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Abstract

Background: The role of vitamins in the combat of disease is usually conceptualized as acting by modulating the immune
response of an infected, eukaryotic host. We hypothesized that some vitamins may directly influence the growth of
prokaryotes, particularly mycobacteria.

Methods: The effect of four fat-soluble vitamins was studied in radiometric BactecH culture. The vitamins were A (including
a precursor and three metabolites,) D, E and K. We evaluated eight strains of three mycobacterial species (four of M. avium
subspecies paratuberculosis (MAP), two of M. avium and two of M. tb. complex).

Principal Findings: Vitamins A and D cause dose-dependent inhibition of all three mycobacterial species studied. Vitamin A
is consistently more inhibitory than vitamin D. The vitamin A precursor, b-carotene, is not inhibitory, whereas three vitamin
A metabolites cause inhibition. Vitamin K has no effect. Vitamin E causes negligible inhibition in a single strain.

Significance: We show that vitamin A, its metabolites Retinyl acetate, Retinoic acid and 13-cis Retinoic acid and vitamin D
directly inhibit mycobacterial growth in culture. These data are compatible with the hypothesis that complementing the
immune response of multicellular organisms, vitamins A and D may have heretofore unproven, unrecognized, independent
and probable synergistic, direct antimycobacterial inhibitory activity.
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Introduction

Since early in the last century [1] the role of both vitamin A (see

[2] for review) and vitamin D (see [3,4] for review) in combating

infectious diseases has been investigated. It is noteworthy that in

the vast majority of studies, the underlying assumption has been

that any efficacy of these vitamins in combating disease is

consequent to enhancement of the immune response of the

infected host [5–8]. There is no direct inhibition of bacterial

growth by synthetic retinoids [9]. In contrast retinaldehyde (but

not Retinoic Acid itself) inhibit Gram positive (but not Gram

negative) bacteria in culture [10].

The activities of vitamins A & D have been extensively reported

in relation to the host immune response in mycobacterial diseases

[4,8,11–15]. We posit that vitamins will have fundamental and

necessary activity in both prokaryotes as well as eukaryotes. We

hypothesized that vitamins A and D might directly inhibit

prokaryotic growth in general and mycobacterial growth in

particular. Any direct inhibitory action of vitamins would be in

addition to (and possibly synergistic with) their effect on the

immune response of a mycobacterial-infected host [5–8].

We herein report on radiometric culture studies of the four fat-

soluble vitamins (A, D, E & K) as well at the vitamin A precursor

b–carotene and three vitamin A metabolites (retinyl acetate,

retinoic acid and 13-cis retinoic acid) on three mycobacterial

species. They are the acknowledged human pathogen M.

Tuberculosis (M. tb.) complex, M. avium subspecies avium (M. avium)

pathogenic in immuno-compromised humans and the possibly

zoonotic M. avium subspecies paratuberculosis (MAP) [16].

Methods

This study was approved by the Research & Development

Committee at the VAMC Bronx NY (0720-06-038) and was
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conducted under the Institutional Radioactive Materials Permit

(#31-00636-07).

Bacterial Culture
Our BactecH 460 (Becton-Dickinson Franklin Lakes NJ) 14C

radiometric culture inhibition methods have previously been

published in detail [17–22]. This system quantifies bacterial

growth, or lack thereof, by providing 14C in palmitate, an energy

source for mycobacterial growth [23]. Vials are assayed on a daily

basis, quantifying the amount of 14C released as 14CO2, by the

integral detector in the Bactec 460. The data are obtained as a

manufacturer determined, arbitrary Growth Units (GU) of 0-999.

