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Abstract 

Studying temporal gene expression shifts during disease progression provides important 

insights into the biological mechanisms that distinguish adaptive and maladaptive responses. 

Existing tools for the analysis of time course transcriptomic data are not designed to optimally 

identify distinct temporal patterns when analyzing dynamic differentially expressed genes 

(DDEGs). Moreover, there is a lack of methods to assess and visualize the temporal 

progression of biological pathways mapped from time course transcriptomic datasets. In this 

study, we developed an open-source R package TrendCatcher 

(https://github.com/jaleesr/TrendCatcher), which applies the smoothing spline ANOVA model 

and break point searching strategy to identify and visualize distinct dynamic transcriptional 

gene signatures and biological processes from longitudinal datasets. We used TrendCatcher 

to perform a systematic temporal analysis of COVID-19 peripheral blood transcriptomes, 

including bulk RNA-seq and scRNA-seq time course data. TrendCatcher uncovered the early 

and persistent activation of neutrophils and coagulation pathways as well as impaired type I 

interferon (IFN-I) signaling in circulating cells as a hallmark of patients who progressed to 

severe COVID-19, whereas no such patterns were identified in individuals receiving SARS-

CoV-2 vaccinations or patients with mild COVID-19. These results underscore the importance 

of systematic temporal analysis to identify early biomarkers and possible pathogenic 

therapeutic targets.  
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Introduction 

Time-course transcriptomic profiling has been widely used to study and model dynamic 

biological processes in cells (1). By profiling mRNA levels during consecutive time points, 

researchers can infer dynamic responses to various external cues that cannot be observed by 

looking at only initial and terminal states. Recent improvements in high-throughput RNA 

sequencing (RNA-seq) technologies, including single-cell RNA-sequencing (scRNA-seq) 

provide viable approaches to study dynamic gene expression changes (2). Especially scRNA-

seq allows for the in-depth analysis of temporal changes in distinct cell populations, thus 

providing insights into the heterogeneity and dynamics of responses to environmental cues or 

pathogenic stimuli. However, the analysis and visualization of longitudinal bulk RNA-seq data 

or scRNA-seq can be computationally challenging. 

 

Currently, there are two predominant strategies for the analysis of sequential transcriptomic 

datasets. One strategy treats the sampling time points as categorical variables and is based 

on generalized linear models (GLMs). GLM-based packages include DESeq2 (3), edgeR (4) 

and limma (5). A complementary strategy is to treat time as a continuous variable and fit the 

time expression data into a spline-like model. These methods include DESeq2Spline (DESeq2 

adopted with spline model for temporal RNA-seq datasets) fitting, ImpulseDE2 (6) and Next 

maSigPro (7). The former strategies focus on the magnitude of change instead of the time 

order of gene expression, and may also suffer from a relative loss of statistical testing power, 

especially if many time points are assessed (6). The latter strategy increases the power of 

detecting dynamic genes, but is based on strong model assumptions which are not optimally 

suited for multiphasic responses, such as gene trajectory patterns that reflect initial acute 

stimuli followed by counter-regulatory compensatory responses. Furthermore, there is a lack 

of tools that leverage existing knowledge of functional pathway databases to infer and 

visualize pathway trajectories instead of individual gene trajectories only.  
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We found this is challenging in a complex disease, such as coronavirus disease 19 (COVID-

19) caused by the SARS-CoV-2 virus infection (8). COVID-19 is characterized by distinct 

disease progression patterns that suggest diverse host immune responses (9). Patients with 

severe disease exhibit profound inflammatory responses and immunopathology (10). COVID-

19 immunophenotyping studies involve a large number of time points from corresponding 

RNA-seq and scRNA seq datasets (11, 12). Existing approaches for temporal transcriptomic 

analysis either do not take the temporal sequence into account when identifying dynamic 

differentially expressed genes (DDEGs) using pairwise comparison between time points, nor 

systematically analyze pathways that are dysregulated at defined time points.  

 

In this study, we developed TrendCatcher, an open-source R package tailored for longitudinal 

bulk RNA-seq and scRNA-seq analysis. TrendCatcher uses a framework that combines the 

smooth spline ANOVA model and break point searching strategy, which identifies inflection 

points when gene expression trends reverse. We show that TrendCatcher outperformed 

commonly used methods for longitudinal RNA-seq analysis when using simulated time course 

data for benchmarking. We also analyzed bulk RNA-seq and scRNA-seq gene expression 

profiles of peripheral blood cells in COVID-19 patients at various disease time points. 

TrendCatcher allowed us to identify and visualize dynamic gene expression signature profiles 

in peripheral blood that were associated with poor disease outcomes during the early phases 

of disease, and could thus serve as novel mechanistic targets as well as early biomarkers for 

patient prognostication.  
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Results 

TrendCatcher accurately identifies DDEGs in simulated datasets 

First, we tested the prediction performance of the TrendCatcher platform (Figure 1A) using a 

set of simulated time course RNA-seq datasets, because simulated data provides defined 

standards to assess the accuracy of novel analytical platforms. We considered a 

comprehensive collection of gene temporal trajectory patterns to simulate a set of realistic 

data with biological characteristics (1). We embedded 10,000 simulated trajectories with 

varied temporal patterns, including 90% non-dynamic trajectories, 2.5% monotonous 

transition trajectories (continuously increasing or continuously decreasing gene expression 

levels throughout the time course), 2.5% impulse shaped single break point trajectories (only 

one temporal inflection point, i.e. up-peak-down or down-trough-up), 2.5% two break point 

trajectories and 2.5% three break point trajectories (multimodal dynamic response, e.g., a 

combination of 2 or more basic types of trajectories). Compared to DESeq2, DESeq2Spline 

and ImpulseDE2, TrendCatcher had the highest area under the ROC curve (AUC) in a mixed 

simulated dataset for time-course data with 7 time points (Figure 1B). We also tested each 

model’s performance on a varying number of time points, including 3, 5, 7, 9 and 11 time 

points. As shown in Figure 1C, TrendCatcher had the highest prediction AUC across all time 

points, with the AUC values range from 0.88 to 0.90.  

