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This paper develops a new empirical likelihood method for semiparametric linear regression with a completely unknown error
distribution and right censored survival data.Themethod is based on theBuckley-James (1979) estimating equation. It inherits some
appealing properties of the complete data empirical likelihood method. For example, it does not require variance estimation which
is problematic for the Buckley-James estimator. We also extend our method to incorporate auxiliary information. We compare our
method with the synthetic data empirical likelihood of Li andWang (2003) using simulations. We also illustrate our method using
Stanford heart transplantation data.

1. Introduction

Suppose that one observes right censored regression data
consisting of 𝑛 i.i.d. triples (𝑋

𝑖
, 𝑍

𝑖
, 𝛿

𝑖
) = (𝑋

𝑖
, 𝑌

𝑖
∧ 𝐶

𝑖
, 𝐼[𝑌

𝑖
≤

𝐶
𝑖
]), 𝑖 = 1, . . . , 𝑛, where for subject 𝑖, 𝑌

𝑖
is a knownmonotone

transformation of the survival time of interest, 𝐶
𝑖
is the

corresponding censoring time, and 𝑋
𝑖
= (𝑋

𝑖1
, . . . , 𝑋

𝑖𝑝
)
𝜏 is a

vector of 𝑝 covariates. We consider the problem of making
inferences for the slope parameter of the semiparametric
linear regression model as follows:

𝑌
𝑖
= 𝑋

𝜏

𝑖
𝛽 + 𝜖

𝑖
, 𝑖 = 1, . . . , 𝑛, (1)

where 𝛽 = (𝛽
1
, . . . , 𝛽

𝑝
)
𝜏 is a 𝑝 × 1 vector of unknown regres-

sion coefficients and 𝜖
𝑖
’s are independent and identically

distributed random errors with an unknown distribution 𝐹.
Assume that 𝜖

𝑖
is independent of (𝑋

𝑖
, 𝐶

𝑖
) and that conditional

on 𝑋
𝑖
, 𝑌

𝑖
and 𝐶

𝑖
are independent, 𝑖 = 1, . . . , 𝑛. Because the

error distribution 𝐹 is completely unknown, we assume no
intercept term in model (1) in order for 𝐹 to be identifiable.
Assume further that the covariance matrix of 𝑋

𝑖
is positive

definite.Model (1) provides a useful alternative to the popular
Cox [1] model when the proportional hazards assumption
does not hold. Furthermore, it makes no parametric assump-
tion on the error distribution and is, thus, more flexible than

parametric accelerated failure time models (cf. Andersen et
al. [2]).

Buckley and James [3] extended the least squares method
to estimate the regression coefficient 𝛽 in model (1) with
right censored data. The Buckley-James estimator can be
calculated using an iterative algorithm. Its consistency and
asymptotic normality have been established by Lai and Ying
[4], Ritov [5], Tsiatis [6], Ying [7], and others. However, its
asymptotic variance involves the unknown hazard function
of 𝜖, and its derivatives whose nonparametric estimations
are problematic (cf. Ritov [5]). To overcome this problem,
several approaches have been studied in the literature. Jin et
al. [3, 8], Wei et al. [9], and Lin and Geyer [10] considered
rank-based inferences. Koul et al. [11] introduced a synthetic
data approach which was further investigated by Zhou [12],
Lai et al. [13], and others. Let 𝑌

𝑖𝐺
= 𝛿

𝑖
𝑌

𝑖
/𝐺(𝑌

𝑖
−), where 𝐺 is

the survival function of the censoring time. It can be shown
that 𝐸(𝑌

𝑖𝐺
| 𝑋

𝑖
) = 𝐸(𝑌

𝑖
| 𝑋

𝑖
) if 𝐶 is independent of 𝑋 and 𝑌.

Koul et al. [11] proposed to estimate the regression parameters
by regressing 𝑌

𝑖𝐺̂
on 𝑋

𝑖
, where 𝐺̂ is the Kaplan-Meier [14]

estimate of 𝐺 and 𝑌
𝑖𝐺̂

is referred to as a synthetic variable.
Koul et al. [11] showed that the synthetic data estimator is
asymptotically normal and its variance is simple to estimate.
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However, it requires a strong assumption that the censoring
time is independent of both the survival time and the
covariates. It can also have poor small sample performance in
the presence of heavy censoring (cf. Li and Wang [15]). Jing
and Qin [16] and Li and Wang [15] independently developed
empirical likelihood-based inference for 𝛽 using synthetic
data. Their methods provide substantial improvement over
the normal theory method of Koul et al. [11], but are still
not very satisfactory for small samples (cf. Li and Wang
[15]). The synthetic data approach makes an independence
assumption between 𝐶 and (𝑌,𝑋). Li and Lu [17] showed
that it can yield seriously biased parameter estimate if 𝐶
depends on 𝑋. Zhou and Li [18] developed a censored
data EL method under a weaker censorship assumption
that 𝑌 and 𝐶 are conditionally independent given 𝑋. Their
method also demonstrated better small sample performance
than the synthetic data EL method when the errors 𝜖

𝑖
’s

are independent and identically distributed (homogeneous).
On the other hand, it is not easy to extend the method of
Zhou and Li [18] to incorporate auxiliary information and
to construct confidence regions for linear combinations of
the regression coefficients, which are relatively easy using the
synthetic data EL method (cf. Li and Wang [15]).

