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Behavioral measurement and evaluation are broadly used to understand brain functions

in neuroscience, especially for investigations of movement disorders, social deficits, and

mental diseases. Numerous commercial software and open-source programs have been

developed for tracking the movement of laboratory animals, allowing animal behavior

to be analyzed digitally. In vivo optical imaging and electrophysiological recording in

freely behaving animals are now widely used to understand neural functions in circuits.

However, it is always a challenge to accurately track the movement of an animal under

certain complex conditions due to uneven environment illumination, variations in animal

models, and interference from recording devices and experimenters. To overcome these

challenges, we have developed a strategy to track the movement of an animal by

combining a deep learning technique, the You Only Look Once (YOLO) algorithm,

with a background subtraction algorithm, a method we label DeepBhvTracking. In our

method, we first train the detector using manually labeled images and a pretrained

deep-learning neural network combined with YOLO, then generate bounding boxes

of the targets using the trained detector, and finally track the center of the targets by

calculating their centroid in the bounding box using background subtraction. Using

DeepBhvTracking, the movement of animals can be tracked accurately in complex

environments and can be used in different behavior paradigms and for different animal

models. Therefore, DeepBhvTracking can be broadly used in studies of neuroscience,

medicine, and machine learning algorithms.

Keywords: movement tracking, behavioral assessment, deep learning, YOLO, background subtraction

INTRODUCTION

Behavior measurement and evaluation is one of the key methods to understand brain functions
in neuroscience, especially with respect to movement and social behaviors. Different behavior
paradigms (e.g., treadmill, open field, ymaze, watermaze, elevated plusmaze, and three-chambered
maze) have been developed and used to evaluate the movement, anxiety, social behavior, disease
development, sleep disorder, the effect of medication, etc., of an animal (Feng et al., 2020; Yu et al.,
2020). More importantly, with technical developments in electrophysiological recording, optical
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imaging, and optogenetics manipulating in freely behaving
animals, we can study brain function in neural microcircuits. To
understand the behavior of an animal systematically, it is essential
to accurately and quickly quantify the movement of the animal
(e.g., direction, speed, distance, and range of motion). However,
due to the complexity of laboratory conditions and interference
from the camera or other experimental devices used in behavioral
recording, it is a significant challenge to track animal locomotion
efficiently and precisely.

Given the importance of movement tracking of laboratory
animals, numerous open-source programs and commercial
systems have been developed for recording and analyzing animal
behavior, such as Limelight (Actimetrics, USA) (Jimenez et al.,
2018; Ishii et al., 2019; Takemoto and Song, 2019), ANY-maze
(Stoelting Co, USA) (Morin and Studholme, 2011; Rodrigues
et al., 2019; Feng et al., 2020; Scarsi et al., 2020), Ethovision R© XT
(Noldus, The Netherlands) (Noldus et al., 2001; Yu et al., 2020),
TopScan (Clever Sys Inc., USA) (Grech et al., 2019; Griffiths et al.,
2019), Super-maze (Shanghai Xinruan information Technology
Co., China) (Hao et al., 2012; Qiao et al., 2017), and others
(Samson et al., 2015; Gulyás et al., 2016; Bello-Arroyo et al.,
2018; Hewitt et al., 2018). In previous studies, motion tracking
in videos captured by the video camera is the most common and
low-cost approach to achieve tracking of multiple parameters.
Most tracking methods are based on background subtraction
algorithms and were developed for rodents. With such an
algorithm, an accurate route map can be calculated and drawn
based on the contour of targets in a high-definition video
image. However, these algorithms are subject to breakdown as
both experimental paradigms and laboratory conditions become
more complex. In addition, modern technical methods such
as electrophysiological recording, optical imaging, and optical
stimulation are now widely used with freely behaving animals.
High background noise becomes a significant problem, making
it difficult to quantify the movement of an animal. The use of
background subtraction algorithms alone often cannot effectively
separate the target from the high background noise. To overcome
these challenges, many alternative methods, such as microwave
Doppler radar (Giansanti et al., 2005) and RFID technology
(Lewejohann et al., 2009; Catarinucci et al., 2014), have been
proposed for tracking animal motion. However, those systems
tend to involve additional devices attached to the head of an
animal which may be unstable or have a negative influence on
the flexibility of the movement of the animal. Also, those systems
are expensive and difficult to modify by the user because of high
integration and low flexibility.