Because the Bactec 460 is only semi-automatic, and the onerous

regulatory requirements of using radionucleotides, this exquisitely

sensitive [18] system is being phased out. It is being replaced by

the fully automatic, oxygen consumption detecting fluorescent

probe MIGT system (Becton-Dickerson NJ.) [24,25]

The detergent Tween 80 (recommended to minimize mycobac-

terial clumping [23]) is not used in culture, because of interference

with the assay [21,26]. Strains with the least spontaneous clumping

are studied instead. Except for the amount of test agent, every vial

has the identical concentration of all constituents (including

identical 3.2% concentration of the dissolving agent, DMSO.) In

this study, performed in singlicate, eight strains of mycobacteria,

four of which are MAP, are evaluated. Two MAP strains had been

isolated from humans with Crohn disease ‘‘Dominic’’ (ATCC

43545; Originally isolated by R. Chiodini [27]) and UCF 4 (gift of

Saleh Naser, Burnett College of Biomedical Sciences, University of

Central Florida, Orlando FL.) [28]. The other two MAP strains

were from ruminants with Johne disease, ATCC 19698 and 303

(gift of Michael Collins Madison WI.) The M. avium subspecies avium

strains (hereinafter called M. avium) were ATCC 25291 (veterinary

source) and M. avium 101 (Human isolate from a patient with AIDS;

Gift of Clark Inderlied PhD. UC Los Angles CA.) [29]. To study the

M. tuberculosis complex, we used two BioSafety level 2 strains;

Bacillus Calmette Guerin (BCG) M. bovis Karlson & Lessel (ATCC

19015) and an avirulent M. tb strain; ATCC 25177 (all ATCC from

ATCC Rockville MD).

The fat soluble vitamins studied were: vitamin A (Retinol;

Axerophthol, -3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-

2,4,6,8-nonatetraen-1-ol: Sigma Cat # R7632.) The vitamin A

precursor studied was b–Carotene (b,b-Carotene, Provitamin A:

Sigma Cat # 22040.) We studied three vitamin A metabolites;

Retinyl acetate (Retinol acetate, vitamin A acetate: Sigma Cat #
R3250) and Retinoic acid (ATRA, Tretinoin, vitamin A acid, all-

trans-Retinoic acid: Sigma Cat # R2625). Additionally we evaluated

13 cis-Retinoic acid (Isotretinoin, AcutaneH Sigma Cat # R3255), a

medication used to treat intractable acne and occasionally

associated with the manifestation of both Crohn’s disease and

ulcerative colitis. A commercial source of another structural analog

of retinoic acid; 9-cis-Retinoic acid could not be identified.

The other three fat-soluble vitamins studied are: vitamin D

(Cholecalciferol; (+)-Vitamin D3, 7-Dehydrocholesterol activated,

Activated 7-dehydrocholesterol: Sigma Cat # C9576). Vitamin E

((6)-a-Tocopherol DL-all-rac-a-Tocopherol: Sigma Cat # T3251).

Vitamin K1 (2-Methyl-3-phytyl-1,4-naphthoquinone, 3-Phytylme-

nadione, Phylloquinone: Sigma Cat # 95271). Our inhibitory

antibiotic control is monensin [20] and the non-inhibitory control is

the gluterimide antibiotic, phthalimide [21]. (All Sigma, St Louis.

MO.) Chemicals are dissolved in DMSO, aliquoted, stored at

280uC, thawed, used once and discarded. Agents are studied at

concentrations ranging from 0.1 to 64 mg/ml.

For clarity and ease of understanding the same data are

presented in two ways. For individual mycobacteria we present

data from a single experiment graphically (Figures 1–9). These

data are presented as the cumulative Growth Index (cGI.) In

contrast, for each individual chemical agent studied, data are

presented in Tables as the ‘‘percent change from control cGI’’

(Inhibition as ‘‘%–DcGI’’; See [18] for calculation: Tables 1–10).