In this paper, we develop a new empirical likelihood
method for linear regression with right censored data. We
construct an estimated empirical likelihood based on the
estimation equation for the Buckley-James [3] estimator. The
approach inheritsmany appealing features of empirical likeli-
hood. For example, the shape and orientation of a confidence
region are entirely determined by data. Most importantly, it
does not involve variance estimation. Our simulation shows
that, under the assumptions of model (1), our method is far
superior to the synthetic data empirical likelihood method
of Li and Wang [15], with substantially shorter confidence
intervals and higher coverage probabilities. Compared to
Zhou and Li [18]’s method, our method may not be as
efficient, but it is easier to compute. It can also be extended
easily to incorporate auxiliary information and to construct
confidence regions for linear combinations of the regression
coefficients. More discussion of the pros and cons of our
method in relation to existing methods are given later in
Remark 2.

The use of empirical likelihood dates back at least to
Thomas and Grunkemeier [19] who constructed confidence
intervals for survival probabilities. The idea was later pop-
ularized by Owen [20, 21] who derived confidence regions
for the mean of a random vector. Since the work of Owen
[20, 21], there has been extensive developments of empir-
ical likelihood methods for a wide range of applications
including, among others, linear models [22–24], generalized
linear models [25], quantile estimation [26], biased sample
models [27], generalized estimating equations [28], depen-
dent process model [29], partial linear models [30], mixture
proportions [31], confidence bands for survival functions
[32], confidence bands for quantile functions [33], censored
cost regression [34], and confidence tubes for multiple
quantile plots [35]. Some nice discussion of properties of
empirical likelihood can be found in DiCiccio, Hall and
Romano [36], Hall [37], and Hall and Scala [38], and others.

A comprehensive survey of empirical likelihood and further
references can be found in Owen [39] and Li et al. [40].

In Section 2, we derive an estimated empirical likelihood
for 𝛽 by combining the ideas of Owen [21, 22] and Buckley
and James [3]. An adjustment factor is adopted so that the
adjusted empirical likelihood has an asymptotic standard
Chi-square distribution. We also discuss how to incorporate
auxiliary information using empirical likelihood. Section 3
presents results from a simulation study to illustrate the
performance of our method compared with the synthetic
data empirical likelihood method. A real data example is
also provided. Section 4 gives some concluding remarks. The
proofs are collected in the appendix.

2. Empirical Likelihood Inference

2.1. Empirical Likelihood Based on the Buckley-James Estimat-
ing Equation. Wemotivate our procedure by first considering
the case where 𝜇

𝑋
= 𝐸(𝑋) and 𝐹 are known.

We first give a review of the Buckley-James equation. It
can be shown that, under model (1),

𝛽 = [𝐸 {(𝑋
𝑖
− 𝜇

𝑋
)𝑋

𝑖
}]

−1
𝐸 {(𝑋

𝑖
− 𝜇

𝑋
) 𝑌

𝑖
} , (2)

or, equivalently,

𝐸 {(𝑋
𝑖
− 𝜇

𝑋
) (𝑌

𝑖
− 𝑋

𝜏

𝑖
𝛽)} = 0. (3)

Because 𝑌
𝑖
is not always observable, we impute 𝑌

𝑖
by its

conditional expectation given the observed data as follows:

𝑌
∗

𝑖
= 𝐸 (𝑌

𝑖
| 𝑋

𝑖
, 𝑍

𝑖
, 𝛿

𝑖
)

= 𝛿
𝑖
𝑍

𝑖
+ (1 − 𝛿

𝑖
)

×

{

{

{

𝑋
𝜏

𝑖
𝛽 +

∫

∞

𝑍𝑖−𝑋
𝜏

𝑖
𝛽
𝑡𝑑𝐹 (𝑡)

1 − 𝐹 (𝑍
𝑖
− 𝑋

𝜏

𝑖
𝛽)

}

}

}

.

(4)

Noting that 𝐸(𝑌∗

𝑖
| 𝑋

𝑖
) = 𝐸(𝑌

𝑖
| 𝑋

𝑖
), we can replace 𝑌

𝑖
by

𝑌
∗

𝑖
in (3). This leads to

𝐸 {𝑊
𝑖
(𝛽, 𝐹, 𝜇

𝑋
)} = 0, (5)

where

𝑊
𝑖
(𝛽, 𝐹, 𝜇

𝑋
) = (𝑋

𝑖
− 𝜇

𝑋
)

×

{

{

{

𝛿
𝑖
(𝑍

𝑖
− 𝑋

𝜏

𝑖
𝛽)

+ (1 − 𝛿
𝑖
)

∫

∞

𝑍𝑖−𝑋
𝜏

𝑖
𝛽
𝑡𝑑𝐹 (𝑡)

1 − 𝐹 (𝑍
𝑖
− 𝑋

𝜏

𝑖
𝛽)

}

}

}

.