Recently, researchers in the field of computer vision have
advanced a number of algorithms to process image data,
including some novel solutions for the detection of moving
animals and humans. Some machine learning algorithms have
shown high precision in object detection, such as deformable
parts models (Felzenszwalb et al., 2010; Unger et al., 2017), R-
CNN (Girshick et al., 2014), and deep neural networks (Geuther
et al., 2019; Yoon et al., 2019). Using those algorithms, several
toolboxes were developed for precisely calculating the postures
of laboratory animals during movements, such as DeepLabCut
(Mathis et al., 2018; Nath et al., 2019), LEAP (Wang et al., 2017;

Pereira et al., 2019), DeepPoseKit (Graving et al., 2019), TRex
(Walter and Couzin, 2021), and DANNCE (Dunn et al., 2021;
Karashchuk et al., 2021), which greatly simplify and speed up the
analysis of multiple behaviors. Although these algorithms may be
used to track the gross movement of an animal, they are time-
consuming and insufficiently accurate for our purposes because
the exact centers cannot be obtained in the process of creating a
training dataset.

YOLO is a new generation of deep learning algorithm based
on convolutional neural networks (CNN) for object detection
(Redmon et al., 2016; Redmon and Farhadi, 2017). Compared
with R-CNN, a previous detection algorithm that selects a region
of interest (ROI) for possible targets and then identifies targets
by classification, YOLO transforms the detection process to a
regression problem, predicting the coordinates of the bounding
box of the target and classifying the probabilities (p-value)
of the target directly from the full image through a single
network, making it easier to optimize for better performance.
Using YOLO, we can predict both the species and locations
of experimental animal subjects in a video. However, YOLO
only provides the position of an area around the animal
(bounding box) instead of the actual position of the animal. The
range or position of the bounding box may change abruptly
between two sequential frames of the video, even with subtle
animal movement. Therefore, it is also difficult to accurately
track the position of an animal using only YOLO. Considering
the advantages and disadvantages of previous algorithms, we
postulated that if YOLO and the background subtraction method
were combined, the animal motion could be tracked more
accurately and efficiently.

In this study, we propose a laboratory animal behavior
tracking method named “DeepBhvTracking” based on both a
deep learning algorithm (YOLO) and a background subtraction
algorithm. To successfully track animal motion, we first obtain
the approximate location of the experimental animal by drawing
a bounding box using YOLO, and then, we measure the
position of an animal based on the background subtraction
algorithm. With our method, movement can be tracked under
complex conditions accurately and quickly. All codes with
respect to DeepBhvTracking are open-source; the scripts can
be customized, and different experimental animal detection
models can be easily trained. Overall, DeepBhvTracking is a
widely applicable and high-powered behavior tracking method
for laboratory animals.

MATERIALS AND METHODS

Materials
All experimental procedures were approved by the Animal
Use and Care Committee of Zhejiang University following the
National Institutes of Health (NIH) guidelines. Adult wild-type
C57BL/6 mice (n = 6) were used for most experiments. For
movement comparison, mice with PRRT2 (n = 6) and FMR1 (n
= 6) mutations were used. Our tracking method was also tested
in adult common marmosets (n= 3).

For data storage and processing, a high-performance
computer (Dell, USA) was used (CPU Intel(R) Core (TM)
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i7-10700 CPU @ 2.90 GHz, RAM 64 GB, GPU Inter(R) UHD
Graphics 630 8 GB). The DeepBhvTracking program was run
within MATLAB R2020a with deep learning toolbox, computer
vision toolbox, and pretrained deep neural networks: resnet18,
mobilenetv2, and resnet50.

In this study, all test videos were taken using a standard
webcam (1,080 p for origin videos). For fast processing speed,
original videos were read and resized to the resolution of
360∗640∗3 pixels for further analysis.

Methods
Model Training
1. Image labeling: Because YOLO is a supervised algorithm,

manually labeled images are required for model training
(Redmon et al., 2016). To provide training data using a
wide range of animal behaviors, images with RGB format
were extracted randomly from videos, and a rectangular
region around the animal was marked in each image using
the Image Label App in the computer vision toolbox of
MATLAB. The details of using the Image Label App are
available online at https://www.mathworks.com/help/vision/
ref/imagelabeler-app.html. After testing under laboratory
conditions, we found that around 300 labeled images were
usually required for accurate detection under each condition.