 

We next evaluated the prediction performance for each type of temporal trajectories. As shown 

in (Supplemental Figure 1), although other three methods achieved slightly higher accuracy 

than TrendCatcher in monotonic trajectories, their AUCs dropped markedly when more 

complicated trajectories were embedded. DESeq2 only achieved AUC values of 0.49 to 0.62 

for both bi-phasic trajectory and multimodal trajectory. The DESeq2Spline approach using a 

spline curve fitting model also dropped to an AUC of approximately 0.7 once multiphasic 

trajectories were introduced. These results suggests that existing approaches for longitudinal 

or time course analyses are well-suited for monotonic trajectories (continuously up or 
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continuously down) but that TrendCatcher maybe more broadly applicable, because it 

identifies monotonic, biphasic (up-down, down-up) and multi-phasic shifts in gene expression, 

which are especially important in complex pathological setting when initial biological 

responses are followed by counter-regulatory adaptive or maladaptive responses.  
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TrendCatcher identifies rapid but transient upregulation of interferon signaling 

in peripheral blood following SARS-CoV-2 infection in a non-human primate 

model 

To define the key dynamic gene signatures associated with SARS-CoV-2 infection in 

peripheral blood, we first analyzed the global transcriptomics profiles from a non-human 

primate dataset (13), in which samples were collected on Days 0 (uninfected controls), 1, 2, 

4, 7, 10 and 14 following the live SARS-CoV-2 inoculation. This experiment in non-human 

primates had the advantage of clearly defining the timing of inoculation and following the time 

course of dynamic genes. TrendCatcher identified 962 DDEGs out of 12,754 total genes, 

accounting for 7.6% of total expression, suggesting that over 90% of the expressed genes in 

the peripheral blood remain close to the baseline expression levels even in the setting of the 

SARS-CoV-2 infection. We observed two major types of dynamic trajectories: (a) 167 genes 

followed a biphasic “0D-2D up, 2D-14D down” pattern, with their expression level peaking at 

Day 2 and gradually returning close to baseline levels at Day 14 (Figure 2A). These dynamic 

genes were primarily associated with host defense biological pathways, such as defense 

response to viruses, regulation of viral life cycle and type I interferon signaling pathways 

(Figure 2B). (b) 263 genes follow a “0D-14D down” pattern (Figure 2A). This set of genes 

followed a monotonous trajectory, with their expression gradually decreasing until Day 14. 

Interestingly, we found these genes were primarily associated with mitochondrial ATP 

synthesis and oxidative phosphorylation, suggesting that disruption of mitochondrial 

respiration and ATP generation may be an important feature of the circulating cells 

transcriptomic shift in a SARS-CoV-2 infection (Figure 2C). TrendCatcher assigned trajectory 

pattern types to all dynamic genes, and provided hierarchical pie charts to visualize the 

composition of trajectory patterns (Supplemental Figure 2A). 

 

To systematically assess and visualize the dynamic programming of the top biological 

pathways associated with SARS-CoV-2 infection, TrendCatcher generated a TimeHeatmap. 
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The TimeHeatmap function of TrendCatcher visualizes shifts in pathways by displaying the 

mean-fold change of individual DDEGs in a given pathway at defined time points while also 

depicting the number of dynamic genes and the percentage of dynamic genes within that 

pathway (Figure 2D). This quantifies the pathway level shifts over time, and allows for the 

magnitude of pathway change to be visualized. Together with the number and fraction of 

dynamic genes in a given pathway, to gauge the relative importance of the pathway during 

the time course.  

 

During initial infection (Day 0 to Day2), pathways related to innate immune response and 

interferon pathways were highly upregulated. Examples are upregulation of pathways such as 

defense response to virus and regulation of innate immune response increased with an 

average log2 fold-change of 2.57 and 1.76 within the first day. Mucosal immune response, 

antimicrobial humoral response and killing of cells of other organisms were activated during 

the later stage of infection (Day 4 to Day 7), with an average log2 fold-change around 2. On 

the other hand, mitochondrial ATP synthesis coupled electron transport and protein targeting 

to ER, on the other hand, were gradually down-regulated until Day 14. Dynamic gene 

signatures from type I interferon signaling pathway and mitochondrial ATP synthesis coupled 

electron transport were shown using traditional heatmaps in Supplemental Figure 2B,C. The 

temporal analysis of this non-human primate dataset highlights the rapidity of interferon 

signaling activation btu also underscores that this initial burst of immune activation is transient 

and followed by a gradual downregulation of the antiviral interferon responses during the first 

week following infection. 
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Increased generation of immunoglobulin synthesis in plasma B cells as early as 

Day 1 of symptom onset in patients diagnosed with SARS-CoV-2 infection 

Next, we analyzed the longitudinal gene expression profiles of peripheral blood mononuclear 

cells (PBMCs) obtained from patients diagnosed with a SARS-CoV-2 infection who were 

admitted to the hospital, but predominantly had uncomplicated disease progression with 4 out 

5 patients showing only mild symptoms (14) (Figure 3A). The study performed single cell 

RNA-seq analysis on PBMCs, thus allowing for a cell-type specific analysis of gene expression 

shifts in distinct B cell subtypes, T cell subtypes and NK cells. We adopted the cell-type labels 

from the original study and generated pseudo-bulk RNA-seq datasets for each cell type in 

order to quantify changes in DDEGs for a specific cell type. We also adopted the time 

annotation using stages, by binning the disease processes of COVID-19 patients from 

symptom onset to discharge into stages 0, 1, 2, 3 and 4. We defined Stage 0 as the time point 

of samples obtained from healthy controls and stages 1, 2, 3 and 4 represented Day 1 to Day 

16 from symptom onset. We only applied TrendCatcher to cell types containing more than 

1,000 cells at any given stage to ensure the robustness of the results.  

 

TrendCatcher identified 400 DDEGs in memory B cells, 213 DDEGs in naive B cells, 1,413 

DDEGs in plasma B cells, 398 DDEGs in CD4+ T cells, 645 DDEGs in CD8+ T cells, 423 

DDEGs in MAIT, 1,161 DDEGs in naive T cells and 667 DDEGs in NK cells. The 

TimeHeatmap of plasma B cells visualized the most dynamic biological pathways. Importantly, 

this temporal analysis of single cell RNA-seq data showed how rapidly plasma B cells ramp 

up the upregulation Fc-gamma receptor signaling and immunoglobulin synthesis as early as 

stage 1 (which corresponds to Day 1 of symptom onset) (Figure 3B). However, not all 

immunoglobulin genes are upregulated during the same temporal phase. As shown in 

(Supplemental Figure 3), genes involved in immunoglobulin synthesis show distinct temporal 

patterns. Due to the comparatively lower number of plasma B cells, the prominence of such 

increased immunoglobulin changes may be diluted in peripheral blood bulk RNA-seq analysis 
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or PBMC bulk RNA-seq analysis. However, temporal analysis of all peripheral blood 

mononuclear cell types, across the whole time course demonstrated increases in type I 

interferon signaling and defense responses to viruses as the most prominent changes over 

time (Figure 3C), thus mirroring the responses to SARS-CoV-2 we observed in the peripheral 

blood of non-human primates (Figure 2). To define cell-type specific temporal dynamics, we 

generated TimeHeatmaps for individual PBMC cell types and found significant upregulation 

of Type I interferon signaling in T cells, NK cells and memory B cells during Stage 1 but 

subsequent downregulation by Stage 2 of the disease in patients with mild symptoms 

(Supplemental Figure 4A-C, Supplemental Figure 5A-D). 
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TrendCatcher identifies early and persistent neutrophil activation as a hallmark 

of severe COVID-19 

We then assessed whether a systematic temporal analysis of gene expression trends could 

be used to distinguish disease severity and prognosis of COVID-19 patients. We thus applied 

TrendCatcher to a time course human whole blood bulk RNA-seq dataset (11), which 

contained longitudinal whole blood transcriptomes from COVID-19 patients with mild, 

moderate and severe clinical outcomes. TrendCatcher identified 77 DDEGs from the mild 

group, 226 DDEGs from the moderate group, and 1,205 DDEGs from the severe group. Only 

42 DDEGs were shared among these three groups (Figure 4A), and these were primarily 

associated with B cell mediated immunity, Fc-gamma receptor signaling pathways, humoral 

immune response and lymphocyte mediated immunity (Figure 4B). However, TrendCatcher 

identified 978 DDEGs uniquely shown in the severe COVID-19 patient group. Importantly, 

these genes were strongly enriched for neutrophil-related biological pathways, including 

neutrophil activation and neutrophil mediated immunity. These severe-disease associated 

genes also included genes found in pathways such as myeloid cell differentiation, reactive 

oxygen species metabolic process, and positive regulation of cytokine production (Figure 4B). 