(6)

Now, the problem of testing𝐻
0
: 𝛽 = 𝛽

0
is equivalent to

testing

𝐻
0
: 𝐸 {𝑊

𝑖
(𝛽

0
, 𝐹, 𝜇

𝑋
)} = 0, (7)
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based on 𝑛 i.i.d. observations𝑊
𝑖
(𝛽

0
, 𝐹, 𝜇

𝑋
), 𝑖 = 1, . . . , 𝑛. This

problem can be readily solved using the results of Owen [21].
Specifically, define

𝑙
𝑛
(𝛽, 𝐹, 𝜇

𝑋
)

= −2 sup{
𝑛

∑

𝑖=1

log (𝑛𝑝
𝑖
) |

𝑛

∑

𝑖=1

𝑝
𝑖
𝑊

𝑖
(𝛽, 𝐹, 𝜇

𝑋
) = 0,

𝑛

∑

𝑖=1

𝑝
𝑖
= 1, 𝑝

𝑖
≥ 0, 1 ≤ 𝑖 ≤ 𝑛} .

(8)

Owen [21] showed that

𝑙
𝑛
(𝛽, 𝐹, 𝜇

𝑋
) = 2

𝑛

∑

𝑖=1

log {1 + 𝜆𝜏
𝑊

𝑖
(𝛽, 𝐹, 𝜇

𝑋
)} , (9)

where 𝜆 is the solution of the equation

1

𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
(𝛽, 𝐹, 𝜇

𝑋
)

1 + 𝜆
𝜏
𝑊

𝑖
(𝛽, 𝐹, 𝜇

𝑋
)

= 0. (10)

Moreover, under 𝐻
0
, 𝑙

𝑛
(𝛽

0
, 𝐹, 𝜇

𝑋
) has an asymptotic central

Chi-square distribution with 𝑝 degrees of freedom.Thus, one
would reject𝐻

0
if 𝑙

𝑛
(𝛽

0
, 𝐹, 𝜇

𝑋
) > 𝜒

2

𝑝,𝛼
, where 𝜒2

𝑝,𝛼
is the upper

𝛼 quantile of the standard Chi-square distribution with 𝑝
degrees of freedom.

Now, we consider the case where both 𝐹 and 𝜇
𝑋

are
unknown. Define 𝑒𝛽

𝑖
= 𝑍

𝑖
− 𝑋

𝜏

𝑖
𝛽, 𝑖 = 1, . . . , 𝑛. We estimate

𝐹 by

𝐹̂

𝛽

𝑛
(𝑡) = 1 −

𝑛

∏

𝑖=1

[

𝑛 − 𝑖

𝑛 − 𝑖 + 1

]

𝐼[𝑒
𝛽

(𝑖)
≤𝑡,𝛿(𝑖)=1]

, (11)

the Kaplan-Meier [14] estimator of 𝐹 based on {(𝑒𝛽
𝑖
, 𝛿

𝑖
), 𝑖 =

1, . . . , 𝑛}, where 𝑒𝛽
(1)
≤ ⋅ ⋅ ⋅ ≤ 𝑒

𝛽

(𝑛)
are the order statistics

of the 𝑒𝛽-sample, and 𝛿
(𝑖)

is the 𝛿 associated with 𝑒𝛽
(𝑖)
, 𝑖 =

1, . . . , 𝑛. In addition, we estimate 𝜇
𝑋
by the sample mean

𝑋 = 𝑛
−1
∑

𝑛

𝑖=1
𝑋

𝑖
.

We propose to use 𝑙
𝑛
(𝛽

0
, 𝐹̂

𝛽0

𝑛
, 𝑋) as a likelihood ratio

statistic for testing𝐻
0
. However, we can no longer use Owen’s

[21] result for the null limiting distribution of 𝑙
𝑛
(𝛽

0
, 𝐹̂

𝛽0

𝑛
, 𝑋)

because 𝑊
𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)’s are not i.i.d. The following theorem

states that an adjustment factor is needed so that the limiting
null distribution is standard Chi-squared.

Theorem 1. Assume that the conditions listed in the appendix
hold. Define that

𝑐
𝑛
(𝛽) =

tr (Σ̂−1

2
(𝛽) 𝑆

𝑛
(𝛽))

tr (Σ̂−1

1
(𝛽) 𝑆

𝑛
(𝛽))

, (12)

where

𝑆
𝑛
(𝛽) = {

𝑛

∑

𝑖=1

𝑊
𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)}{

𝑛

∑

𝑖=1

𝑊
𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)}

𝜏

,

Σ̂
1
(𝛽) =

1

𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)𝑊

𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)

𝜏

,

Σ̂
2
(𝛽) =

1

𝑛

𝑛

∑

𝑖=1

∫

∞

0

(𝑢 −

∫

∞

𝑢
V𝑑𝐹𝛽

𝑛
(V)

1 − 𝐹
𝛽

𝑛 (𝑢)

)

2

× 𝑉̂ (𝑢) 𝑑𝑁𝑖 (
𝑢) ,

𝑉̂ (𝑢) =

∑
𝑛

𝑖=1
{𝑋

𝑖
− 𝑋 (𝑢)} {𝑋𝑖

− 𝑋 (𝑢)}

𝜏

𝑌
𝑖 (
𝑢)

∑
𝑛

𝑗=1
𝑌

𝑗 (
𝑢)

,

𝑋 (𝑢) =

∑
𝑛

𝑖=1
𝑋

𝑖
𝑌

𝑖 (
𝑢)

∑
𝑛

𝑗=1
𝑌

𝑗 (
𝑢)

,

𝑁
𝑖 (
𝑢) = 𝐼 (𝑒

𝛽

𝑖
≤ 𝑢, 𝛿

𝑖
= 1) ,

𝑌
𝑖 (
𝑢) = 𝐼 (𝑒

𝛽

𝑖
≥ 𝑢) .

