bars
denoting the standard error of the mean. The solid lines are a moving
average to guide the eye. The threshold resonance position B0 is indicated
by a dot-dashed blue line, and the theoretically predicted shift in the
resonance position is shown by a gray dashed line, surrounded by a shaded
gray region displaying the expected collision energy spread δE ∝

ffiffiffiffiffiffiffiffiffi
Enom

p
due

to the finite temperature of the cloud as discussed in the text and
“Methods”
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coupled channels calculations. The measured Bres position agrees
well with the predicted linear dependence of the theory, where the
rate of the shift is given by δμ.

Discussion
We have investigated the collision of two individually prepared
clouds of ultracold atoms about a narrow Feshbach resonance
with a significant inelastic component. Previous experiments with
colliding clouds successfully analyzed the halos of particles that
elastically scattered from incident samples to infer properties
about their interaction23, 24, 28, 40–44. While a collisional halo also
ensues from the process considered in this study45, its resonant
enhancement is difficult to attain due to thermal broadening and
the existence of three dominant exit channels. Rather than
observing the scattered particles we therefore focused on the
atoms remaining in the outgoing clouds following the collision.
In this respect, the scheme put forward here is closely related
to conventional Feshbach loss spectroscopy, but with the
important advantage of adding the collision energy as a tuning
knob. While the total number of remaining atoms demonstrated
an energy dependence of the resonance position, we found that
Bres(E) could be inferred with significantly improved accuracy

from the shift in center-of-mass positions of the clouds. This shift
is relatively immune to fluctuations in initial atom numbers and
is introduced by an imprint of the Feshbach resonance on the
spatial atomic distribution. The occurrence of a spatial
imprint hinges, crucially, on a position-momentum correlation
introduced by ballistic expansion of the clouds prior to collision.

The analysis through shifts in center-of-mass positions opens
up a unique way of analyzing the above-threshold behavior for
narrow resonance features. In this study, we applied it to a
narrow magnetic Feshbach resonance, but the approach is quite
generally applicable and could, for example, be used to locate
high-‘ shape resonances, which tend to have widths that are very
small compared to the resonant collision energy. Our method
notably overcomes limitations set by thermal broadening of
the collision energy. Such broadening becomes prominent in
acceleration schemes46 where the absolute energy spread of the
projectile ensemble increases as it is being accelerated; in
particular, our optical collider, where each particle of the
projectile cloud accrues the same momentum gain, has these
characteristics.

The optical collider scheme presented in this article constitutes
an advancement toward directly observing the quintessential
∝

ffiffiffi
E

p
energy-dependent scaling of the elastic width of an s-wave
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Feshbach resonance at threshold—an effect that in the current
experiments still remains too small to be observed. For 87Rb, a
more favorable candidate might be sought in the collisions
between pairs of atoms in |1, 1〉, which is the absolute ground
state and therefore not prone to two-body inelastic decay and
furthermore has a magnetic Feshbach resonance at 1007 G of a
reasonable width (γ/δμ≈ 200 mG)47. More generally, and by
extending scattering measurements beyond the threshold regime,
the functions parametrizing multichannel quantum defect theory
as introduced by Mies48 could be directly mapped out49 from
careful measurements of resonance widths and positions. Collider
studies of Feshbach resonances opens up the possibility of
addressing resonances overlapping at threshold27 and has been
suggested as a route to provide limits on the time variation of
fundamental constants27, 50, 51. Furthermore, it provides an
encouraging prospect for an alternative method of observing
Efimov physics, where the relative energy dependence of
the Efimov state is exploited instead of, as conventional, the
dependence on the scattering length through B26. In conclusion,
we believe our optical collider scheme hold considerable promise
to be broadly applied.