For simplicity and comprehensibility the data in each of

Figues 1–6 are for only two of the four agents tested. For ease of

comparison the inhibitory (Monensin) and non-inhibitory control

(Phthalimide) are repetitively presented. Data for vitamins A & D

are presented in Figure 1 (MAP), Figure 2 (M. avium) & Figure 3

(M. tb. complex) and vitamins E & K are presented in Figure 4

(MAP), Figure 5 (M. avium) & Figure 6 (M. tb. complex.) The

vitamin A precursor and structural analogs are presented in

tabular form. (b-Carotene; Table 7: Retinol acetate; Table 8:

Retinoic acid; Table 9: and 13-cis Retinoic acid; Table 10.) Data

for vitamin A precursors and analogs on mycobacterial species and

subspecies are presented as Figures (MAP = Figure 7: M.

avium = Figure 8 & M. tb. complex = Figure 9.).

Results

In this study we show that all MAP and both M. tb complex

strains are inhibited by Monensin (Table 1 and Figures 1 & 4 &

Table 1 & Figures 3 & 6.) This corroborates our previous findings

with Monensin [20,21,30]. As previously [20,21,30], Monensin

does not inhibit one of our two M. avium control strains (M. avium

101: Table 1 and Figures 2 & 5), attesting to the reliability and

reproducibility of our assay.

The non-inhibitory control that we use is Phthalimide, a

gluterimide antibiotic that has no mycobacterial inhibition [21]. In

this study, as previously [21,30,31], Phthalimide has no dose-

dependent inhibition against any of the mycobacterial strains

tested (Table 2 and Figures 1–6.)

Vitamin A causes dose dependent inhibition of all MAP, M.

avium and M. tb complex strains studied (Table 3 & Figures 1, 2 &

3) with 98%-DcGI at 16 mg/ml for MAP ATCC 19698. The

precursor to vitamin A, b-Carotene has no dose dependent

inhibition on six of eight mycobacterial strains and negligible

inhibition on two MAP strains (Table 7 & Figures 7, 8 & 9.) In

contrast, the three vitamin A metabolites (Figures 7, 8 & 9); retinyl

acetate (Table 8), retinoic acid (Table 9), and 13-cis retinoic acid

(Table 10) result in dose dependent inhibition of all three species

studied, but with intriguing interspecies variations. Retinyl Acetate

is most active against MAP (Figure 7 & Table 8; Dominic 96%-

DcGI at 64 mg/ml.) Retinoic acid and 13-cis retinoic acid are most

active against M. tb (98%-DcGI at 16 mg/ml), but have no

inhibition against BCG (Figure 9 & Tables 9 & 10.) M. avium is the

least susceptible to these vitamin A metabolites (Figure 8 &

Tables 8–10).

Vitamin D causes dose dependent inhibition of all MAP strains

studied (Table 3 & Figure 1). However, vitamin D is not as potent

an inhibitor against the two MAP human isolates (UCF-4; 56%-

DcGI at 64 mg/ml and Dominic) as it is on the two MAP bovine

isolates (Table 4 and Figure 1.) Likewise, vitamin D inhibits all M.

avium (Table 4 & Figure 2) and M. tb. complex (Table 4 & Figure 3)

strains studied. Finally, vitamin D is less effective than vitamin A

against all four M. avium and M. tb complex strains studied

(Tables 3 & 4 and Figures 1–3.).

In contrast, vitamin E (Table 5; Figures 4, 5, & 6) results in

inhibition of only one of the eight mycobacterial strains studied,

MAP Dominic (Table 5 & Figure 4.) Even then, the maximal

inhibition of vitamin E on Dominic (44%-DcGI at 64 mg/ml;

(Table 5 & Figure 4) is far less than is observed with either vitamin

A or D.