(13)

Then, under𝐻
0
: 𝛽 = 𝛽

0
,

𝑐
𝑛
(𝛽

0
) 𝑙

𝑛
(𝛽

0
, 𝐹̂

𝛽0

𝑛
, 𝑋)

𝑑

󳨀→ 𝜒
2

𝑝
, (14)

where 𝜒2

𝑝
is a standard Chi-square random variable with 𝑝

degrees of freedom.

It follows immediately that an approximate 𝛼-level test
rejects𝐻

0
if

𝑐
𝑛
(𝛽

0
) 𝑙

𝑛
(𝛽

0
, 𝐹̂

𝛽0

𝑛
, 𝑋) > 𝜒

2

𝑝,𝛼
. (15)

Moreover, an approximate 1 − 𝛼 confidence region for 𝛽 is
given by

{𝛽 : 𝑐
𝑛
(𝛽) 𝑙

𝑛
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋) (𝛽) ≤ 𝜒

2

𝑝,𝛼
} . (16)

Remark 2. Although both the above derived method and
Zhou and Li [18] use the Buckley-James estimation equation,
a sample version of (7), they are different in that we use
the complete data likelihood, whereas Zhou and Li [18]
uses the exact censored data likelihood to construct the
EL. Similar to Li and Wang [15], the above method can be
extended to incorporate auxiliary information and to obtain
EL procedure for a subset, contrast, or linear combinations of
the regression coefficients, which does not seem easy when
using the method of Zhou and Li [18]. As an illustration,
we show below how to extend our method to incorporate
auxiliary information.

2.2. Empirical Likelihood with Auxiliary Information. Auxil-
iary population characteristics of the covariate 𝑋 are some-
times available in practice. Effective usage of the auxiliary
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information can lead tomore efficient inference (cf. Chen and
Qin [41], Qin and Lawless [28] and Zhang [42, 43]). Here, we
show how to use empirical likelihood to incorporate auxiliary
information of𝑋.

Assume that the available auxiliary information on
𝑋 is given in the form 𝐸𝑔(𝑋) = 0, where 𝑔(𝑥) =

(𝑔
1
(𝑥), . . . , 𝑔

𝑟
(𝑥))

𝜏
, 𝑟 ≥ 1, is a vector of 𝑟 known functions.

To make use of the auxiliary information, we maximize
𝑛

∏

𝑖=1

𝑝
𝑖 (17)

subject to ∑
𝑛

𝑖=1
𝑝

𝑖
= 1, ∑

𝑛

𝑖=1
𝑝

𝑖
𝑔(𝑋

𝑖
) = 0, and

∑
𝑛

𝑖=1
𝑝

𝑖
𝑊

𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋) = 0.

Let 𝐴
𝑛𝑖
(𝛽) = (𝑔

𝜏
(𝑋

𝑖
),𝑊

𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)

𝜏
)
𝜏. By the method of

Lagrange multipliers, it can be shown that (17) is maximized
at

𝑝
𝑖𝑛
=

1

𝑛

𝐴
𝑛𝑖
(𝛽)

1 + 𝜁
𝜏

𝑛
𝐴

𝑛𝑖
(𝛽)

, 𝑖 = 1, . . . , 𝑛, (18)

where 𝜁
𝑛
satisfies the following equation

1

𝑛

𝑛

∑

𝑖=1

𝐴
𝑛𝑖
(𝛽)

1 + 𝜁
𝜏

𝑛
𝐴

𝑛𝑖
(𝛽)

= 0. (19)

Hence, the empirical log-likelihood ratio function for 𝛽 is
given by

𝑙
𝑛,𝐴𝑈

(𝛽) = −2

𝑛

∑

𝑖=1

log 𝑛𝑝
𝑖𝑛
= 2

𝑛

∑

𝑖=1

log (1 + 𝜁𝜏
𝑛
𝐴

𝑛𝑖
(𝛽)) .

(20)

Similar to the previous section, an adjustment factor is
needed for 𝑙

𝑛,𝐴𝑈
(𝛽) to have a standard Chi-square asymptotic

distribution, as stated in the following theorem.