Methods
State preparation and collision procedure. The two 87Rb ensembles, separated
by 1 mm in the horizontal plane, are exposed to a magnetic field gradient creating a
position-dependent Zeeman shift. This enables site selective preparation of the
clouds in the |2, 0〉 and |1, 1〉 hyperfine states, respectively, via an adiabatic
rapid passage procedure using microwave fields. Subsequently, the projectile cloud
is moved to a position 0.1 mm from the target cloud, from where it ultimately
will be accelerated. For the collision process the gradient field is replaced by a
homogeneous bias field. This homogeneous field is first ramped to a value close to
the threshold resonant value B0 causing remaining |1, 1〉 impurities in the |2, 0〉
cloud and |2, 0〉 impurities in the |1, 1〉 cloud to leave the traps through resonant
Feshbach loss. After 30 ms the bias field is ramped to its final value B and allowed
to stabilize before the beginning of the collision. The magnetic field has a stability
of 0.13 mG over 3 days.

Energy spread in the optical collider. We consider the collision between a
projectile and target cloud at a nominal relative collision energy Enom. A particle of
momentum pp in the projectile cloud collides with a particle with momentum pt in
the target cloud at relative energy E= (pp − pt)2/(4m), where m is the mass of
the particles. We assume that the momenta of particles in the target cloud follow a
Maxwell–Boltzmann distribution

ftðpÞ ¼ 1

2πmkBTð Þ3=2
exp � p2

2mkBT

� �
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Fig. 4 Collisions between ballistically expanding projectile and target clouds. Phase-space representations of an ensemble of projectile atoms transiting a
stationary target cloud subject to resonant Feshbach loss. Resonant interactions between groups of particles in the projectile and targets clouds are
indicated by wavy blue lines and happen whenever a projectile particle arrives at the position of a target particle and their momentum difference is pp − pt=
Δpres. The actual value for the resonant momentum difference depends on B as ΔpresðBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mEresðBÞ

p
; in particular, Bres defines the field for which

Δpres ¼ pp—the mean momentum of the projectile cloud. a Target and projectile atoms are initially confined by two harmonic potentials; the projectile
cloud moves with a mean momentum pp toward the target. By switching off the harmonic confinement, the atomic clouds expand ballistically before
colliding. b For a magnetic field B= B+> Bres, Δpres > pp and loss is resonantly enhanced at early times of the transit and occurs at the head-end of the
projectile cloud and the z< 0 part of the target. c For B= Bres, Δpres ¼ pp (by definition) and atoms with momentum difference equal to pp will undergo
resonant loss. This condition is fulfilled uniformly throughout the clouds at the point in time where they coincide. d For B= B−< Bres, Δpres<pp and resonant
collisions predominantly happen toward the end of the transit and lead to loss at the tail-end of the projectile cloud and the z> 0 part of the target. The
rightmost frame of b–d shows how the marginal spatial density distributions nt(z) and np(z) of the target cloud (blue line) and the projectile cloud (red line),
respectively, distort from their shape in absence of resonant loss (orange line)
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with temperature T, whereas the action of the optical collider is to prepare the
projectile cloud according to

fpðpÞ ¼ 1

2πmkBTð Þ3=2
exp

ðp� pp ẑÞ2
2mkBT

" #
; ð4Þ

i.e., an ensemble traveling along the z-axis at mean velocity v ¼ pp ẑ=m, where
pp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mEnom

p
. Assuming pp � ffiffiffiffiffiffiffiffiffiffiffiffi

mkBT
p

, we find that the mean collision energy
between the clouds is

Eh i ¼ 1
4m

p2p

D E
þ p2t
� �� 	

¼ Enom þ 3kBT
2

; ð5Þ

with variance

varðEÞ ¼ E2
� �� Eh i2 ¼ 3

2
kBTð Þ2 þ 2EnomkBT: ð6Þ

Hence, for Enom � kBT the energy spread of the optical collider is

δE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðEÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnomkBT

p
: ð7Þ

Modeling center-of-mass shifts of post-collision clouds. The number of
unscattered atoms is extracted from absorption images by fitting the two imaged
clouds with Gaussian functions. For both the target and projectile cloud the
position of the Gaussian, ΔzCM(B), is analyzed separately with respect to the
applied magnetic field. Figure 5 shows three example data sets of ΔzCM(B) for a
range of bias fields. Each data set (corresponding to a fixed Enom) is fitted with the
derivative of a pseudo-Voigt profile