 

To systematically characterize which biological processes in whole blood RNA-seq samples 

were most dynamic in severe COVID-19 patients and how they progress over time, we applied 

the TrendCatcher's TimeHeatmap function. As seen in the non-human primate PBMC and the 

human COVID-19 single cell RNA-seq datasets, we again observed the upregulation of genes 

involved in the response to virus, humoral immune response and type I interferon signaling 

pathway within Week 1 of disease onset (Figure 4C). Importantly, some dynamic biological 

responses were only enriched in the group of patients which subsequently progressed to 

severe COVID-19, including neutrophil activation (117 DDEGs, 23.4% of the corresponding 

GO term), blood coagulation (36 DDEGs, 10.5% of the corresponding GO term), and 

regulation of response to cytokine stimulus and respiratory burst (Figure 4C, Supplemental 
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Figure 6A,B). For instance, neutrophil activation gene expression increased by a mean of 1.3 

log2-units (approximately 2.5-fold increase in mean gene expression) within Week 1, 

increased continuously until Week 4, and only very gradually decreased in surviving patients 

by Week 7. However, the summation of the averaged log2 fold-change from the TimeHeatmap 

was larger than zero, which indicates that the neutrophil activation may not have returned fully 

to baseline levels by 7 weeks. To confirm this, we applied LOESS smooth curve fitting to all 

neutrophil activation DDEGs identified from the three severity groups. LOESS fitting confirmed 

that severe COVID-19 patients showed markedly higher neutrophil activation at the early 

stage of infection (Week 1- Week 2), and also remained highly activated even after 7 weeks. 

Such a persistent neutrophil activation was not observed in either mild or moderate COVID-

19 patient groups (Figure 4D).  

 

We also observed severe COVID-19 patients showed evidence of greater humoral immune 

response gene upregulation (Figure 4E), as well as markedly higher upregulation blood 

coagulation genes (Figure 4F) and respiratory burst genes (Figure 4G), which remained 

upregulated even after Week 6. These were not found to be upregulated in patients with mild 

or moderate COVID-19 disease. These DDEGs and dynamic biological pathways may thus 

be suited to serve as early biomarkers that distinguish severe COVID-19 from mild and 

moderate COVID. All these dynamic gene signatures from neutrophil activation, blood 

coagulation and respiratory burst pathways were listed using traditional heatmap 

(Supplemental Figure 7, Supplemental Figure 8A,B).   
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Early impaired IFN-I signaling in PBMC provides a hallmark of severe COVID-19 

Next, to define the cell-type specific dynamic gene signatures and biological processes, we 

used TrendCatcher to analyze a human PBMC single cell RNA-seq dataset time course 

dataset in which patients were categorized as having either moderate or severe COVID-19 

(15). Importantly, as this dataset only contained mRNA from peripheral blood mononuclear 

cells, it lacked mRNA from neutrophils. TrendCatcher generated “pseudo-bulk” mRNA profiles 

for each cell type in order to perform the analysis of gene expression dynamics in a cell-type 

specific manner. TrendCatcher identified more dynamic shifts in almost all cell types from 

severe COVID-19 patients than moderate groups (Supplemental Table 1, 2). To identify 

dynamic responsive processes unique to the severe group, we compared GO enrichment for 

each cell type between severe and moderate. As shown in Figure 5A, all innate immune cells 

and some adaptive immune cells (including B cells, CD8+ T cells) from moderate COVID-19 

were highly enriched in type I interferon signaling, negative regulation of viral process and 

defense to virus, whereas this was not observed significantly enriched in severe COVID-19. 

Severe COVID-19 patients were highly dynamic in MAPK cascade, NF-κB signaling, T cell 

receptor signaling and positive regulation of cytokine production for both NK cells and CD4+ T 

cells. For monocytes and DC (dendritic cells), no uniquely enriched dynamic biological 

processes were observed in severe COVID-19 patients versus moderate COVID-19 patients. 

 

Furthermore, we also found the extent of the interferon signaling response to be the key 

distinguishing feature between moderate and severe COVID-19. To quantitatively compare 

the trajectory differentiation of the type I interferon signaling pathway, we performed the 

LOESS smooth fitting to the DDEGs identified from this pathway. As shown in Figure 5B, 

there is a profound separation between these two groups, with early strong activation of IFN-

I signaling in NK cells, monocytes, B cells and CD8+ T cells in moderate COVID-19 patients 

but not in severe COVID-19 patients. Patients with moderate COVID-19 showed activation of 

type I interferon signaling pathways whereas patients with severe COVID-19 had a blunted 

activation of type I interferon signaling. This is also shown in the cell-type specific 
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TimeHeatmap. As shown in Figure C,D, although NK cells from both moderate and severe 

COVID-19 patients demonstrated activation of type I interferon response within the first week, 

moderate COVID-19 exhibited a stronger activation than severe group, with average 1.62 log2 

fold-change compared to 0.87 log2 fold-change. In CD8+ T cells, only moderate COVID-19 

groups were observed to have a strong type I interferon response within the first week. On the 

other hand, CD8+ T cells in patients who would go on to develop severe COVID-19, showed 

upregulation of cell proliferation and cell differentiation genes instead. Together, these data 

suggest that a robust early Type I interferon response in PBMCs is associated with reduced 

severity of COVID-19.   
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TrendCatcher identifies metabolic gene expression shifts in NK cells as a 

hallmark response to COVID-19 vaccination 

We next applied TrendCatcher to a longitudinal human PBMC single cell RNA-seq vaccination 

dataset (16), to provide insights into how the immune system physiologically responds to 

mRNA vaccines over time. The vaccination study collected single-cell PBMCs from 56 healthy 

volunteers vaccinated with the Pfizer-BioNtech at Day 0, 1, 2, 7, 21, 22, 28, and 42 after the 

vaccination. We processed each patient’s scRNA-seq individually. We clustered cells using 

the Seurat algorithm (17) and annotated the cell types using SingleR (18). Then we remove 

cell types containing less than 1,000 cells for each time point across all samples. As Figure 

6A shown, it is the UMAP of one patient’s PBMCs single cell data at Day 0.  