Theorem 3. Assume that 𝑉
1
= 𝐸𝑔(𝑋

𝑖
)𝑔

𝜏
(𝑋

𝑖
) is positive defi-

nite and that 𝐸𝑔(𝑋)𝑊
𝑖
(𝛽, 𝐹, 𝜇

𝑋
)
𝜏
) exists. Define that𝑉

𝑛1
(𝛽) =

(1/𝑛)∑
𝑛

𝑖=1
𝑔(𝑋

𝑖
)𝑔

𝜏
(𝑋

𝑖
),

𝑉
𝑛2
(𝛽) =

1

𝑛

𝑛

∑

𝑖=1
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(21)

where Σ̂
1
(𝛽) and Σ̂

2
(𝛽) are defined in Theorem 1. Then, under

the conditions of Theorem 1,

𝑐
𝑛,𝐴𝑈

(𝛽
0
) 𝑙

𝑛,𝐴𝑈
(𝛽

0
)

𝑑

󳨀→ 𝜒
2

𝑝+𝑟
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as 𝑛 → ∞, where

𝑐
𝑛,𝐴𝑈

(𝛽) =

tr (𝑉−1

𝑛2,𝐴𝑈
(𝛽)Ψ

𝑛
(𝛽))

tr (𝑉−1

𝑛1,𝐴𝑈
(𝛽)Ψ

𝑛
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(23)

and Ψ
𝑛
(𝛽) = (∑

𝑛

𝑖=1
𝐴

𝑛𝑖
(𝛽))(∑

𝑛

𝑖=1
𝐴

𝑛𝑖
(𝛽))

𝜏.

3. Numerical Results

We carried out Monte Carlo simulations to examine the
performance of our proposed empirical likelihood method
based on the Buckley-James estimating equation (ELEE) in
comparison to the empirical likelihood method based on
synthetic data (ELSD) [15, 16]. We considered five models.
In model A, the data were generated from 𝑌 = 1 + 𝑋 + 𝜖,
where 𝑋 and 𝜖 are independent normal random variables
with mean 0 and variances 0.25, respectively, the censoring
time𝐶 is a normal randomvariablewithmean𝜇 and standard
deviation 4. Model B is the same as model A except that
𝑋 ∼ Bernoulli(0.5) − 0.5. Model C assumes that 𝑌 = 𝑋 + 𝜖,
where 𝑋 ∼ 𝑁(0, 0.5

2
), 𝜖 ∼ Weibull (shape = 1.843, scale

= 1), and 𝐶 ∼ 𝑁(𝜇, 42). Model D is the same as model A
except that 𝐶 ∼ 𝑁(𝜇 + 2𝑋, 15), allowing the censoring time
to depend on 𝑋. Model E is the same as model A except that
𝜖 ∼ 𝑁(0,𝑋

2
), allowing for heterogeneous errors. We adjust

𝜇 to produce different censoring rate (CR). We also vary the
sample size 𝑛. The achieved confidence levels and average
lengths of the ELEE and ELSD confidence intervals for the
slope parameter are summarized in Table 1. Each entry in the
table was computed using 3,000 Monte Carlo samples.

We see from Table 1 that under models A–D, the coverage
probabilities of ELEE method are consistently close to or
slightly above the nominal level, whereas the ELSD method
can have severe under-coverage for small samples (𝑛 =

50) and large censoring rate (75%). Furthermore, the ELEE
confidence intervals are much narrower than the ELSD
confidence intervals. In particular, the ELSD method failed
completely with unreasonably low coverage under model
D when the censoring time is dependent on 𝑋. On the
other hand, under model E with heterogeneous errors and
independent censoring time, ELEE showed larger coverage
probability errors than ELSD, as one would have expected.
Thus, the ELEEmethod seems to dominate the ELSDmethod
when the errors are homogeneous, but can be outperformed
by ELSD in the presence of heterogeneous errors.

We now illustrate our method using the Stanford heart
transplant data (Miller [44], Table 1). The data include the
lengths of survival (in days) after transplantation, ages at
time of transplant, and T5 mismatch scores for 69 patients
who received heart transplants at Stanford and were followed
to April 1, 1974. Twenty-four patients were still alive on
April 1, 1974 and thus their survival times were censored.
For illustration purpose, we considered two models, labeled
as (I) and (II), respectively, where the dependent variable
𝑌 is the logarithm to base 10 of the length of survival
from transplantation. Specifically, model (I) regresses 𝑌 on
the mismatch score T5, and model (II) regresses 𝑌 on
age. As in Koul et al. [11], regression of survival on the
mismatch score T5 was performed with nonrejection-related
death being treated as censoring since the mismatch score is
directed at the rejection phenomenon [44]. Table 2 reports
the parameter estimates and 95% confidence intervals for
the slope parameters using our empirical likelihood method
based on the Buckley-James estimating equation (ELEE) and
the empirical likelihood method based on synthetic data
(ELSD) [15, 16].
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Table 1: Comparison of the coverage probability (CP) and average width (Width) of two empirical likelihood confidence intervals for the
slope parameter under four different models with various sample size (𝑛) and censoring rate (CR). Here, ELEE is the proposed method, and
ELSD is the method of Li and Wang [15]. Each entry is based on 3,000 Monte Carol samples.

