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Abstract

The lipoprotein encoded by the Francisella tularensis subsp. tularensis locus FTT1103 is essential for virulence; an FTT1103
deletion mutant is defective in uptake and intracellular survival, and mice survive high dose challenges of greater than 108

bacteria. This protein has two conserved domains; one is found in a class of virulence proteins called macrophage infectivity
potentiator (Mip) proteins, and the other in oxidoreductase Disulfide Bond formation protein A (DsbA)-related proteins. We
have designated the protein encoded by FTT1103 as FipB for Francisella infectivity potentiator protein B. The locus FTT1102
(fipA), which is upstream of fipB, also has similarity to same conserved Mip domain. Deletion and site-specific mutants of fipA
and fipB were constructed in the Schu S4 strain, and characterized with respect to intracellular replication and in vivo
virulence. A nonpolar fipA mutant demonstrated reduced survival in host cells, but was only slightly attenuated in vivo.
Although FipB protein was present in a fipA mutant, the abundance of the three isoforms of FipB was altered, suggesting
that FipA has a role in post-translational modification of FipB. Similar to many DsbA homologues, FipB contains a cysteine-
any amino acid-any amino acid-cysteine (CXXC) motif. This motif was found to be important for FipB’s role in virulence; a
deletion mutant complemented with a gene encoding a FipB protein in which the first cysteine was changed to an alanine
residue (AXXC) failed to restore intracellular survival or in vivo virulence. Complementation with a gene that encoded a
CXXA containing FipB protein was significantly defective in intracellular growth; however, only slightly attenuated in vivo.
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Introduction

Francisella tularensis subspecies tularensis, also known as type A

Francisella, causes a potentially life-threatening disease called

tularemia. Tularemia can be contracted by the bite of an

arthropod vector, or through inhalation of contaminated particles

or bacteria. Concerns over use of F. tularensis as a biological

weapon have arisen due to its documented use as a bioweapon in

WWII, and reports of the development of weaponized strains that

are resistant to antibiotics and vaccines [1,2]. These concerns have

led to increased interest in defining the mechanisms of virulence,

and immunity as means towards identifying new targets for

therapy and immune protection. There are several other less

virulent subspecies and species of Francisella including the Live

Vaccine Strain (LVS), an attenuated strain of F. tularensis subsp.

holarctica that has been used as a protective vaccine in some parts of

the world, but has never been licensed in the United States [3].

F. tularensis is a facultative intracellular bacterium that can

invade a variety of cell types including macrophages, endothelial

cells, and hepatocytes [4,5,6]. After phagocytosis F. tularensis

resides in a phagosome for up to 4 hours before escaping to the

cytoplasm [7,8,9]. Once in the cytoplasm bacteria replicate,

induce apoptosis or pyroptosis, and are eventually released from

cells. F. tularensis can also reenter the endocytic pathway and reside

in a large membrane-bound compartment that has characteristics

of an autophagocytic vacuole [10]. Thus far only a few loci have

been directly implicated in phagosome survival or escape. Most of

these loci are located on the Francisella pathogenicity island (FPI)

[11,12,13].

Previously we identified a novel non- FPI encoded F. tularensis

lipoprotein, encoded by locus FTT1103, that is defective in

intracellular growth, and essential for virulence in vivo in the highly

pathogenic F. tularensis subsp. tularensis strain Schu S4 [14]. We

have designated the protein encoded by FTT1103 as FipB for

Francisella infectivity potentiator protein B. FipB consists of a

unique combination of conserved domains that are found in a class

of virulence proteins called Mips (macrophage infectivity poten-

tiator) [15], and DsbA oxidoreductases [16]. Mip is a homodi-

meric protein with peptidyl-prolyl cis/trans isomerase (PPIase)

activity. Mip proteins are characterized by two conserved

domains, the Forskolin-binding protein-N (FKBP-N), which is

found at the amino-terminal end of Mip and also FipB, and

FKBP-C, which encodes the PPIase activity. Mip protein was first

identified in Legionella pneumophila as a virulence factor that was

required for optimal intracellular survival and virulence in vivo

[17]. Orthologs have been subsequently identified in several other
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Gram-negative bacteria in including Coxiella burnetii, Neisseria

gonorrhoeae [18], and Chlamydia species [19]. A number of other

Gram-negative bacteria have a Mip ortholog at least by

bioinformatic annotation. F. tularensis has a Mip ortholog encoded

by locus FTT1043.