Vitamins A & D Inhibit Mycobacteria
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Figure 2. Both vitamins A & D inhibit M. avium. The inhibitory
control is Monensin, and the non-inhibitory control is Phthalimide. Note
that as previously [20,21,30], Monensin does not inhibit M avium 101.
cGI = cumulative Growth Index.
doi:10.1371/journal.pone.0029631.g002

Figure 3. Both vitamins A & D inhibit the M. tb complex. Vitamin
D is less effective against M. tb ATCC 25177. The inhibitory control is
Monensin, and the non-inhibitory control is Phthalimide. cGI = cumu-
lative Growth Index.
doi:10.1371/journal.pone.0029631.g003

Figure 1. Both vitamins A & D inhibit all four MAP strains studied. Strains from the two upper panels (UCF-4 & Dominic) were isolated from
humans with Crohn disease. Strains in the two lower panels were isolated from ruminants with Johne disease. The inhibitory control is Monensin, and
the non-inhibitory control is Phthalimide. cGI = cumulative Growth Index.
doi:10.1371/journal.pone.0029631.g001
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Figure 4. Neither vitamins E nor K inhibit MAP (other than limited inhibition by vitamin E on Dominic.) The inhibitory control is
Monensin, and the non-inhibitory control is Phthalimide. cGI = cumulative Growth Index.
doi:10.1371/journal.pone.0029631.g004

Figure 5. Neither vitamins E nor K inhibit M. avium. The inhibitory
control is Monensin, and the non-inhibitory control is Phthalimide. Note
that as previously [20,21,30], Monensin does not inhibit M avium 101.
cGI = cumulative Growth Index.
doi:10.1371/journal.pone.0029631.g005

Figure 6. Neither vitamins E nor K inhibit the M. tb. complex.
The inhibitory control is Monensin, and the non-inhibitory control is
Phthalimide. cGI = cumulative Growth Index.
doi:10.1371/journal.pone.0029631.g006
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Figure 7. The effects of vitamin A precursors and metabolites on MAP. ß-carotene, the precursor to vitamin A, exhibits no inhibition at the
doses studied. Maximal inhibitory activity against all MAP strains is observed with Retinyl acetate (solid black triangles.) Both Retinoic acid and 13-cis
Retinoic acid exhibit intermediate inhibition.
doi:10.1371/journal.pone.0029631.g007

Figure 8. The effects of vitamin A precursors and metabolites
on M. avium. ß-carotene, the precursor to vitamin A, exhibits no
inhibition at the doses studied. Retinyl acetate and 13-cis Retinoic acid
have some inhibition.
doi:10.1371/journal.pone.0029631.g008

Figure 9. The effects of vitamin A precursors and metabolites
on M. tb. complex. ß-carotene, the precursor to vitamin A, exhibits no
inhibition at the doses studied. Both Retinoic acid and 13-cis Retinoic
acid result in dose dependent inhibition on our avirulent strain of M. tb.
There is no comparable inhibition against Bacillus Calmette-Guerin
(BCG).
doi:10.1371/journal.pone.0029631.g009

Vitamins A & D Inhibit Mycobacteria

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e29631



Table 1. Monensin Inhibitory Control.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 256% 221% 255% 227% 236% 26% 274% 228%

4 287% 244% 287% 266% 247% 22% 298% 254%

16 294% 278% 294% 291% 280% 21% 299% 273%

64 297% 288% 297% 296% 294% 0% 299% 291%

doi:10.1371/journal.pone.0029631.t001

Table 2. Phthalimide Non-Inhibitory Control.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 11% 29% 22% 7% 239% 28% 215% 21%

4 11% 211% 27% 5% 240% 23% 25% 7%

16 7% 217% 25% 4% 239% 0% 27% 10%

64 21% 228% 222% 8% 232% 249% 215% 2%

doi:10.1371/journal.pone.0029631.t002

Table 3. Vitamin A: retinol.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 217% 25% 220% 21% 20% 227% 224% 22%

4 261% 267% 268% 277% 28% 234% 248% 225%

16 295% 296% 298% 297% 278% 280% 291% 295%

64 299% 299% 299% 299% 299% 299% 299% 299%

doi:10.1371/journal.pone.0029631.t003

Table 4. Vitamin D Cholecalciferol.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 222% 237% 26% 22% 15% 229% 225% 23%