Nominal level = 90% Nominal level = 95%
Model 𝑛 CR CP width CP Width

ELEE ELSD ELEE ELSD ELEE ELSD ELEE ELSD
50 0.75 0.94 0.77 1.59 2.18 0.98 0.84 1.95 2.70
100 0.75 0.94 0.82 0.85 1.66 0.97 0.89 1.03 2.02
500 0.75 0.91 0.88 0.31 0.81 0.96 0.94 0.37 0.97
50 0.3 0.94 0.87 0.69 1.30 0.97 0.92 0.82 1.55

A 100 0.3 0.93 0.89 0.45 0.94 0.97 0.94 0.53 1.12
500 0.3 0.91 0.90 0.18 0.43 0.96 0.95 0.21 0.51
50 0.1 0.95 0.88 0.59 1.10 0.98 0.93 0.70 1.30
100 0.1 0.93 0.89 0.39 0.79 0.97 0.94 0.47 0.94
500 0.1 0.90 0.90 0.16 0.36 0.95 0.95 0.19 0.43
50 0.75 0.93 0.83 1.20 2.05 0.95 0.88 1.40 2.50
100 0.75 0.94 0.87 0.77 1.49 0.97 0.92 0.92 1.80
500 0.75 0.93 0.89 0.30 0.67 0.96 0.94 0.36 0.80
50 0.3 0.95 0.88 0.66 1.23 0.98 0.94 0.78 1.48

B 100 0.3 0.94 0.90 0.44 0.88 0.97 0.95 0.52 1.05
500 0.3 0.92 0.90 0.18 0.39 0.96 0.95 0.21 0.47
50 0.1 0.94 0.89 0.58 1.08 0.97 0.95 0.69 1.29
100 0.1 0.94 0.90 0.39 0.77 0.97 0.94 0.46 0.92
500 0.1 0.91 0.91 0.16 0.35 0.96 0.95 0.19 0.41
50 0.75 0.93 0.77 1.49 2.01 0.96 0.83 2.01 2.46
100 0.75 0.93 0.82 0.80 1.56 0.97 0.88 0.97 1.90
500 0.75 0.92 0.87 0.29 0.76 0.96 0.93 0.35 0.92
50 0.3 0.93 0.86 0.67 1.21 0.97 0.92 0.81 1.45

C 100 0.3 0.93 0.88 0.44 0.88 0.97 0.93 0.53 1.05
500 0.3 0.91 0.89 0.18 0.40 0.96 0.94 0.21 0.48
50 0.1 0.94 0.87 0.60 1.01 0.97 0.93 0.71 1.21
100 0.1 0.93 0.89 0.39 0.73 0.97 0.94 0.47 0.87
500 0.1 0.92 0.90 0.16 0.33 0.96 0.95 0.19 0.39
50 0.75 0.95 0.68 1.74 2.45 0.97 0.77 1.87 2.98
100 0.75 0.94 0.60 0.83 1.83 0.97 0.69 1.01 2.21
500 0.75 0.92 0.12 0.30 0.89 0.96 0.18 0.36 1.06
50 0.3 0.94 0.81 0.68 1.31 0.97 0.88 0.82 1.56

D 100 0.3 0.93 0.76 0.45 0.94 0.97 0.84 0.53 1.12
500 0.3 0.91 0.39 0.18 0.43 0.96 0.51 0.21 0.51
50 0.1 0.94 0.86 0.59 1.09 0.97 0.92 0.71 1.30
100 0.1 0.94 0.87 0.39 0.78 0.97 0.93 0.47 0.93
500 0.1 0.91 0.78 0.16 0.36 0.95 0.86 0.19 0.42
50 0.75 0.78 0.76 1.52 2.25 0.85 0.83 1.79 2.75
100 0.75 0.78 0.80 0.85 1.74 0.85 0.87 0.62 2.11
500 0.75 0.73 0.85 0.34 0.88 0.81 0.92 0.40 1.06
50 0.3 0.81 0.85 0.76 1.43 0.87 0.91 0.89 1.71

E 100 0.3 0.79 0.87 0.53 1.05 0.86 0.92 0.62 1.26
500 0.3 0.77 0.89 0.22 0.50 0.84 0.94 0.26 0.60
50 0.1 0.81 0.86 0.69 1.24 0.87 0.92 0.81 1.48
100 0.1 0.80 0.87 0.49 0.91 0.86 0.93 0.57 1.08
500 0.1 0.76 0.89 0.20 0.42 0.83 0.94 0.23 0.50

Model A: 𝑌 = 1 + 𝑋 + 𝜖, where 𝑋 ∼ 𝑁(0, 0.5
2
), 𝜖 ∼ 𝑁(0, 0.5

2
), and 𝐶 ∼ 𝑁(𝜇, 4

2
); model B: 𝑌 = 1 + 𝑋 + 𝜖, where 𝑋 ∼ Bernoulli(0.5) − 0.5, 𝜖 ∼ 𝑁(0, 0.5

2
),

and 𝐶 ∼ 𝑁(𝜇, 4
2
); model C: 𝑌 = 𝑋 + 𝜖, where 𝑋 ∼ 𝑁(0, 0.5

2
), 𝜖 ∼ Weibull (shape = 1.843, scale = 1), and 𝐶 ∼ 𝑁(𝜇, 4

2
); model D (Dependent censoring):

𝑌 = 1+𝑋+ 𝜖, where𝑋 ∼ 𝑁(0, 0.5
2
), 𝜖 ∼ 𝑁(0, 0.5

2
), and𝐶 ∼ 𝑁(𝜇+ 2𝑋, 15); model E: 𝑌 = 1+𝑋+ 𝜖, where𝑋 ∼ 𝑁(0, 0.5

2
), 𝜖 ∼ 𝑁(0,𝑋

2
), and𝐶 ∼ 𝑁(𝜇, 4

2
).
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Table 2: Empirical likelihood confidence interval estimates for heart transplant data. Nominal level = 95%.