 

TrendCatcher identified 650 DDEGs in NK cells, 450 in B cells, 23 in CD8+ T cells, 62 in 

monocytes and only 6 in CD4+ T cells. This indicates NK cells exhibit a strong dynamic gene 

expression shift after vaccination. After comparing the GO enrichment analysis across cell 

types, we found NK cells gene expression shifts were enriched in metabolic processes in 

response to the Pfizer-BioNtech SARS-CoV-2 mRNA vaccine, such as regulation of cellular 

amino acid metabolism and ATP metabolism (Figure 6B). As shown in Figure 6C, a 

TimeHeatmap of NK cells shows 54 DDEGs, which account for nearly half of the ATP 

metabolic process pathway genes and exhibited a mean of 0.44 log2 fold upregulation after 

the first dose of vaccination. These findings indicate the reprogramming of metabolism in NK 

cells may be an indicator of an intact vaccine response. Another hallmark of the vaccine 

response was the activation of interferon pathways, including type I interferon signaling 

pathway and response to interferon-gamma (Supplemental Figure 9A). Importantly, the 

TimeHeatmap demonstrates that these gene expression shifts were very transient, usually 

decreasing by Day 2 or Day 7, and were again upregulated when the subjects received the 

booster vaccine at Day 21. Interferon pathways showed an average increase of 0.71 and 1.42 

log2 fold-change. In adaptive immune cells, we also observed strong type I interferon signaling 
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pathways activated in both B cells and CD8+ T cells (Supplemental Figure 9B,C). 

Additionally, B cells demonstrated upregulation of antigen processing and protein synthesis 

(Supplemental Figure 9B), which were upregulated only for the first day, and then began 

decreasing. It is noteworthy that early upregulation of interferon pathways in the PBMCs of 

vaccine recipients mirrors that seen in patients with moderate COVID-19 infection, consistent 

with the notion that early and transient interferon upregulation is a hallmark of a healthy 

immune response to the SARS-CoV-2 infection.    
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Discussion 

Temporal analysis of gene expression is gaining importance in the analysis of complex 

dynamic processes such as disease progression. Besides gene dynamic pattern 

characterization, time-course gene expression data are also used to infer regulatory and 

signaling relationships among genes (19, 20). Integrating with other different types of 

measurements, such as pathology and infection over time helps disentangle the complex 

dynamic processes and possible underlying mediators (21). Thus, accurate identification of 

dynamic differentially expressed genes (DDEGs) in a time course RNA-seq or single cell RNA-

seq study can help identify time-dependent disease mechanisms, adaptive and maladaptive 

molecular signatures as well as potential biomarkers that may be associated with disease 

severity.  

 

In recent years, tools have been implemented to characterize time course RNA-seq data; 

however, these tools were focused on either bulk RNA-seq datasets (3, 6, 7) and few infer 

trajectories from scRNA-seq (22, 23). Compared to methods that analyze time course data 

without considering the sequential nature of time points, modeling time as a continuous 

function avoids a relative loss of statistical testing power, especially when many multiple time 

points were studied. There is also a need for methods which combine DDEGs identification 

with the visualization of dynamic pathway shifts.  

 

In this study, we developed an open-source R-software package to perform temporal analysis 

in longitudinal bulk RNA-seq and scRNA-seq datasets. TrendCatcher can identify DDEGs and 

infer the trajectories for each DDEG. By combining a time-window sliding strategy on inferred 

gene trajectories and leveraging annotated biological pathway databases, TrendCatcher can 

infer and visualize the most dynamic biological pathways in response to the external stimuli. 

Furthermore, by utilizing the TimeHeatmap function, TrendCatcher can help researchers 

identify the magnitude and dynamic nature of pathways shifts. Using simulated datasets for 

benchmarking, TrendCatcher achieved higher accuracy (AUC = 0.9) compared to other 
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commonly used methods for the analysis of temporal gene expression datasets, when 

analyzing three or more time points. The advantage of using TrendCatcher was especially 

apparent in the setting of biphasic or multiphasic temporal trajectories, in which gene 

expression levels can change their trend of upregulation or downregulation during the time 

course.  

 

Despite the extraordinary success of rapidly developed and deployed mRNA vaccines against 

SARS-CoV-2, the ongoing COVID-19 pandemic remains a major global health problem in part 

due to the emergence of newer highly contagious SARS-CoV-2 variants of concern as well as 

vaccine hesitancy. This requires the identification of novel mechanistic targets, especially in 

vulnerable patients who have a high risk of developing severe COVID-19. One of the key 

pathogenic factors driving COVID-19 severity is the profound immune dysregulation observed 

in patients with severe COVID-19 that can result in respiratory failure (24-27). Human immune 

responses to SARS-CoV-2 infection are highly dynamic and time dependent, requiring 

upregulation as well as downregulation of distinct immune signaling pathways at the 

appropriate times to ensure optimal host defense (24-27). Understanding the dynamics of the 

COVID-19 immune response could form the basis of developing therapies that are appropriate 

for a given time window (28). Personalized medicine or precision medicine are gaining traction 

by developing therapies tailored to patients based on their genotype and phenotype, but 

personalization likely also requires tailoring therapies based on the temporal phase of a 

disease. These studies highlight the need for time-course or longitudinal analyses of the host 

responses to the SARS-CoV-2 infection.  

 

In this study, we applied TrendCatcher to systematically analyze sequential blood samples 

from either non-human primates infected with SARS-CoV-2, human patients with COVID-19 

of varying severity or human subjects who received a SARS-CoV-2 mRNA vaccine. 

TrendCatcher identified dynamic gene expression and biological pathway signatures for (a) 

SARS-CoV-2 infection progression over time, (b) severe COVID-19 vs. moderate or mild 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.05.04.442617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442617
http://creativecommons.org/licenses/by/4.0/


19 
 

COVID-19 and (c) COVID-19 vaccine recipients versus control. TrendCatcher established 

response to virus, humoral immune response and type I interferon signaling pathway 

activation across peripheral blood cell types in mild, moderate and severe COVID-19. 

However, we found temporal patterns of gene expression shifts that were unique in the severe 

COVID-19 patients. Severe COVID-19 was associated with marked activation of neutrophils 

and upregulation of coagulation pathways as well as blunted type I interferon signaling as 

early as week 1 in the peripheral blood of patients. Importantly, severe COVID-19 was 

associated with persistent activation of neutrophils and genes regulating coagulation for as 

long as 6 weeks, underscoring that the importance of the temporal analysis by TrendCatcher 

which identified hallmarks of severe COVID-19 in peripheral blood samples.  