Directly upstream of fipB in the Schu S4 genome is the

FTT1102 locus, which we have designated as fipA. In the original

annotation of the Schu S4 genome fipA was annotated as a

pseudogene. However, proteomic analysis of LVS membrane

fractions identified a peptide encoded by fipA [20]. The FipA

protein is predicted to encode a 96 amino acid lipoprotein, and

differs in only a single amino acid between Schu S4 and LVS. Like

FipB, FipA shares some sequence and structural similarity to the

FKBP-N domain. FipA and FipB are 28% identical to each other

in a 54 amino acid overlap. FipA and FipB are both highly

conserved (.98% identity) in all sequenced isolates and subspecies

of F. tularensis.

Canonical DsbA proteins are periplasmic oxidoreductases that

catalyze disulfide formation in nascent proteins in the periplasmic

space [21]. The active site of DsbA is minimally defined by a

Cysteine- any amino-acid-any amino acid- Cysteine (CXXC)

motif embedded in a thioredoxin-like fold [22]. FipB contains a

CXXC motif, and Straskova et al. have shown that recombinant

protein of the LVS ortholog of FipB has oxidoreductase activity in

vitro [20]. The Schu S4 and LVS FipB orthologs are highly similar;

they differ in seven amino acid residues, which are scattered

throughout the protein. LVS FipB also has 11 extra amino acids

on its carboxyl terminus. There are at least eight families of DsbA-

related proteins in the NCBI conserved domain database (www.

ncbi.nlm.nih.gov/cdd). FipB is most similar to the DsbA_Com1_

like protein family (NCBI; conserved domain cd03023). Com1 is

an outer membrane-associated protein of Coxiella burnetii [16].

Com1-like proteins are present in a number of gram-negative

pathogens, but their roles as virulence factors or as oxidoreduc-

tases have not been fully explored.

The goals of this study were to determine if fipA had roles in

intracellular replication and in vivo virulence, and determine

whether the active site of FipB was involved in this protein’s

essential role in virulence. FipB is a novel protein for several

reasons; it contains the conserved amino-terminal domain of Mip

proteins, and as we show in this paper, it consists of three isoforms,

and it has an accessory protein, FipA, that may function in post-

translational modification. Here we show that FipA is not essential

for virulence, though this mutant does not appear to replicate

intracellularly. We have also shown that in vivo virulence is

dependent on the CXXC motif of FipB. However, only the first

cysteine of the CXXC motif is essential for FipB activity.

Results

FipB is co-transcribed with fipA
Although there are only 20 base pairs separating the open

reading frames of fipA and fipB, it was important for later

complementation studies to confirm that these two genes were

transcribed from the same promoter. We verified that fipA and fipB

are co-transcribed by reverse transcription PCR (RT-PCR)

(Figure 1). As shown in Figure 1, PCR products using primer

pair C/E amplified the intergenic region between fipA and fipB,

and primer pairs A/B, and D/F amplified intragenic fragments of

fipA and fipB, respectively. It is possible that additional loci are co-

transcribed with fipAB. FipAB is flanked by FTT1100, and

predicted pseudogenes, loci FTT1101 and FTT1104. If

FTT1101 consisted of an intact open reading frame, translation

would terminate about 120 base pairs (bps) from the translational

start of fipA. The predicted start of FTT1104 is 287 bps from the

end of fipB. For in-cis complementation of fipAB we included

262 bps upstream of fipA in the plasmid used for constructing the

complemented strains (Table 1, pAQ162, pAQ163, pAQ164).

Since this region of DNA was able to drive expression of fipB in the

complemented strains (Figure 2), it suggests that this region

contains a promoter element.