2. Image preparation: To test prediction accuracy, the dataset of
labeled images was randomly divided into three sets: training
(70%), validation (10%), and test (20%). Labeled images in
the training set were transformed and resized, including color
distortion and information dropping for broad adaptability.
The original validation and test sets were retained to evaluate
the accuracy of the model.

3. Detector training: In this task, a pretrained deep neural
network was transferred and combined with the YOLO
algorithm for target detection. For YOLO, the images were
normalized to the same resolution for feature extraction.
Previous studies indicated that the normalized image size and
differences among the pretrained networks have a significant
impact on the accuracy and speed of training and tracking. To
test this possibility, different pretrained networks including
resnet18, mobilenetv2, and resnet50 were tested for each of
the following normalized image sizes: 224∗224∗3, 320∗320∗3,
416∗416∗3, and 512∗512∗3. In this task, the detector was
trained by mini-batch gradient descent (batch size is 16
frames), and the parameters of the network were updated
after several iterations via back-propagation. The number of
total epochs is 20 and the learning rate is 0.0001. Detailed
principles and algorithm derivation follow from previous
studies (Redmon et al., 2016; Redmon and Farhadi, 2017).
After training, the detector was used for tracking evaluations.

Video Tracking
The position of an animal was tracked by combining the
deep learning algorithm YOLO with a background subtraction
algorithm. Our strategy was to define the bounding box of the
target using YOLO and then to obtain the centroid of the target
by background subtraction inside the bounding box. Background
subtraction tracked moving animals through a pixel-by-pixel

comparison of the present image with a background image, as
described in detail by others (Barnich and Van Droogenbroeck,
2011).

First, to avoid interference from objects outside the maze,
we manually defined the tracking area and set areas outside
the tracking area to the background color. Second, the detector
trained by YOLO was used to track the position of the animal
with a bounding box. In many cases, multiple boxes were
detected in one image. In this case, the bounding box with the
highest p-value was chosen for future use. Next, the bounding
box was enlarged 1.5 times to completely cover the whole animal.
Finally, a traditional background subtraction method was used
to obtain the contour of the animal in the bounding box, and the
centroid of the animal was calculated based on the contour.

Laboratory Animal Tested by DeepBhvTracking
To evaluate the effectiveness of our tracking method—
DeepBhvTracking, black or white mice and marmosets were
tested in different behavior paradigms: open field, elevated
plus maze, L maze, inverted V-shape maze, and treadmill.
We also compared the performance of four tracking methods
(background subtraction, YOLO detection, DeepLabCut, and
DeepBhvTracking) in three classical behavior paradigms with
different noise levels: open field, L maze, and three-chambered
maze. Open field is a high signal-to-noise ratio scenario without
the interference of wires or operation of an experimenter; in
contrast, L maze involves interference from electric wires and
hands of the experimenter because of behavior training and
calcium imaging. Three-chambered maze is a low signal-to-
noise ratio scenario due to the similar color between mice
and background. To avoid bias from the training dataset on
the performance of different algorithms, 300 images extracted
from six videos based on a K-means algorithm were used to
train the models of the three deep learning methods: YOLO
detection, DeepLabCut, and DeepBhvTracking. In this study, we
also compared movement differences among movement-deficit
mice (PRRT2, FMR1) and wild-type mice. The movement of each
animal was recorded for 8min and tracked by DeepBhvTracking.

Comparison With Other Methods
To test tracking efficiency, we compared the training time,
tracking speed, error to ground truth, and movement speed
of animals detected by the different methods. To compare
training speed, both DeepLabCut and DeepBhvTracking models
were trained using the same dataset, pretrained neural network
(resnet50), and parameters (image number: 300; batch size: 8;
iterations: 2000). Tracking speed reflected the video processing
speed (frames/second, fps). Error to ground truth was used to
estimate the distance between the real location and the estimated
location of the target.

Statistical Analysis
Error bars in all figures represent mean ± SEM, and the number
(n) of samples employed is indicated in the legends. All data
were analyzed by ANOVA followed by LSD test for multiple
comparisons, ∗ indicates p < 0.05, ∗∗ indicates p < 0.01, ∗∗∗

indicates p < 0.001.
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TABLE 1 | Detailed list of codes related to DeepBhvTracking.