4 232% 263% 224% 271% 241% 257% 226% 264%

16 248% 291% 293% 294% 275% 288% 238% 291%

64 256% 290% 296% 296% 268% 287% 260% 291%

doi:10.1371/journal.pone.0029631.t004

Table 5. Vitamin E DL-a-Tocopherol Acetate.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 225% 212% 4% 25% 14% 227% 218% 19%

4 213% 222% 6% 1% 212% 213% 210% 23%

16 27% 233% 212% 2% 21% 211% 217% 1%

64 238% 244% 231% 1% 229% 233% 221% 16%

doi:10.1371/journal.pone.0029631.t005

Table 6. Vitamin K1.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 219% 29% 3% 23% 212% 216% 3% 8%

4 11% 215% 210% 12% 210% 17% 210% 1%

16 29% 226% 228% 5% 241% 232% 211% 230%

64 26% 264% 214% 221% 264% 229% 229% 239%

doi:10.1371/journal.pone.0029631.t006

Table 7. b-Carotene.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 28% 2% 24% 2% 11% 226% 222% 11%

4 29% 24% 230% 2% 20% 214% 225% 13%

16 13% 28% 231% 25% 8% 210% 221% 13%

64 214% 225% 236% 23% 29% 232% 232% 21%

doi:10.1371/journal.pone.0029631.t007

Table 8. Retinyl Acetate.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 21% 2% 214% 5% 36% 28% 22% 3%

4 274% 264% 232% 216% 18% 1% 3% 22%

16 282% 286% 268% 265% 213% 289% 27% 214%

64 295% 296% 292% 296% 284% 266% 278% 296%

doi:10.1371/journal.pone.0029631.t008
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Vitamin K has no effect on the growth on any of the three

mycobacterial species studied (Table 6; Figures 4, 5, & 6.).

Discussion

To our knowledge this is the first study showing dose-dependent

inhibition, in radiometric culture, of three mycobacterial species

(the M. tb. complex, M. avium and MAP) by two of four fat-soluble

vitamins; vitamins A & D. In contrast, vitamin K has no, and

vitamin E negligible effect. These therefore provide appropriate

non-inhibitory experimental controls. Our observations cannot be

ascribed to the acidic nature of vitamin A or its analogs as the pH

remains within the manufacturer’s recommended range of

pH 6.662 in the final 5 ml incubation volume (data not presented.)

The mechanism(s) by which vitamins A & D inhibit mycobacterial

growth, and whether they have similar inhibition on virulent and/or

multi-drug resistant M. tb., remains to be determined.

Our finding are directly contradictory to those of Flemetakis

et. al. who concluded that there was no direct retinoid effect on

bacteria in vivo [9]. Others find that vitamin A and retinoic acid

have no antibacterial activity, whereas retinaldehyde does [10].

Neither study evaluated mycobacteria in radiometric culture. We,

and others [32], conclude that when evaluating mycobacterial

growth kinetics, liquid radiometric [23] data provide exquisitely

sensitive data of bacteriostatic in addition to bactericidal effects.

Inhibition of mycobacterial growth by vitamins A & D has been

ascribed to down regulation of the tryptophan-aspartate-containing

coat protein (TACO) gene in the human macrophage [8,33]. Our

data are compatible with an additional hypothesis. It is that vitamins

D, A and vitamin A metabolites have a heretofore unproven,

independent and probable synergistic antimycobacterial inhibitory

action that complements the immune response of multicellular

organisms.

The vitamin A precursor, b-Carotene, does not inhibit mycobac-

terial growth. This indicates that mycobacterial mechanisms to

convert b-Carotene to vitamin A are inadequate to produce sufficient

vitamin A levels to inhibit mycobacterial growth. We conclude that

the subspecies specific, idiosyncratic, inhibition of the three vitamin A

metabolites merit further study, as do structural analogs of vitamin D.