FipA affects post-translational processing of FipB
When Straskova et al. used various proteomic techniques to

compare the protein profiles of wild-type LVS and an isogenic fipB

(FTL_1096) mutant bacteria only two proteins were absent, FipB

and FipA [20]. This suggested that FipB was required for FipA

protein stability. To investigate the effects of FipA on FipB, and

also the specific contributions of FipA to virulence, nonpolar

mutants in DfipA, DfipB, and DfipAB were constructed. Western

blots with anti-FipB antibody confirmed that the DfipA mutation

was nonpolar (Figure 3). Anti-FipB specific antibody recognized

three bands on Western blots. FipB has been identified as a

glycosylated protein by carbohydrate detection and mass spec-

trometry techniques, so these three isoforms may reflect differences

in glycosylation [23,24]. All three bands disappeared in the DfipB

mutant and also in the DfipAB mutant (data not shown). We noted

that compared to the wild-type strain, the lowest migrating band of

FipB was diminished in the fipA deletion mutant suggesting that

FipA plays some role in FipB post-translation processing or

modification such as glycosylation.

DfipA mutant is defective in intracellular growth
To explore and compare the roles of FipA and FipB in

intracellular growth and virulence J774A.1 cells were infected with

the fipA, fipB, or fipAB deletion strains, and then assayed for

intracellular growth at several time points using gentamicin

protection assays (Figure 4). All mutants exhibited statistically

significant reduced growth when compared to wild-type Schu S4

at 5 hrs post-infection (p,0.001). The DfipB, and the double

DfipAB mutants had similar phenotypes; in J774A.1 cells the

number of CFUs recovered from these mutants at 24 hrs had

decreased by about two logs from the 5 hr time point, while during

this same time period Schu S4 CFUs had increased by almost 4

Figure 1. fipA and fipB are co-transcribed. RNA was isolated from
wild-type Schu S4, and then converted to cDNA. (A) Overview of
chromosomal region containing fipA and fipB. Short arrows indicate the
location of the PCR primers. The wavy arrow indicates the direction of
transcription. The numbers between the genes indicate the size of the
intergenic region. The hatched boxes (FTT1101 and FTT1104) indicate
predicted pseudogenes. (B) PCR was performed using the indicated
primers (RT-RNA). Controls were: No reverse transcriptase added to the
cDNA synthesis reactions (No RT-RNA), and PCR using Schu S4 DNA as
template and the indicated primers (DNA). Expected sizes of PCR
products were as follows A–B: 314 bps, C–E: 311 bps, and D–F: 392 bps.
doi:10.1371/journal.pone.0024611.g001
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logs (Figure 4). In contrast, the DfipA mutant did not appear to

replicate appreciably over this time period, and the number of

recovered CFUs remained stable for up to 48 h. Similar patterns

of defective growth for all of these mutant strains were also

observed in A549 cells (data not shown). The difference in

intracellular growth was not due to an inherent growth defect

because all strains grew similarly in TSB/c and CDM media (data

not shown). FipA and FipB may have independent functions in

intracellular replication, but based on their sequence similarity,

and altered levels of FipB isoforms in the fipA mutant, it seems

likely that their roles in intracellular replication are linked.

DfipA mutant is slightly attenuated in vivo
We have shown here and previously that fipB is essential for in

vivo virulence in mice (Table 2) [14]. To test whether the

intracellular growth defect of the fipA mutant would have any

affect on virulence in vivo, C57BL/6 mice were challenged

intranasally with 2800, 280, or 28 CFUs of DfipA bacteria.

Despite a significant intracellular growth defect in vitro, the fipA

mutant was only mildly attenuated in vivo; as few as 28 CFUs of the

fipA mutant by an intranasal route was lethal, although there was

2–3 day delay in the time to death when compared to mice that

received a challenge dose of 10 CFUs (Table 2).