 

Our findings complement recent studies which implicate neutrophils in the excessive 

inflammation, coagulopathy, immunothrombosis and organ damage which characterize 

severe COVID-19 (29-33). Neutrophils are particularly active in highly vascularized organs, 

such as lungs and kidneys, which are prime targets of SARS-CoV-2 induced injury in COVID-

19 (34). Dysregulated neutrophil responses, such as prolonged activation may cause damage 

to vessels and underlying parenchymal (35-37). Studies also show that activated neutrophils 

through Toll-like receptors, chemokine- and cytokine receptors can stimulate the neutrophil 

extracellular trap (NET) formation (29). And recent studies showed the disbalance between 

NET formation and degradation can trigger immunothrombosis and tissue injury (38, 39). 

Excessive activation of macrophages and adaptive immune cells in severe COVID-19 which 

can form vicious cycles of positive feedback circuits has also been demonstrated (40, 41), but 

less is known about how early neutrophils are activated in disease progression because many 

of the studies on neutrophils in clinical COVID-19 or animal models of severe SARS-CoV-2 

focused on the late stages of the disease as well as the neutrophils in the lung tissue. In our 

study, we used a systematic temporal analysis and observed that profound neutrophil 

activation in the peripheral blood, which was predominant in the severe COVID-19 group, 
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occurs as early as week one after diagnosis or symptoms persists even after six or seven 

weeks in surviving patients. 

  

Our observation of early upregulation of coagulation genes in the whole blood transcriptomes 

of severe COVID-19 patients also points to another feature that is associated with severe 

COVID-19, thrombotic and embolic complications such as strokes (13, 42, 43). Recent studies 

have found the procoagulant changes in endothelial cells underly the coagulopathy in severe 

COVID-19 (44). Endothelial dysfunction in COVID-19 patients may be exacerbated through 

inflammatory cytokines and neutrophil extracellular traps, thus pointing to interactions 

between circulating or recently recruited neutrophils and the vessel wall endothelial cells that 

are in contact with circulating immune cells as drivers of such coagulopathic manifestations 

(45-47). We believe the analysis of the RNA-seq and scRNA-seq data support neutrophil 

activation and upregulation of coagulation genes as defining features of severe COVID-19, 

highlighting their role as early biomarkers to provide prognostic information and thus optimally 

treat patients who have a higher likelihood of progressing to severe disease. Importantly, our 

results also raise questions about the role of neutrophils and of coagulation in what is referred 

to as “long COVID” or “post-acute sequelae of COVID” (48-50), because we observed that the 

activation persists for as long as six to seven weeks after the initial infection.  

 

Our temporal analysis showed that severe COVID-19 single-cell PBMCs were characterized 

by impaired type I interferon signaling at the onset of infection (Week 1), compared to the 

moderate COVID-19 group. This impaired type I interferon signaling was identified in innate 

cells, such as NK cells and monocytes, and adaptive cells, such as B cell and CD8+ T cells. 

Type I interferons, which are essential for antiviral immunity (51, 52), have been shown to be 

upregulated in COVID-19 (53, 54). Other studies also suggested that impaired type I interferon 

signaling may promote severe COVID-19 and that interferon therapy could be used as therapy 

in severe COVID-19 (55). However, since these studies were not designed for longitudinal 

analyses, the timing of when to intervene on IFN signaling was not clear. Traditional analyses 
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of gene expression data are not suited for the identification of temporal windows and thus do 

not address whether impaired IFN production is present at the onset of infection, whether it 

was delayed, or whether IFN production is exhausted after an initial activation (54). 

TrendCatcher addressed this question by showing the dynamic timing of type I IFN from both 

the moderate group and severe group.  

 

In our COVID-19 vaccination single cell PBMC temporal data analysis, we also identified 

prominent metabolic shifts in NK cells. Cellular metabolism is recognized as an important 

factor that can determine the fate and function of lymphocytes (56, 57). Certain metabolic 

pathways have been shown to have direct immunoregulatory roles (56). Activated NK cells 

engage in a robust metabolic response, which is required for normal effector functions (58), 

and our data suggests that assessing NK metabolic shifts may be an intriguing alternative to 

assessing vaccine responsiveness, which does not rely on antibody levels which can be highly 

variable in laboratory assays.  

 

In conclusion, we have developed the novel TrendCatcher R package platform designed for 

time course RNA-seq data analysis which identifies and visualizes distinct dynamic 

transcriptional programs. When applied to real whole blood bulk RNA-seq time course 

datasets from COVID-19 patients, we observed that patients with severe COVID-19 showed 

gene expression profiles consistent with profound neutrophil activation and coagulopathy early 

during the progression of the disease (starting from the first week of symptom onset). This 

indicates that neutrophil activation may be a key early biomarker and possible mediator of 

severe COVID-19. The distinct kinetics of gene expression shifts identified by TrendCatcher 

in COVID-19 patients may allow for the identification of therapeutic targets during distinct 

temporal phases.  
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Materials and Methods 

TrendCatcher framework 

The main components of the TrendCatcher framework are shown in Figure 1. TrendCatcher 

requires two main inputs: the raw count table C of a temporal study with a dimension of 𝑚 × 𝑛, 

where 𝑚 denotes the number of genes and 𝑛 denotes the number of samples, and a user-

defined baseline time variable 𝑇, such as “0 hour”. Since samples may have different 

sequencing depths and batch effect, TrendCatcher integrates with limma (5) and provides 

preprocessing steps, such as batch correction and normalization. For single-cell RNA 

sequencing datasets, TrendCatcher extracts cells for each cell type annotated in the meta 

data slot of Seurat object and convert it into cell-type specific “pseudobulk” time course RNA 

library. Based on a user-specified threshold, relatively low abundant genes are removed from 

the count table, and reads are normalized and batch effects are removed. TrendCatcher’s 

core algorithm is composed of five main steps: (a) baseline fluctuation confidence interval 

estimation, (b) model dynamic longitudinal count, (c) time point dynamic p-value calculation, 

(d) gene-wise dynamic p-value calculation, and (e) break point screening and gene-wise 

dynamic pattern assignment. Mathematical details will be expanded in the following sections. 

For the output of TrendCatcher, there are mainly two components: a master table and a set 

of functions for versatile visualization purposes. The master table contains all the dynamic 

details of each single gene, including its dynamic p-value, its break point location time, and its 

dynamic trajectory pattern. In addition to the master table, TrendCatcher produces five main 

types of visualizations: (a) a figure showing the observed counts and fitted splines of each 

gene, (b) genes trajectories from each trajectory pattern group (c) a hierarchical pie chart that 

represents trajectory pattern composition, (d) a TimeHeatmap to infer trajectory dynamics of 

top dynamic biological pathways and (e) a two-sided bar plot to show the top most positively 

and negatively changed (averaged accumulative log2FC) biological pathways.  
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Baseline fluctuation confidence interval estimation  

We assumed that the observed number of RNA-seq reads count from the baseline time 

(e.g., t=0 hour) 𝑋!,#!"#$%&'$ was generated from a negative binomial distribution (Equation 1):  

 𝑋!,#!"#$%&'$~	𝑁𝐵(𝜇!,#!"#$%&'$ , 𝜑!)	 (1) 

Where gene 𝑖 = 1,… , 𝑛 and 𝜇!,#!"#$%&'$ is the mean count of gene 𝑖 at baseline time, and 𝜑! is 

the dispersion factor. First, the dispersion factor 𝜑! was pre-estimated as a constant 

hyperparameter for each gene with DESeq2 (3), as shown in Equation 2. Here,  𝜎!(𝑡) is the 

variance at time t.  