Name Description

Training

dbt_dataset Get datasets for training

dbt_training Training a detector

augmentData Supporting function used in dbt_training for data

augmentation

preprocessData Supporting function used in dbt_training for resizing

image and bounding boxes to the target size

Tracking

dbt_singleTracking Tracking for single file

dbt_batchTracking Tracking for batch files

dbt_manualTracking Manual click tracking undetected and incorrect

frames after tracking

dbt_bhvread Supporting function for read video data, supporting

for multiple formats

dbt_createLabeledVideo Create the labeled video

dbt_optimize Save undetected and incorrect frames for

optimizing model

The codes in thismanuscript are open-source, and the detailed
list is shown in Table 1. Users can download the codes at GitHub
online (https://github.com/SunGL001/DeepBhvTracking).

RESULTS

Training and Tracking Optimization
In this task, the position of an animal was tracked by combining
pretrained neural networks with the YOLO algorithm and
background subtraction (Figure 1). To accurately track the
position of different kinds of animals, a well-trained detector
was required. We found that the training time was longer,
and the tracking accuracy decreased if we trained the model
on different kinds of animals together (data not shown).
Additionally, we found that the tracking accuracy was highly
correlated with the color of the animals and uncorrelated with
behavior paradigms. So, we trained the detectors separately for
different kinds of animals, namely, white mice, black mice,
and marmosets (Supplementary Table 1). Initially, the tracking
accuracy was low due to the training dataset that was randomly
chosen; those images did not accurately represent the complex
postures of the animals. To address this, we added a feedback
method to merge undetected images in the training dataset for
a better detector. After several iterations, an improved detector
was achieved (Figure 1A). We used 1,991 labeled images from
different behavior assays for detector training in black mice,
1,458 images in white mice, and 400 images in marmosets
(Supplementary Table 1).

During tracking, we found that the deep learning algorithms
only provided a bounding box around the target, where the
tracking center is the center of the bounding box instead of
that of the animal. Moreover, occasionally multiple bounding
boxes were obtained or the bounding box did not completely
cover the animal, causing the location of the tracking center

to change abruptly, resulting in a discontinuous motion trace
after analysis. To overcome these limitations, we first detected
the bounding box of the target by YOLO at a low threshold.
Then, we enlarged the bounding box to completely cover the
animal. Third, the contour of the animal was calculated based on
background subtraction in the region of the enlarged bounding
box (Figures 1B left,C). Last, the centroid of the animal was
determined from the center of the contour (Figures 1B right,C).

Three pretrained deep neural networks were evaluated with
different image sizes. We found the training time increased with
increasing image size (Figure 2A). Of the three neural networks,
resnet50 took the longest time at all image sizes (Figure 2A)
during detector training (two-way ANOVA, F = 360.75, p <

0.001). In the detection step, tracking speed (two-way ANOVA,
F = 92.93, p < 0.001) and accuracy (two-way ANOVA, F
= 197.00, p < 0.001) were highly correlated with image size
(Figure 2B, see legend). Compared with other networks, resnet50
showed higher precision, and resnet18 showed faster processing
speed (Figure 2B). Considering the tradeoff between speed and
precision, we set the resnet50 at a resolution of 480∗480∗3 pixels
(one of the preset parameters used during detector training) as
the pretrained deep neural network for constructing our detector.
However, resnet18 at 512∗512∗3 pixels was also a potentially
useful network for simple scenarios (e.g., mice in open-field
maze) because it had a high detection speed at relatively high
precision. The number of training images used in those three
detectors is shown in Supplementary Table 1.

Smooth Movement Map Tracked by
DeepBhvTracking
In vivo imaging and electrophysiological recording in freely
behaving animals are widely used to understand the neural
mechanisms of a particular behavior. Inherent with these
techniques are human interference and recording wires that may
be captured by the video camera during motion tracking. To
address these issues, we compared the tracking accuracy and
speed for four tracking methods in three tasks with different
kinds of environmental noise (Figure 3). In these tasks, the open
field is a simple task without other observable interference; the L
maze involves wire and hand image interference due to the wire
cable of freelymoving calcium imaging; and the three-chambered
maze involves conditions with a white mouse in a brightly lit
room light which resulted in low contrast between target and
environment (Figure 3).