ΔzCMðBÞ ¼ �ηA lnð2Þ B�Bres
w2 e�lnð2Þ B�Bresð Þ2=w2

þð1� ηÞ 2
π

Aw B�Bresð Þ
B�Bresð Þ2þ w=2ð Þ2½ �2 þ Δzbg;

ð8Þ

where 0< η< 1, Δzbg is the position of the cloud away from resonance, w is the
width, and A is a scaling factor. The data is fitted via a weighted least squares
fitting routine, where the weights are determined by the corresponding
standard deviations, and η, w, A, Bres, and Δzbg are free variables. The field Bres,
corresponding to the inflection point of Eq. (8), varies within the error of the
applied bias field when the first (derivative of a Gaussian) or the second (derivative
of a Lorentzian) term of Eq. (8) is omitted for the fit.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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(see “Methods”)
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position

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00458-y ARTICLE

NATURE COMMUNICATIONS |8:  452 |DOI: 10.1038/s41467-017-00458-y |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Received: 24 March 2017 Accepted: 29 June 2017

References
1. Kukulin, V. I., Krasnapol’sky, V. M. & Horácěk, J. Theory of Resonances

(Kluwer, 1989).
2. Kokkelmans, S. J. J. M. F. in Quantum Gas Experiments: Exploring Many-Body

States (eds Törmä, P. & Sengstock, K.) Ch. 4 (Imperial College Press, 2014).
3. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in

ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
4. Cornish, S. L., Thompson, S. T. & Wieman, C. E. Formation of bright matter-

wave solitons during the collapse of attractive Bose-Einstein condensates. Phys.
Rev. Lett. 96, 170401 (2006).

5. O’Hara, K. M., Hemmer, S. L., Gehm, M. E., Granade, S. R. & Thomas, J. E.
Observation of a strongly interacting degenerate Fermi gas of atoms. Science
298, 2179–2182 (2002).

6. Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of
fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004).

7. Zwierlein, M. W. et al. Condensation of pairs of fermionic atoms near a
Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004).

8. Kinast, J., Hemmer, S. L., Gehm, M. E., Turlapov, A. & Thomas, J. E. Evidence
for superfluidity in a resonantly interacting Fermi gas. Phys. Rev. Lett. 92,
150402 (2004).

9. Bourdel, T. et al. Experimental study of the BEC-BCS crossover region in
lithium 6. Phys. Rev. Lett. 93, 050401 (2004).

10. Chin, C. et al. Observation of the pairing gap in a strongly interacting Fermi
gas. Science 305, 1128–1130 (2004).

11. Partridge, G. B., Strecker, K. E., Kamar, R. I., Jack, M. W. & Hulet, R. G.
Molecular probe of pairing in the BEC-BCS crossover. Phys. Rev. Lett. 95,
020404 (2005).

12. Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle,
W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435,
1047–1051 (2005).

13. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via
magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361
(2006).

14. Krems, R., Stwalley, W. & Friedrich, B. (eds. Cold Molecules: Theory,
Experiments, Applications (CRC Press, 2009).

15. Taylor, J. R. Scattering Theory: The Quantum Theory of Nonrelativistic
Collisions (Dover, 2006).

16. Hutson, J. M. Feshbach resonances in ultracold atomic and molecular
collisions: threshold behaviour and suppression of poles in scattering lengths.
New J. Phys. 9, 152–152 (2007).

17. Inouye, S. et al. Observation of Feshbach resonances in a Bose-Einstein
condensate. Nature 392, 151–154 (1998).

18. Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Tuning pwave interactions in
an ultracold Fermi gas of atoms. Phys. Rev. Lett. 90, 053201 (2003).