 𝜎!(𝑡)$ =	𝜇!(𝑡) +	𝜑! ∗ 𝜇!(𝑡)$	 (2) 

Then, 𝜇!,#!"#$%&'$ was estimated using maximum likelihood from Equation 3.  

 𝜇6!,#!"#$%&'$ = 𝑎𝑟𝑔𝑚𝑎𝑥	𝐿%&(𝑢, 𝜑) = 	𝑎𝑟𝑔𝑚𝑎𝑥	
𝛤(𝜑 + 𝑥)
𝑥! 𝛤(𝜑)

(
𝜇

𝜇 + 𝜑
)'(

𝜑
𝜑 + 𝜇

)(	
(3) 

Based on the negative binomial distribution and the estimated mean count for baseline time, 

we constructed the 90% confidence interval [𝑋!,#!"#$%&'$,).)+, 𝑋!,#!"#$%&'$,).,+] as the baseline count 

fluctuation interval (Equation 4(a) and Equation 4(b)). 

 𝑃B𝑥!,#!"#$%&'$ ≤ 𝑋!,#!"#$%&'$,).)+	|	𝜇!,#!"#$%&'$ , 𝜑!E = 0.05	 (4a) 

 𝑃B𝑥!,#!"#$%&'$ ≥ 𝑋!,#!"#$%&'$,).,+	|	𝜇!,#!"#$%&'$ , 𝜑!E = 0.95	 (4b) 

Model dynamic longitudinal count estimation  

To model the time-dependent gene expression value, we applied a smoothing spline ANOVA 

model (59, 60) with a negative binomial family constraint to fit the reads from samples across 

non-baseline multiple time points. The random variable 𝑋!,#(#.#!"#$%&'$) is assumed to follow the 

NB distribution in Equation 5, with a positive integer 𝛼 represents number of failures before 

the 𝛼𝑡ℎ success in a sequential of Bernoulli trials, and 𝑝(𝑡) ∈ (0,1) represents the success 

probability. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.05.04.442617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442617
http://creativecommons.org/licenses/by/4.0/


25 
 

 𝑋!,#(#.#!"#$%&'$)~	𝑁𝐵(𝛼, 𝑝(𝑡))	 (5) 

The log-likelihood given a time-course observed count 𝑥 = [𝑥!,#(#.#!"#$%&'$)}!01,…,3;	#01,…,6 is 

calculated as Equation 6. 

 𝐿 = 𝑙𝑜𝑔	𝐿(𝛼, 𝑝(𝑡)	|	𝑋 = 𝑥	)			

			= 	∑()*+ ∑,-*+ [𝑥-,)()0)!"#$%&'$)	𝑙𝑜𝑔	(1 − 𝑝(𝑡) + 	𝛼𝑙𝑜𝑔𝑝(𝑡) + 𝑙𝑜𝑔𝛤2𝛼 +	𝑥-,)()0)!"#$%&'$)3 − 	𝑙𝑜𝑔𝑙𝑜𝑔𝛤(𝛼)] + 𝐶  

 

(6) 

Taking the logit link and model time effect, we define the logit link 𝜂 

 
𝜂 = 	𝑙𝑜𝑔	

𝑝(𝑡)
1 − 𝑝(𝑡)

		 (7) 

To allow for flexibility in the estimation of 𝜂 , and find the best trade-off between goodness of 

fit and the smoothness of the spline curve, soft constraints of the form 𝐽(𝜂) is added to the 

minus log-likelihood, with the smoothing parameter 𝜆 > 0. 

 −𝐿 + 𝜆		𝐽(𝜂)	 (8) 

The solution to the optimization of Equation 8 leads to a smoothing fitting to the reads from 

samples across different non-baseline time points. The estimated mean of 𝜇!,#(#.#!"#$%&'$) can 

be estimated using Equation 9.  

 𝜇!,#(#.#!"#$%&'$) =	𝛼W𝑒
78(#) =

𝛼W𝑝̂(𝑡)
1 − 𝑝̂(𝑡)

	
(9) 

Gene’s dynamic p-value calculation 

To calculate gene’s non-baseline dynamic signal significance, each gene’s non-baseline 

estimated mean count 𝜇!,#(#.#!"#$%&'$) was tested against the baseline fluctuation interval. 

Based on Equation 10(a) and Equation 10(b), for each gene at each single non-baseline time 

point, a dynamic time p-value was calculated. 

 𝐼𝑓	𝜇!,#(#.#!"#$%&'$) ≥ 𝜇!,#!"#$%&'$ , 	𝑡ℎ𝑒𝑛	𝑝!,# = \𝑃(𝑥 ≥ 𝜇!,#(#.#!"#$%&'$)	|	𝜇!,#!"#$%&'$ , 𝜑!)		
(10a) 
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 𝐼𝑓	𝜇!,#(#.#!"#$%&'$) ≤ 𝜇!,#!"#$%&'$ , 	𝑡ℎ𝑒𝑛	𝑝!,# = \𝑃(𝑥 ≤ 𝜇!,#(#.#!"#$%&'$)	|	𝜇!,#!"#$%&'$ , 𝜑!)		
(10b) 

Then, we applied Fisher's combined probability test method to calculate a gene-wise dynamic 

p-value (Equation 11): 

 
𝜒!,$#
$ ~ − 2^𝑙𝑛	(𝑝!,#)

6

#0)

	
(11) 

Trajectory pattern assignment 

First, we connect all the significant dynamic signal time points, with a p-value threshold less 

than 0.05. Then we applied a break point searching strategy to capture the gene expression 

change trend. The definition of break point is defined using Equation 12(a) and Equation 12(b).  

 𝐼𝑓	𝜇!,#	9	𝜇!,#'$23 		𝐴𝑁𝐷		𝜇!,#	9	𝜇!,#45$6&78# 	, 𝑏𝑟𝑒𝑎𝑘	𝑝𝑜𝑖𝑛𝑡	𝑡𝑦𝑝𝑒	𝐼.		 (12a) 

 𝐼𝑓	𝜇!,#:	𝜇!,#'$23 		𝐴𝑁𝐷		𝜇!,#:	𝜇!,#45$6&78# 	, 𝑏𝑟𝑒𝑎𝑘	𝑝𝑜𝑖𝑛𝑡	𝑡𝑦𝑝𝑒	𝐼𝐼.		 (12a) 

There are two types of break points: type I means gene up-regulated followed by a down 

regulation, and type II means gene expression level down regulated and then followed by an 

upregulation. By screening along the break point, the master-pattern and sub-pattern were 

assigned to each gene. 