Model
Parameter estimates Confidence intervals

Parameter
BJ KSV ELEE ELSD

(I) 𝛽
𝑇5

−0.593 0.258 (−2.740, 0.645) (−0.596, 0.928)
(II) 𝛽age −0.028 0.055 (−0.065, 0.032) (0.001, 0.128)
Note: BJ refers to the Buckley-James [3] estimate, and KSV refers to the synthetic data estimate of Koul et al. [11]. ELEE is the proposed empirical likelihood
method based on the Buckley-James estimating equation, and ELSD is the empirical likelihood method based on synthetic data [15, 16].

It is seen from Table 2 that both the point estimates and
confidence intervals are quite different between the ELEE
and ELSD methods for this data. For example, the KSV
slope estimates of T5 and age are positive, which seems to
contradict to the common belief that the survival time tends
to be negatively correlated with T5 (the mismatch score) and
age at diagnosis. Formodel (II), the ELSD confidence interval
does not include zero and thus concludes a significant age
effect at the 5% significant level, whereas the ELEE method
does not produce a significant result. The ELSD results could
be misleading in this example since the censoring time
appears to depend on age and T5 as pointed out by Leurgans
[45] and Li and Lu [17]. We have also examined the Cox-
Snell residual plots for a number of parametric accelerated
failure time (AFT) models. We found that the log-normal
AFT model fits the data fairly well which indicates that the
semiparametric AFT model should also fit the data well.

4. Discussion

This research adds a new tool to the toolbox of empirical
likelihood (EL) methods for linear regression with right
censored data. The three EL methods, namely, the method of
Li and Wang [15], the method of Zhou and Li [18], and the
method of this paper should be regarded as complementary,
as opposed to competing, methods for linear regression with
right censored survival data. Each of the three approaches
has its own merits and shortcomings. None dominates the
others in every aspect. So it is important to understand the
pros and cons of thesemethods. First of all, if the errors in the
regression model are i.i.d (homogeneous) and the censoring
time is conditionally independent of the survival time given
the covariates, then the method of Li and Zhou [18] and the
method of this paper are expected to be superior to the Li
and Wang [15] method, as demonstrated by simulations in
Table 1 and Li and Zhou [18]. This is because the former
two methods use the Buckley-James estimating equations
which take advantage of the homogeneous error assumption
to implicitly impute a censored observation from the model
using all residuals, whereas the latter uses synthetic data
that does not utilize the homogeneous error assumption.
Furthermore, based on our limited experience, the Li and
Zhou [18] seems to be more efficient than the method of
this paper. This is not a surprise since, Li and Zhou method
[18] uses the exact censored likelihood, whereas the ELEE
method of this paper uses an approximate likelihood. On the
other hand, Li and Zhou [18] only developed an EL procedure
for the whole vector of regression coefficients and did not

discuss how to extend their method to incorporate auxiliary
information which can be easily done using the approach of
this paper as described in Section 2.2. Secondly, if the errors
are heterogeneous, then the Li and Zhou [18] method and
the method of this paper are expected to fail as indicated
by Table 1 (model E), but the synthetic data method of Li
and Wang [15] would still be asymptotically valid under the
stronger censorship assumption that the censoring time is
independent of both the survival time and the covariates.
Finally, the method of Li and Wang [15] can fail completely
when the censoring time is dependent on the covariate as
shown in Table 1 (model D).

Some further extensions are warranted in future research.
For example, the method of this paper can be extended
to draw inference for linear combinations of the regression
coefficients along the lines of Li and Wang ([15, Section 3]).
It can also be extended to construct EL confidence regions
based on estimating equations for a class of M-estimators
described by Ritov [5]. Finally, this paper focuses only on EL
methods for right censored data. It would be interesting to
investigate how these ELmethods compare to other methods
such as the rank-based regression methods in future studies.

Appendix

Assumption A.1. The covariate𝑋
𝑖
has compact support.

Assumption A.2. There exists a function 𝑉(𝑢) such that 𝑉̂(𝑢)
converges uniformly to 𝑉(𝑢) in probability as 𝑛 → ∞.

The following lemmas are needed to proveTheorem 1.

Lemma A.3. Let 𝜆(𝑡) denote the hazard function of 𝐹. Then,

𝑛
−1/2

𝑛

∑

𝑖=1

𝑊
𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)

L
󳨀→ 𝑁(0, Σ

2
(𝛽)) , (A.1)

where Σ
2
(𝛽) = ∫

∞

0
{𝑤(𝑡)}

2
𝑉(𝑡)𝜆(𝑡)𝑑𝑡 and

𝑤 (𝑡; 𝐹) = 𝑡 −

∫

∞

𝑡
𝑢𝑑𝐹 (𝑢)

1 − 𝐹 (𝑡)

. (A.2)

Moreover, Σ
2
(𝛽) can be consistently estimated by Σ̂

2
(𝛽).