19. Beaufils, Q. et al. Feshbach resonance in d-wave collisions. Phys. Rev. A 79,
032706 (2009).

20. Baumann, K., Burdick, N. Q., Lu, M. & Lev, B. L. Observation of low-field
Fano-Feshbach resonances in ultracold gases of dysprosium. Phys. Rev. A 89,
020701(R) (2014).

21. Mukaiyama, T., Abo-Shaeer, J. R., Xu, K., Chin, J. K. & Ketterle, W.
Dissociation and decay of ultracold sodium molecules. Phys. Rev. Lett. 92,
180402 (2004).

22. Dürr, S., Volz, T. & Rempe, G. Dissociation of ultracold molecules with
Feshbach resonances. Phys. Rev. A 70, 031601 (2004).

23. Volz, T. et al. Feshbach spectroscopy of a shape resonance. Phys. Rev. A 72,
010704 (2005). (R).

24. Dürr, S. et al. Dissociation of Feshbach molecules into different partial waves.
Phys. Rev. A 72, 052707 (2005).

25. Mathew, R. & Tiesinga, E. Controlling the group velocity of colliding atomic
Bose-Einstein condensates with Feshbach resonances. Phys. Rev. A 87, 053608
(2013).

26. Wang, Y., D’Incao, J. P., Nägerl, H. C. & Esry, B. D. Colliding Bose-Einstein
condensates to observe Efimov physics. Phys. Rev. Lett. 104, 113201 (2010).

27. Gensemer, S. D., Martin-Wells, R. B., Bennett, A. W. & Gibble, K. Direct
observation of resonant scattering phase shifts and their energy dependence.
Phys. Rev. Lett. 109, 263201 (2012).

28. Genkina, D. et al. Feshbach enhanced s-wave scattering of fermions: direct
observation with optimized absorption imaging. New J. Phys. 18, 013001
(2015).

29. Rakonjac, A. et al. Laser based accelerator for ultracold atoms. Opt. Lett. 37,
1085–1085 (2012).

30. Thomas, R. et al. Multiple scattering dynamics of fermions at an isolated
p-wave resonance. Nat. Commun. 7, 12069 (2016).

31. Mark, M. et al. Spectroscopy of ultracold trapped cesium Feshbach molecules.
Phys. Rev. A 76, 042514 (2007).

32. Wang, F. et al. Formation of ultracold NaRb Feshbach molecules. New J. Phys.
17, 035003 (2015).

33. Kaufman, A. M. et al. Radio-frequency dressing of multiple Feshbach
resonances. Phys. Rev. A 80, 050701 (2009).

34. Sawyer, B. J., Horvath, M. S. J., Tiesinga, E., Deb, A. B. & Kjærgaard, N.
Dispersive optical detection of magnetic Feshbach resonances in ultracold
gases. Phys. Rev. A 96, 022705 (2017).

35. Hanna, T. M., Tiesinga, E. & Julienne, P. S. Creation and manipulation of
Feshbach resonances with radiofrequency radiation. New J. Phys. 12, 083031
(2010).

36. Roberts, K. O. et al. Steerable optical tweezers for ultracold atom studies. Opt.
Lett. 39, 2012–2015 (2014).

37. Wade, A. C. J., Baillie, D. & Blakie, P. B. Direct simulation Monte Carlo method
for cold-atom dynamics: classical Boltzmann equation in the quantum collision
regime. Phys. Rev. A 84, 023612 (2011).

38. You, L. & Holland, M. Ballistic expansion of trapped thermal atoms. Phys. Rev.
A 53, 1–4 (1996).

39. Sanner, C. et al. Suppression of density fluctuations in a quantum degenerate
Fermi gas. Phys. Rev. Lett. 105, 040402 (2010).