To test training efficiency, we first compared the training time
and tracking speed between DeepLabCut and DeepBhvTracking
using the same dataset, pretrained neural network (resnet50), and
parameters (image number: 300; batch size: 8; iterations: 2000).
DeepLabCut showed a slower training speed than YOLO during
both training stages (Figure 3I, two-way ANOVA followed by
Bonferroni’s test, p = 0.029) and tracking stage algorithms
that are based on deep learning (Figure 3J, two-way ANOVA,
p < 0.001) with the same computer environments. First, in
high background noise conditions, we found that obvious
tracking errors were obtained with the background subtraction
method alone and that more than 1/10 of frames in one video
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FIGURE 1 | Diagram image showing workflow of DeepBhvTracking. (A) Detector training workflow combining a pretrained deep neural network and YOLO algorithm.

The parameters were updated via backpropagation. If the detector is not satisfied, wrong images were labeled, and merged into pretrained dataset for detector

training again. (B) Target tracking workflow. Left, detecting the bounding box using YOLO deep learning method. Right, obtaining centroid with background

subtraction method. (C) Schematic diagrams showing the tracking process of one frame from an open-field video. The numbers in C match the corresponding

number in the tracking workflow of (B).

FIGURE 2 | Performance comparison of three pretrained deep neural networks. (A) Comparison of training time with different image sizes for three neural networks.

Training time increased with image size for all networks. Of the three, resnet50 took the longest time for all image sizes. (B) Detection precision plot against training

speed for three neural networks at different image sizes. Data point diameter in (B) represents the image size from 224 (smallest), 320, 416, and 512 pixels (largest).

Note that because of over-fitting, resnet50 is unable to train at an image size of 512 pixels; 480 × 480 images were used instead. Detection precision increased for all

networks with increasing image size. In our training model, resnet50 at 480 pixels was used for all conditions.

were required for manual tracking (Figures 3A,E). Using this
method alone, the target mouse could be marked outside of
the tracking area in some frames due to erroneous calculation
of the center based on detected artifacts (Figure 3A). Second,
we found that the bounding box of the position of an animal
can be easily captured using YOLO with better performance

(Figures 3B,F). However, calculating the center of the bounding
does not accurately reflect the position of the animal as shown
by obviously abnormal motion in the trace (Figures 3B,F, red
arrows). Clearly, there are multiple rectangles in the tracking
trace which arise from the rapid reorientation of the bounding
box. DeepLabCut tracked the center of mice directly and
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FIGURE 3 | Comparison of three different tracking results for the same video during calcium imaging in a freely behaving mouse. (A) Left: Tracking result of one

example image with background subtraction only. Black region in red box indicates the detected pixels. Red dot indicates the center of the target. Due to the similar

color between the wire and the target animal, the wire has been detected after removing the background. With this method, the target center is marked outside of the

tracking area. Right: Blue line represents the resulting movement trace of a mouse in a 5,000 frame video. (B) Movement trace tracked by YOLO only. There are many

abnormal movements (red arrow) in the tracking trace due to the random jumping of the bounding box. The number above the mouse is the p-value predicted by

YOLO. (C) Movement trace tracked by DeepLabCut. Three of theframes failed to detect according to the trajectory. (D) Movement trace tracked by DeepBhvTracking.

The movement trace is smooth and represents the actual movement of the animal. (E–H) Movement trace in the three-chambered task tracked by background

subtraction, YOLO detection, DeepLabCut, and DeepBhvTracking, respectively. (I) Comparison of training time between two algorithms. Both models are trained

using the same dataset, pretrained neural network, and parameters. Image number: 300; neural network: resnet50; batch size: 8; iterations: 2,000. (J) Comparison of

tracking time of same video between four algorithms. There are significant differences in processing speed between the four tracking methods. (K) Comparison of

error to ground truth of four methods in different behavior assays. In these tasks: open field is a simple task without other observable interference; L maze involves

wire interference due to the wire cable of free-moving calcium imaging; three-chambered maze involves the condition with a white mouse in bright room light. The

sample size for each paradigm is six videos. DeepBhvTracking performed well in all paradigms. The original data are shown in Supplementary Tables 2–4. *p <

0.05, **p < 0.01, ***p < 0.001, tested by ANOVA with LSD test. (L) Comparison of movement speed of four methods in different behavior assays.

performed well in the three-chambered task (Figure 3G), but
there are multiple incorrect frames detected in L-maze which
arise from the periodic detection of the hand of the experimenter
(Figure 3C). Also, this method cannot exclude systematic error
introduced during training dataset preparation (human-defined
centroid of the animal). Using DeepBhvTracking, the movement

trace is smooth and most accurately represents the actual
movement of the animal (Figures 3D,H).