Figure 2. In cis complementation of DfipAB. Wild-type and mutated
copies of fipB were introduced into DfipAB and then selected for
integration into the blaB locus as described in methods. Western blots
of overnight cultures were prepared and incubated with anti-FipB
specific antibody. Arrow indicates the location of the FipB triplet
isoforms.
doi:10.1371/journal.pone.0024611.g002

Table 1. Bacterial strains and plasmids used in this study.

Name Relevant characteristics Source/Ref

Francisella strains

Schu S4 F. tularensis tularensis, wild-type CDC

BJM1031 Schu S4 DfipB Qin [14]

BJM1068 Schu S4 DfipA This study

BJM1069 Schu S4 DfipA+B This study

BJM1076 fipA+B+ in cis complement of DfipAB This study

BJM1077 fipA+B C164A in cis complement of DfipAB This study

BJM1078 fipA+B C167A in cis complement of DfipAB This study

Plasmids

pMP815 Chromosomal integration system vector LoVullo [46]

pGIR463 sacB suicide vector Sullivan [44]

pAQ136 59flanking region of fipA in GIR463 (BM248/BM249) This study

pAQ137 59-and 39flanking regions of fipA in GIR463 (BM250/BM251) This study

pAQ138 59-and 39 flanking regions of fipAB in GIR463 (BM256/BM085) This study

pAQ162 fipA+fipB+ in pMP815 This study

pAQ163 fipA+fipB C164A in pMP815 This study

pAQ164 fipA+fipB C167A in pMP815 This study

doi:10.1371/journal.pone.0024611.t001

Figure 3. Detection of FipB in the DfipA bacteria. On Western
blots FipB migrates as three bands. In the DfipA mutant the lower band
was diminished. Western blot of bacterial lysates of indicated strains
with anti-FipB antibody; antibody to E. coli GroEL, which cross-reacts
with the Francisella protein, was used as a loading control. Recombi-
nant His-FipB was used to generate the anti-FipB antibody, and serves
as a positive control.
doi:10.1371/journal.pone.0024611.g003
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The conserved CXXC motif of FipB is required for
intracellular replication

The CXXC motif has been shown to be critical for the enzymatic

activity of Escherichia coli DsbA (EcDsbA), and also for substrate

interactions [27,28]. Therefore, we predicted that the CXXC motif

of FipB would also be important for FipB’s role in intracellular

replication, and virulence. To investigate the importance of the

CXXC motif in intracellular growth copies of fipB in which the

cysteines in the CXXC motif had been replaced with alanines,

(C164A and C167A), were integrated in to the blaB gene in a DfipAB

strain along with the native promoter and wild-type fipA. Expression

of the mutated genes was confirmed by Western Blots (Figure 2).

The level of FipB in the in-cis complemented strains was similar to

wild-type.

To examine uptake and the intracellular growth phenotype of the

CXXC mutants, J774A.1 cells were incubated with the DfipAB or

complemented strains, treated with gentamicin, and then assayed

for growth at 2 and 24 hrs (Figure 5). At 2 hrs post-infection the

Figure 4. DfipA bacteria are defective in intracellular growth. J774A.1 cells were infected at an MOI of 50:1 with the indicated strains of
bacteria as described in materials and methods; cells were thoroughly washed, lysed at the indicated time points, and then diluted and plated to
determine CFU/ml.
doi:10.1371/journal.pone.0024611.g004

Table 2. Survival of fipA, and DfipAB mice after intranasal inoculation.