Computational and Mathematical Methods in Medicine 7

Proof. By Proposition 4.1 of Ritov [5]
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𝑡) + 𝑜𝑝 (
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(A.3)

where 𝑀
𝑖
(𝑡) = 𝑁

𝑖
(𝑡) − ∫

𝑡

0
𝑌

𝑖
(𝑢)𝜆(𝑢)𝑑𝑢, 𝑖 = 1, . . . , 𝑛, are

orthogonal locally square integrable martingales with respect
to the filtration F

𝑛
(𝑡) = 𝜎[𝐼(𝑒

𝛽
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≤ 𝑡), 𝛿
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𝑖
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1, . . . , 𝑛]. This, together with Rebolledo’s martingale central
limit theorem (cf. Andersen et al. [2]), proves (A.1).

Lemma A.4. Under the conditions of Theorem 1,
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(A.4)

where we have used Lemma 3 of Owen [21] in the second step
and Lemma 4.1 of Ritov [5] in the third step.

(b) Define that Σ̃
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Let 𝜆 = 𝜌𝜃, where 𝜌 ≥ 0 and ‖𝜃‖ = 1.Then, by Owen [21],
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The conclusion of (b) then follows from (10), (A.5)–(A.7), and
the arguments used in the proof of (2.14) of Owen [21].

Proof of Theorem 1. For simplicity, we denote𝑊
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This, together with (a), (b), and the fact that
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󵄩
󵄩

2

+

1

𝑛

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑊
𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋) −𝑊

𝑖
(𝛽, 𝐹, 𝜇

𝑋
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝑂
𝑝 (
1) ,

(A.11)

implies that
󵄨
󵄨
󵄨
󵄨
𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
= 𝑜

𝑝 (
1) . (A.12)

Note that

0 =

1

𝑛

𝑛

∑

𝑖=1

𝑊
𝑖

1 + 𝜆
𝜏
𝑊

𝑖

=

1

𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
[1 − 𝜆

𝜏
𝑊

𝑖
+

(𝜆
𝜏
𝑊

𝑖
)
2

1 + 𝜆
𝜏
𝑊

𝑖

]

=

1

𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
− (

1

𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
𝑊

𝜏

𝑖
)𝜆

+

1

𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
(𝜆

𝜏
𝑊

𝑖
)
2

1 + 𝜆
𝜏
𝑊

𝑖

.

(A.13)

By (10), (A.5), (A.13), and Lemma A.4, we get

𝜆 = (

𝑛

∑

𝑖=1

𝑊
𝑖
𝑊

𝜏

𝑖
)

−1
𝑛

∑

𝑖=1

𝑊
𝑖
+ 𝑜

𝑝
(𝑛

−1/2
) . (A.14)

Again by (10), we have

0 =

𝑛

∑

𝑖=1

𝜆
𝜏
𝑊

𝑖

1 + 𝜆
𝜏
𝑊

𝑖

=

𝑛

∑

𝑖=1

(𝜆
𝜏
𝑊

𝑖
) −

𝑛

∑

𝑖=1

(𝜆
𝜏
𝑊

𝑖
)
2

+

1

𝑛

𝑛

∑

𝑖=1

(𝜆
𝜏
𝑊

𝑖
)
3

1 + 𝜆
𝜏
𝑊

𝑖

.

(A.15)
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Moreover, by Lemma A.4 and (A.11), we have

1

𝑛

𝑛

∑

𝑖=1

(𝜆
𝜏
𝑊

𝑖
)
3

1 + 𝜆
𝜏
𝑊

𝑖

= 𝑜
𝑝 (
1) . (A.16)

It then follows from (A.15) and (A.16) that

𝑛

∑

𝑖=1

𝜆
𝜏
𝑊

𝑖
=

𝑛

∑

𝑖=1

(𝜆
𝜏
𝑊

𝑖
)
2
+ 𝑜

𝑝 (
1) . (A.17)

Combining (A.8), (A.17) and (A.14) yields the following
identity

𝑐
𝑛
(𝛽) 𝑙

𝑛
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)

= (

1

√𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
)

𝜏

Σ̂

−1

2
(𝛽)(

1

√𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
) + 𝑜

𝑝 (
1) .

(A.18)

This, together with Lemma A.3, proves Theorem 1.

The following lemma is needed to proveTheorem 3.

Lemma A.5. Assume that the conditions of Theorems 1 and 3
hold. Then,

1

√𝑛

𝑛

∑

𝑖=1

𝐴
𝑛𝑖
(𝛽)

L
󳨀→ 𝑁(0, 𝑉

2,𝐴𝑈
(𝛽)) , (A.19)

where

𝑉
2,𝐴𝑈

(𝛽) = (

𝑉
1
(𝛽) , 0

0, Σ
2
(𝛽)

) . (A.20)

Proof. This result is a direct consequence of Lemma A.3 and
the following facts

1

√𝑛

𝑛

∑

𝑖=1

𝑔 (𝑋
𝑖
)

L
󳨀→ 𝑁(0, 𝑉

1
(𝛽)) ,

Cov( 1

√𝑛

∑𝑔 (𝑋
𝑖
) ,

1

√𝑛

𝑛

∑

𝑖=1

𝑊
𝑖
(𝛽, 𝐹̂

𝛽

𝑛
, 𝑋)) 󳨀→ 0.

(A.21)

Proof of Theorem 3. The theorem can be proved using
Lemma A.5 and along the lines of the proof of Theorem 1.
We omit the details.
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