Statistically, compared withDeepLabCut, we found that errors
to ground truth, which was used to estimate the distance
between the real location and the estimated location of the target,
decreased both in the open field (Figure 3K, one-way ANOVA,
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F = 23.93, p < 0.001; Figure 3L, one-way ANOVA, F = 7.886,
p = 0.001) and L-maze (Figure 3K, L maze, one-way ANOVA, F
= 10.70, p < 0.001) conditions. Movement speed was lowest in
the open field and L maze (Figure 3L, p < 0.01) compared with
the other three methods. While the YOLO detection algorithm
could avoid the interference of wire and hand, the trajectory
was not smooth enough because the center of the bounding
box does not represent the center of animals (Figures 3B,F,K).
DeepLabCut and DeepBhvTracking have similar performances
in the three-chambered maze (Figure 3L, LSD test, p = 0.871).
However, errors to ground truth tracked by DeepLabCut were
higher than DeepBhvTracking (LSD test, p = 0.040) in the L
maze; this may be due to the inaccurate center position of
the animal during training dataset construction. In summary,
DeepBhvTracking can provide a relatively precise tracking result
with fast processing speed in a variety of paradigms (Figure 3).

Widely Applicable Tracking in Different
Paradigms and Animal Models by
DeepBhvTracking
To check the applicability and flexibility of DeepBhvTracking in
different paradigms, black C57BL/6 mice were tested in different
environments including open field (Supplementary Figure 1A),
L maze (Figure 3C), treadmill (Figure 4A), elevated plus maze
(Figure 4B), and inverted V-shape maze (Figure 4D). We
obtained smoothmovement traces for all conditions (Figures 3C,
4A,B,D; Supplementary Figure 1A). It is worth noting that
DeepBhvTracking achieved good performance even in a low
target-to-background contrast such as black mice on treadmill
(Figure 4A) or white mice in a white environment (Figure 4C).
Moreover, in the treadmill assay, animals run only in a
restricted area because it will be punished by an electric shock
if it falls behind the treadmill. It is usually very difficult to
calculate the movement speed of the animal when performing
neuronal decoding. Our DeepBhvTracking method overcomes
this challenge and achieves a smooth movement trace in
treadmill conditions. White mice were trained separately and
were tracked in a three-chambered box (Figure 4C) and open
field (Figure 4F). Accurate movement tracking was achieved for
both conditions. In addition, the movement of marmosets in
a 1 m3 home cage was tested and a clear movement map was
achieved by DeepBhvTracking. Finally, two animals were tracked
by labeling each animal with a different color sticker during video
recording (Figure 4F blue and orange trace), which indicated our
method may also be adapted to social behavior analysis. Hence,
DeepBhvTracking is easy and feasible to use with different animal
models and different behavior paradigms.

DeepBhvTracking Can Be Used to Test
Movement and Emotion Deficits
The open-field test is one of the most widely used paradigms for
assessing locomotor activity and anxiety in rodents. To further
test the effectiveness of our trackingmethod, we performed open-
field tests in C57BL/6 wild-type mice and in two widely used
movement-deficit mutant animals: PRRT2 (Chen et al., 2011)
and FMR1 (Baba and Uitti, 2005) (Supplementary Figure 1). For

each animal, we first draw out the movement trace of the animal
achieved by DeepBhvTracking (Supplementary Figure 1A) and
manually checked for no frame losses. Then, spatial pseudo
heat maps of movement time (Supplementary Figure 1B)
and speed (Supplementary Figure 1C) were calculated. We
found that animals stayed longer at the corners than the
central area and run faster in the middle of the open
field (Supplementary Figures 1B,E). Moreover, both mutants
ran faster in the open field than the wild-type animals
(Supplementary Figure 1D, one-way ANOVA, F = 4.356, p =

0.025; Supplementary Figure 1F, two-way ANOVA, F = 16.15,
p < 0.001). Open field can also be used to test the anxiety
level base of an animal on the time spent in the corner or
center. Based on our tracking method, mice with PRRT2mutants
stayed at the corner for a shorter time than wild animals
(Supplementary Figure 1E, two-way ANOVA, F = 18.11, p <

0.001). These results may indicate a low anxiety level for PRRT2
mutants in our open field conditions. Further experiments should
be performed to confirm this result.