TimeHeatmap enrichment analysis and Two-sided bar plot  

To build the TimeHeatmap for visualizing the biological pathway enrichment change over time, 

we designed a window-sliding strategy to capture all the up-regulated or down-regulated 

genes within each time interval. If we denote time vector as 𝑡; and 𝑗 ∈ 1,… , 𝑇, each time 

interval is denoted as [𝑡;<1, 𝑡;]. We found 𝑁=> up-regulated genes and 𝑁?@A3 down-regulated 

genes within the time window [𝑡;<1, 𝑡;], then Fisher’s exact test was performed to obtain the 

Gene Ontology (GO) term enrichment with the corresponding time interval for up-regulated 

genes and down-regulated genes separately. Users can select the top most enriched 
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biological pathways (ranked by enrichment p-value) for each time interval (by default is 10). 

Then for each selected GO term within the corresponding time window, we calculated the 

averaged log 2 fold-change (Avg_log2FC) of all the DDEGs from this GO term. A series of 

Avg_log2FC values over time characterize the trajectory dynamics of the corresponding 

biological pathway, it is defined as biological pathway trajectory inference in this study. The 

summation of the series of Avg_log2FC estimates the averaged accumulative log 2 fold-

change (GO_mean_logFC) for the corresponding GO term. TrendCatcher ranks biological 

pathways based on their dynamic magnitude inferred from the GO_mean_logFC value. Users 

are free to choose the top most positively and negatively changed (averaged accumulative 

log2FC) biological pathways. Besides GO enrichment analysis (61), TrendCatcher also 

packages Enrichr (62) biological pathway databases. Visualization is constructed using the 

ComplexHeatmap (63) package.  

Simulated dataset 

To mimic the real biological RNA-seq dataset, we only allowed ~10% of the genes to be 

dynamic responsive genes. In this study, we embedded 5 different types of trajectories into 

the temporal RNA-seq simulated datasets, including non-dynamic trajectory (~90%), 

monotonic trajectory (~2.5%), bi-phase trajectory (~2.5%), and multimodal trajectory (~5%) 

including 2 break-point and 3 break-point trajectory. Each type of trajectory was constructed 

by adding negative binomial distribution noise to the embedded trajectory count. For example, 

for monotonic trajectory, we defined the first and last time-points’ RNA expression level 

change to be 0.5-2 log2 fold-change, then we added negative binomial distribution noise to 

the embedded monotonic trajectory. To check how the AUC changes as time-course study 

extends longer, we sampled 3, 5, 7, 9 and 11 different number of time points with evenly time 

intervals, and randomly sampled 3 replicates for each time point. To validate how the 

prediction AUC varies across different types of trajectories, we embedded ~10% of the genes 

to have non-dynamic trajectories, and ~90% of the genes have a specific dynamic trajectory 

(monotonic, bi-phase or multimodal). 
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Pseudobulk RNA library construction 

To construct “pseudo-bulk” RNA library from single cell RNA-seq datasets, all cells for each 

cell type in a given sample were computationally “pooled” by summing all counts for a given 

gene. Since pseudobulk libraries composed of few cells are not likely modeled properly, we 

removed cell types containing less than 1k cells in this study. Lowly expressed genes were 

removed for each cell type as well, using the filterByExpr function from edgeR R package (4). 

Gene counts were transformed using the log of the counts per million (cpm) and library size 

was normalized using calcNormFactors function with the method = “RLE”.  

Gene set enrichment of DDEGs 

Gene sets enrichment analysis in this study was performed using clusterProfiler (61) R 

package, and enrichment comparison from multiple groups were visualized using the 

compareCluster function.  
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Dataset Organism 
Number of 

time points 
Study Figure Dataset Source Reference 

Bulk Peripheral Blood 

(Aid et al.) 

Macaca 

mulatta 
7 Covid vs. Normal Figure 2 GSE156701 (13) 

scRNA PBMC 

(Zhu et al.) 
Homo Sapien 5 Covid vs. Normal Figure 3 

https://db.cngb.org/searc

h/project/CNP0001102/ 
(14) 

Bulk  Peripheral Blood 

(Bergamaschi et al.) 
Homo Sapien 8 Severe vs. Moderate Figure 4 

https://www.covid19cellatl

as.org/patient/citiid/ 
(11) 

scRNA PBMC 

(Liu et al.) 
Homo Sapien 

4 

 
Severe vs. Moderate Figure 5 GSE161918 (15) 

scRNA PBMC 

(Arunachalam et al.) 
Homo Sapien 

8 

 
Vaccination Figure 6 

GSE171964 and 

GSE169159 
(16) 

 

Table 1. Datasets presented in this study 
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Innate immune cells 

NK Monocyte DC 

Moderate Severe Moderate Severe Moderate Severe 

708 1,179 1,479 1,845 22 17 

 

Supplement Table 1. Number of DDEGs for each innate immune cell type identified by 

TrendCatcher. Using FDR less than 0.05. 

 

Adaptive immune cells 

B CD4+ T CD8+ T MAIT 

Moderate Severe Moderate Severe Moderate Severe Moderate Severe 

969 1,344 190 1,060 634 817 71 13 

 

Supplement Table 2. Number of DDEGs for each adaptive immune cell type identified by 

TrendCatcher. Using FDR less than 0.05. 
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B C