We posit that multiple agents have underappreciated activity

against prokaryotes in addition to well-documented eukaryotic

activity. For example, we [17,18,20–22,30,31], and others [34,35],

have shown inhibition of MAP growth with medications used to

treat ‘‘autoimmune’’ and ‘‘inflammatory’’ diseases. In the present

study we show direct inhibition of mycobacterial growth by

vitamins A and D in culture. We conclude that the scientific

community has neglected the potential direct prokaryotic effects of

vitamins, emphasizing instead the indirect role that vitamins have

in enhancing the immune response of an infected host.

Our radiometric assay [23] is sufficiently sensitive to identify

mycobacterial growth enhancement in culture [31]. Using it, we

have corroborated the classic study of Bernheim in 1940 [36]

showing that salicylic acid increased oxygen consumption by the

tuberculosis bacillus. Additionally, we showed growth enhancement

of mycobacteria by vitamin B3 (nicotinamide), nicotinic acid (a

tobacco constituent) and a &ß NAD [31]. In 1940 the possibility that

vitamin K enhanced the growth of MAP was considered [37]. (see

[38] for review). The identification of the necessary, and potent, iron

chelating mycobactins of M. phlei [39,40] (see [41] for review), left

unresolved a possible enhancing role of vitamin K on MAP growth

[37]. In this present study we observe no growth enhancement by

vitamin K1. It is of interest however, that vitamin K2 (menaquinone),

which we did not evaluate, may inhibit mycobacterial growth [42].

We now conclude that vitamin K1 has no effect on the growth of

three mycobacterial species, including MAP.

This study does not address how vitamin concentrations that are

inhibitory in our culture system, relate to concentrations actually

found in multicellular organisms. For example our ‘‘normal’’

laboratory range in humans for circulating vitamin A is 0.3–

0.9 mg/ml, a level below those tested in our studies (1–64 mg/ml.)

Lipophylic antibiotics, such as azithromycin, may achieve tissue

levels 1,000 fold greater than circulating values [43]. Since

‘‘normal’’ laboratory concentrations are ‘‘circulating’’ plasma

levels, they may vastly underestimate concentrations that these

fat-soluble vitamins achieve in lipid rich regions, such as

prokaryotic and eukaryotic cell walls and other lipophylic regions

within cells.

Prevailing dogma considers that all of the anti-mycobacterial

activity of vitamins A & D is mediated, indirectly, via enhancement

of the immune system of the eukaryotic host. Our data are

compatible with an alternative hypothesis: In addition to their

eukaryotic activity, vitamins A & D may directly inhibit mycobac-

teria within the eukaryotic host. Similarly whether vitamins may act

as naturally occurring ‘‘antibiotics’’ and help prevent a host infected

by mycobacteria from progressing to active disease will require

extensive and complicated, IRB compliant, additional studies.

Nevertheless, it is of considerable interest that low exposure to

sunlight, which is associated with diminished vitamin D levels [44],

is associated with an increase in the incidence of Crohn disease [45],

which may be caused by MAP [46].
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Table 9. Retinoic Acid.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 6% 24% 215% 2% 24% 0% 230% 11%

4 23% 222% 237% 2% 11% 7% 289% 15%

16 218% 233% 261% 214% 29% 236% 299% 0%

64 256% 248% 276% 221% 223% 254% 299% 1%

doi:10.1371/journal.pone.0029631.t009

Table 10. 13 Cis-Retinoic Acid.

mg/ml MAP M. Avium M. tb. Complex

Human Isolate
Bovine
Isolate M. tb. BCG

UCF-4 Dominic 19698 303 25291 101 25177 19015

1 0% 27% 218% 221% 12% 10% 216% 9%

4 223% 220% 234% 220% 25% 233% 242% 9%

16 218% 229% 258% 234% 227% 242% 291% 30%

32 235% 235% 268% 244% 234% 265% 297% 15%

doi:10.1371/journal.pone.0029631.t010
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