40. Legere, R. & Gibble, K. Quantum scattering in a juggling atomic fountain. Phys.
Rev. Lett. 81, 5780–5783 (1998).

41. Kjærgaard, N., Mellish, A. S. & Wilson, A. C. Differential scattering
measurements from a collider for ultracold atoms. New J. Phys. 6, 146
(2004).

42. Buggle, C., Léonard, J., von Klitzing, W. & Walraven, J. T. M. Interferometric
determination of the s and d-wave scattering amplitudes in 87Rb. Phys. Rev.
Lett. 93, 173202 (2004).

43. Mellish, A. S., Kjærgaard, N., Julienne, P. S. & Wilson, A. C. Quantum
scattering of distinguishable bosons using an ultracold-atom collider. Phys. Rev.
A 75, 020701 (2007).

44. Burdick, N. Q., Sykes, A. G., Tang, Y. & Lev, B. L. Anisotropic collisions of
dipolar Bose–Einstein condensates in the universal regime. New J. Phys. 18,
113004 (2016).

45. Horvath, M. S. J. Energy Dependent Scattering of Ultracold Atom about a
Feshbach Resonance. MSc thesis, University of Otago (2016).

46. Reiser, M. Theory and Design of Charged Paricle Beams (Wiley, 1994).
47. Marte, A. et al. Feshbach resonances in rubidium 87: precision measurement

and analysis. Phys. Rev. Lett. 89, 283202 (2002).
48. Mies, F. H. A multichannel quantum defect analysis of diatomic predissociation

and inelastic atomic scattering. J. Chem. Phys. 80, 2514–2525 (1984).
49. Julienne, P. S. & Gao, B. in Simple Theoretical Models for Resonant Cold Atom

Interactions. (eds. Roos, C., Häffner, H. & Blatt, R.) 261–268 (AIP Conference
Proceedings, 2006).

50. Chin, C. & Flambaum, V. V. Enhanced sensitivity to fundamental constants in
ultracold atomic and molecular systems near Feshbach resonances. Phys. Rev.
Lett. 96, 230801 (2006).

51. Borschevsky, A., Beloy, K., Flambaum, V. V. & Schwerdtfeger, P. Sensitivity of
ultracold-atom scattering experiments to variation of the fine-structure
constant. Phys. Rev. A 83, 052706 (2011).

52. Strauss, C. et al. Hyperfine, rotational, and vibrational structure of the a3
Pþ

u
state of 87Rb2. Phys. Rev. A 82, 052514 (2010).

Acknowledgements
This work was supported by the Marsden Fund of New Zealand (Contract No.
UOO1121). M.S.J.H. conducted her work under a scholarship funded by the New
Zealand Tertiary Education Committee through the Dodd-Walls Centre and a University
of Otago Postgraduate Publishing Bursary (Master’s).

Author contributions
A.B.D. and N.K. conceived the project. M.S.J.H. and A.B.D. performed experiments with
support from R.T. M.S.J.H. analyzed the data with support from R.T. and A.B.D. E.T.
provided theory. M.S.J.H. and N.K. prepared the manuscript with input and comments
from all authors. N.K. supervised the project.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00458-y.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00458-y

8 NATURE COMMUNICATIONS |8:  452 |DOI: 10.1038/s41467-017-00458-y |www.nature.com/naturecommunications

http://dx.doi.org/10.1038/s41467-017-00458-y
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
www.nature.com/naturecommunications


Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00458-y ARTICLE

NATURE COMMUNICATIONS |8:  452 |DOI: 10.1038/s41467-017-00458-y |www.nature.com/naturecommunications 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider
	Results
	System under study
	Apparatus and experimental procedure
	Collisional loss from a Feshbach resonance
	Spatial distortions of colliding clouds
	Differential magnetic moment from spatially dependent loss

	Discussion
	Methods
	State preparation and collision procedure
	Energy spread in the optical collider
	Modeling center-of-mass shifts of post-collision clouds
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