Figure 1. Overview and benchmarking of of TrendCatcher. (A) TrendCatcher framework. TrendCatcher 
preprocess input data, which includes creating cell-type specific “pseudobulk” datasets for temporal analysis when 
single-cell data is used. TrendCatcher’s core algorithm is composed of five main steps. TrendCatcher’s output 
includes four main types of visualizations and DDEG identification (numbered 1-5). (B) TrendCatcher prediction 
ROC for a 7 time point simulated dataset compared to DESeq2, DESeq2Spline and ImpulseDE2, with mixed 
trajectories. (C) TrendCatcher prediction performance (AUC) across different number of time points, from 3 to 11 
time points. TrendCatcher's AUC values across time points from 3 to 11 are, 0.90, 0.92, 0.90, 0.89 and 0.88.
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Figure 2. Dynamic gene expression in peripheral blood following SARS-CoV-2 inoculation in a non-human 
primate model. (A) Analysis of the two predominant trajectory patterns in the non-human primate peripheral blood 
RNA-seq data from Day 0 to Day 14. The top-left figure represents 167 DDEGs following an up-down expression 
pattern, which peaked at Day 2 then slowly decreased until Day 14. The top-right figure represents their expression 
using a traditional z-score normalized heatmap. The bottom-left figure represents 263 DDEGs following a 
monotonic down-regulated trajectory pattern and their gene expression values were represented in the 
corresponding heatmap on the right. (B) Top 3 Gene ontology (GO) enrichment analysis pathways using 167 
DDEGs from trajectory pattern “0D-2D Up, 2D-14D Down”. (C) Top 3 Gene ontology (GO) enrichment analysis 
pathways using 263 DDEGs from trajectory pattern “0D-14D Down”. (D) TimeHeatmap of the top 15 dynamic 
pathways and their dynamic time windows visualizes the temporal patterns. Each column represents a time 
window. The “%GO” column represents the percentage of DDEGs found in the corresponding pathway. The 
“nDDEG” column represents number of DDEGs found in the corresponding pathway. Color represents the 
averaged log fold-change of the DDEGs within each time window for the corresponding pathway. 
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Figure 3. Cell-type specific dynamic gene expression in peripheral blood mononuclear cells following 
SARS-CoV-2 infection in patients. (A) UMAP visualization of single cell RNA-seq PBMC dataset (Zhu et al.) with 
annotated cell types from the original study. (B) TimeHeatmap of top dynamic biological pathway from plasma B 
cells. Each column represents a time window (stage). Stage 0 represents uninfected baseline. Each row represents 
the most dynamic biological pathways. Color represents the averaged log fold-change of the DDEGs within each 
time window from the corresponding pathway. (C) Top GO enrichment comparison analysis using DDEGs from 
each cell type. Dot size represents gene ratio. Dot color represents GO enrichment p-value. The number in the 
x-axis labels represent the number of DDEGs for each cell type.
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Figure 4. Temporal analysis of whole blood RNA-seq data in patients grouped according to disease 
severity. (A) Venn diagram of DDEGs identified from three COVID-19 severity groups. (B) Top GO enrichment from 
shared DDEGs across three groups compared with top GO enrichment from severe group. Dot size represents 
number of DDEGs enriched from the corresponding biological pathway. (C) TimeHeatmap of the top dynamic 
pathways from the severe group. Each column represents a time window, with W depicting week. (D-E) LOESS 
curve fitting of DDEGs identified in the severe COVID-19 group of the (D) neutrophil activation pathway, (E) 
humoral immune response pathway, (F) blood coagulation pathway and (G) respiratory burst pathway. Red curves 
represent the severe group, blue curves represent the moderate group, and green curves represent the mild group.

C Severe COVID-19
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Figure 5. Temporal analysis of single cell RNA-seq data of PBMCs from patients with either moderate or 
severe COVID-19. (A) Dot plot showing GO enrichment comparison between severe COVID-19 and moderate 
COVID-19 for each cell type. The size of the dot represents gene count. (B) LOESS curve fitting on DDEGs 
identified from the type I interferon pathway using TrendCatcher from moderate COVID-19 and severe COVID-19. 
Blue color indicates moderate group and red color indicates severe group. (C) TimeHeatmap of NK cells from 
moderate COVID-19. (D) TimeHeatmap of NK cells from severe COVID-19. (E) TimeHeatmap of CD8+T cells from 
moderate COVID-19. (F) TimeHeatmap of CD8+T cells from severe COVID-19. Each column represents a time 
window with W depicting week. 
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Figure 6. Temporal analysis of PBMC single cell RNA-seq data from human subjects receiving the 
SARS-CoV-2 mRNA vaccine. (A) UMAP of the single-cell transcriptional profile of patient 2047 at Day 0. Cell types 
were auto-annotated by SingleR. (B) Dot plot of comparison of the top GO terms enriched from cell-type specific 
DDEGs. TrendCatcher identified 650, 62, 450, 6 and 23 DDEGs from NK cells, monocytes, B cells, CD4+ T cells 
and CD8+ T cells. Size of the dot represents gene ratio from the enrichment analysis corresponding to each cell 
type. (C) TimeHeatmap of NK cells. Each column represents a time window measured by days. The second dose 
was administered at Day 21. 
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Supplementary Figure 1, related to Figure 1. TrendCatcher prediction performance on different types of 
trajectories. (A) Prediction performance of TrendCatcher across varying numbers of time points for monotonic 
trajectories. (B) Prediction performance of TrendCatcher across varying numbers of time points for biphasic 
trajectories. (C) Prediction performance of TrendCatcher across varying numbers of time points for multimodal 
trajectories. DESeq2 is shown in green, DESeq2Spline is shown in yellow, ImpulseDE2 is shown in purple, 
TrendCatcher is shown in red.
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Supplementary Figure 2, related to Figure 2. Trajectory pattern composition of DDEGS and dynamic 
gene signatures from highlighted pathways. (A) Hierarchical pie chart shows the composition of 
trajectory patterns of DDEGs identified in a non-human primate bulk peripheral blood mRNA (Aid et al.). (B) 
Dynamic gene signatures for SARS-CoV-2 infection from type I interferon signaling pathway. (C) Dynamic 
gene signatures response for SARS-CoV-2 infection from mitochondrial ATP synthesis coupled electron 
transport pathway. Color represents normalized z-score for gene expression.
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Supplementary Figure 3, related to Figure 3. Dynamic gene signatures of immunoglobulin 
pathway. Heatmap showing B cell’s 38 DDEGs identified from immunoglobulin production process. Color 
represents normalized z-score of gene expression. 
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Supplementary Figure 4, related to Figure 3. TimeHeatmap of B cells and NK cells. (A) 
TimeHeatmap of Memory B  cells. (B) TimeHeatmap of Naive B cells. (C) TimeHeatmap of NK cells. 
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Supplementary Figure 5, related to Figure 3. TimeHeatmap of T cells. (A) TimeHeatmap of Naive T 
cells. (B) TimeHeatmap of CD4+ T cells. (C) TimeHeatmap of CD8+ T cells. (D) TimeHeatmap of MAIT 
cells. 
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Supplementary Figure 6, related to Figure 4. TimeHeatmap of mild and moderate COVID-19. (A) 
TimeHeatmap of top dynamic GO terms found in severe COVID-19 shown in mild group. (B) TimeHeatmap of top 
dynamic GO terms found in severe COVID-19 shown in moderate group. 
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Supplementary Figure 7, related to Figure 4. Dynamic gene signatures of neutrophil activation from 
severe COVID-19. Heatmap of severe COVID-19 DDEGs identified from the neutrophil activation pathway. 
The heatmap is ordered by week following infection with healthy controls (HC) on the left. Color represents 
Z-score normalized expression values. Each column represents one sample.
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Supplementary Figure 8, related to Figure 4. Dynamic gene signatures of blood coagulation and 
respiratory burst pathways from severe COVID-19. (A) Severe COVID-19 DDEGs identified from the blood 
coagulation pathway. (B) Severe COVID-19 DDEGs identified from respiratory burst pathway. The heatmap is 
ordered by week following infection with healthy controls (HC) on the left. Color represents Z-score normalized 
expression values. 
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Supplementary Figure 9, related to Figure 6. TimeHeatmap of monocytes, B cells and CD8+ T cells(A) 
TimeHeatmap of monocytes. (B) TimeHeatmap of B cells. (C) TimeHeatmap of CD8+T cells.  Day 1 is the first dose 
of vaccination, Day 21 is the second dose of vaccination. 
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