Strain Relevant genotype # of mice Inoculation dose (CFU)1 Days to Death2

Schu S4 4 10 5,5,5,5

BJM1068 DfipA 3 28 7,7,8

BJM1068 DfipA 3 280 6,7,8

BJM1068 DfipA 2 2800 5,6

BJM1069 DfipAB 4 76107 Survived .30 days

BJM1076 DfipAB-fipA+B+ 3 10 6,6,7

BJM1076 DfipAB-fipA+B+ 3 100 6,6,6

BJM1076 DfipAB-fipA+B+ 3 1000 5,5,5

BJM1076 DfipAB-fipA+B+ 4 4.36104 4,4,4,4

BJM1077 DfipAB-fipA+fipB C164A 4 8.86107 Survived .30 days

BJM1078 DfipAB-fipA+fipB C167A 4 3.46107 4,4,4,4

BJM1078 DfipAB-fipA+fipB C167A 4 3.46104 8,8,8,8

BJM1078 DfipAB-fipA+fipB C167A 4 270 9,9,9,10

BJM1078 DfipAB-fipA+fipB C167A 4 27 9,10,10, .20 days

1C57/BL6 mice were intranasally challenged with the indicated inoculum dose, which was confirmed by plating the inoculum.
2Indicates the number of days after challenge that mice showed the first signs of irreversible mortality, and were euthanized. Mice were followed for a minimum of 20
days. Similar to the DfipAB mutant, mice similarly challenged with the DfipB mutant survive for more than 30 days without any signs of infection [14].

doi:10.1371/journal.pone.0024611.t002

Francisella Infectivity Potentiator Proteins

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e24611



DfipAB mutant had reduced uptake compared to the wild-type

bacteria (Figure 5A). A DfipB mutant was also defective in uptake,

but a DfipA mutant had uptake levels similar to wild-type bacteria

(data not shown). Complementation with the C167A or C164A fipB

genes (CXXA or AXXC, respectively) also restored uptake to wild-

type levels. At 24 hrs post-infection complementation of the fipAB

mutant with the wild-type fipB gene restored intracellular replication

to wild-type levels. The numbers of bacteria recovered from fipAB

mutant, or the strains complemented with CXXA or AXXC genes

were significantly reduced compared to wild-type Schu S4 (p

value,0.00001). However, when the complemented strains were

compared to the DfipAB mutant, the number of CFUs recovered

from the CXXA strain was statistically higher (p value,0.007) than

the DfipAB mutant, while there was no statistical difference between

the AXXC and DfipAB mutants. These results indicated that the

CXXC motif was not required for uptake, but was important for

FipB mediated intracellular replication, however, the C164 amino

acid was more critical for function.

The conserved CXXC motif of FipB is required for in vivo
virulence

In the fipB and fipAB deletion mutants a defect in intracellular

growth correlated with avirulence in mice ([14] & Table 2).

However, this paradigm was not true of the DfipA mutant; despite

a significant intracellular growth defect this mutant still retained

virulence. One difference between DfipA, and DfipAB, was that

between 24 hrs and 48 hrs post-infection the number of viable

DfipA bacteria was stable, while viable DfipAB bacteria had

decreased in number. To test whether the increased number of

Figure 5. Effect of CXXC mutations on uptake and intracellular replication in J774A1. Monolayers of J774A.1 cells were infected with
indicated strains at an MOI of 100:1. The number of intracellular bacteria per well after infection for 2 (A) or 24 (B) hrs was determined as described in
methods; cells were thoroughly washed, lysed at the indicated time points, and then diluted and plated to determine CFU/ml. Bars represent the
mean 6SD of a representative experiment performed in triplicate. This experiment was repeated two times with similar results. For panel A ‘‘*’’
indicates p,0. 003 compared to Schu S4. For panel B ‘‘*’’ indicates p,0.00001 compared to Schu S4 and ‘‘**’’,0.007 compared to DfipAB.
doi:10.1371/journal.pone.0024611.g005
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bacteria recovered from the CXXA complemented strain,

compared to the DfipAB strain, translated to a difference in

virulence in vivo, mice were challenged intranasally with decreasing

doses of these various strains (Table 2). Similar to the parental

deletion strain, the AXXC mutant appeared to be avirulent; mice

survived challenges of 8.86107 CFUs for more than 30 days. The

CXXA mutant was also attenuated but still retained virulence;

mice challenged with 3.46104 CFUs died on day 8. Mice

challenged with 10 CFUs of Schu S4 died on day 5 post-infection,

but few as 27 CFUs of the CXXA, with one exception, also

resulted in a fatal infection on day 9 or 10 post-infection. These

results were consistent with the intracellular replication data (see

Figure 4), and support a critical requirement for the first cysteine

in the CXXC motif of FipB for virulence.