DISCUSSION

Accurate behavioral measurement and evaluation are the
key steps for pharmacology, neuroscience, and psychological
studies. However, commercially available software and open-
source programs have many limitations, especially when the
experiments are performed under complex environmental
conditions. To overcome these difficulties, we designed
DeepBhvTracking to track the position of an animal combining
deep learning with the YOLO algorithm and background
subtraction using the widely used software MATLAB. By
incorporating the YOLO detection algorithm, the detection
effectiveness is improved by generating a bounding box of the
tracked animal (Figures 3B,D,F,H). Simultaneously, background
subtraction was applied in the bounding box to acquire an exact
location of the animal, which corrects for the slight position
deviation inherent in YOLO alone (Figure 3).

We have previously used several commercial software
packages: Limelight, ANY-maze, and open-source programs.
Although they have superior GUIs, the accuracy is insufficient
in dim light and complex environments, and they are
confounded by interruption of the recording process, for
example, a human hand. Time-consuming manual tracking is
required under these circumstances. In addition, the software
can only be used under certain predefined conditions and
is exceedingly difficult to modify for new environments.
Recently, several algorithms, such as DeepLabCut (Mathis
et al., 2018; Nath et al., 2019), LEAP (Wang et al., 2017;
Pereira et al., 2019), and DeepPoseKit (Graving et al., 2019),
based on deep learning have been developed to estimate
the posture of an animal during movement. Undoubtedly,
those methods can obtain detailed movement information
about the targets and have been broadly used in multiple
studies (Dooley et al., 2020; Huang et al., 2021). However,
these methods have intrinsic limitations to accurate estimation
of the centroid of irregular animal targets during training
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FIGURE 4 | Movement tracking in diverse paradigms using DeepBhvTracking. (A) Black mice in treadmill task. With a black mouse on a black background, the ratio

between signal and noise is very low. Moreover, the animal only runs in a restricted area because it has been trained not to fall behind the treadmill. It is very difficult to

calculate the speed of the animal while performing neuronal decoding in this task. Our DeepBhvTracking method overcomes this challenge and achieves a smooth

movement trace. (B) Black mice in elevated plus maze. (C) White mice in three-chambered box maze. (D) Black mice in inverted V-shape maze. (E) Marmoset

movement trace in home cage. (F) Social behavior of white mice in open field. Blue trace: White mouse with a blue mark on its back. Orange trace: White mouse with

a green mark on its back.

dataset preparation (human-defined center of an animal). Also,
tracking speed is very slow with those methods (Figure 3J).
Although DeepBhvTracking is also a supervised algorithm,
we used background subtraction to correct the systematic
error of training dataset preparation. So, DeepBhvTracking is
stable, more accurate (Figure 3), less susceptible to background
noise, and suitable for different kinds of animals and behavior
paradigms (Figure 4). Furthermore, using a feedback training
strategy, one can easily improve the detector by adding
more labeled images. In addition, DeepBhvTracking also takes
advantage of a background subtraction algorithm that defines the
centroid of an animal more precisely. With these improvements,
we can further increase the tracking accuracy and effectiveness.

Finally, DeepBhvTracking is capable of tracking two animals
in one video (Figure 4F), if animals are marked with different
colors; this indicates that this method is also feasible for the study
of social behavior. As a new method, DeepBhvTracking is well-
suited to detect multiple types of animals in different scenarios
(Figure 4), and it is straightforward to train or optimize the
detector according to individual needs. Based on the position
tracked by the DeepBhvTracking, the movement distance, the
elapsed time, and the speed of the animal can be calculated easily
(Supplementary Figure 1).

It is worth noting that DeepBhvTracking can only track
the whole-body centroid of an animal; there is no information
regarding head direction or body parts. But information of the
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contour of an animal remains, which makes it possible to define
more fine details of an animal, such as the head or tail. In
addition, the body parts of animals could be tracked by labeling
them with different colors. For example, if we label the nose of a
mouse with a redmark and its tail with a greenmark, the location
of the nose or tail could be tracked by DeepBhvTracking as long
as the detector was previously trained to recognize the red and
green marks separately.

CONCLUSION

We have designed a strategy to track the centroid of an
animal combining deep learning with the YOLO algorithm and
background subtraction, a tool we call DeepBhvTracking. With
this improved method, the motion of laboratory animals can be
tracked accurately in a variety of different behavioral paradigms.
This in turn offers the potential to speed up many studies in
neuroscience, medicine, and so on.
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