Discussion

FipB is a novel lipoprotein that is required for uptake,

intracellular replication and in vivo virulence of F. tularensis.

Although FipB is novel it has two conserved domains, DsbA_-

Com-1_like (cd03023), and FKBP-N, the amino-terminal domain

of FKBP-type peptidyl prolyl isomerases (cl03173), which are also

known as Mip proteins. To date, this combination of conserved

domains is unique to FipB. FipB is also a lipoprotein, which is

unusual, but not unique for DsbA proteins. Most DsbA are

thought be periplasmic proteins, but a few lipoproteins have been

identified; Neisseria sp., have three DsbA orthologs, and two of these

are lipoproteins [29]. The other novel aspects of FipB include the

presence of three isoforms, which are likely due to post-

translational modification [24], and the presence of an accessory

protein, FipA.

In the Schu S4 genome the FTT1102/fipA locus was annotated

as a pseudogene. However, consistent with the proteomic data

from Straskova et al. [20], which detected the 96 amino acid

peptide corresponding to FipA, we have shown that fipA is indeed

a functional locus. Deletion of fipA resulted in a significant

intracellular growth defect in vitro, though the impact of this gene

loss was not appreciably significant in vivo. It is possible that DfipA

bacteria can replicate in other cell lineages that we have not tested.

Horzempa et al. found that a Schu S4 pyrF mutant, which could

not replicate in human primary macrophages, was able to

replicate in HEK-293 and was virulent in mice [30]. Our results

also suggest that replication in macrophages is not an essential

requirement for virulence.

FipA also has similarity to the FKBP-N domain and is predicted

to be a lipoprotein. One could speculate that fipA and fipB arose as

gene duplications, and then fipA was truncated either in the

process or subsequently. However, this event would have to have

been an early event in the speciation of Francisella, because FipA is

highly conserved among the various species and subspecies of

Francisella, including the more distantly related Francisella philomir-

agia. There has also been considerable sequence divergence

between FipA and FipB, which are only ,28% identical at the

amino acid level. The conserved domain FKBP-N, which is shared

by the two proteins, has previously only been found in the amino-

terminal region of Mip proteins. The crystal structure of LpMip

has been determined [15]. Mip forms a dimer [31], and has its two

conserved domains connected by a very long alpha-helix. The C-

terminal domain of Mip (100–213 amino acids) has PPIase

activity, and amino terminal FKBP-N domain contains the alpha

helical N-term portion of the protein, which is required for

dimerization [15]. The LpMip protein has a complex role in

virulence. It is required for optimal replication in human

macrophages and amoebae [17], migration through an epithelial

barrier [32], and secretion of a phospholipase C-like activity in

culture supernatants [33]. It has been reported that the FKBP-N

or dimerization domain, but not the PPIase domain, is required

for full virulence in Acanthamoeba castellanii [34], suggesting that

dimerization and PPIase domains have separable functions. One

model for FipA function is that it physically interacts or dimerizes

with FipB, which then stabilizes a conformation state that

facilitates post-translational modification or processing. This

model is consistent with our observation that the level of one of

the isoforms of FipB was diminished in a FipB mutant. FipA

dimerization with FipB could also enable a different functional

role for FipB. By proteomic analysis of membrane fractions

Straskova et al. could not detect FipA in a FipB mutant [20], so

FipA may be unstable unless it is able to associate with FipB. The

presence of the FKBP-N dimerization domain in FipB also

suggests that FipB could form a homodimer, which FipA could

potentially regulate or influence. This will require further

investigation. We have observed higher molecular sized complexes

on nonreducing gels, but these complexes were sensitive to

reducing agents, and are likely artifactual interactions between the

cysteines in the active site.

The other conserved region of FipB, the DsbA-Com1-like

domain, is one of several DsbA-related conserved domains. DsbA

was first identified in E. coli, and is the best characterized DsbA

protein both biochemically, and structurally [28]. The conserved

CXXC motif, present in most all DsbA-related conserved

domains, is critical for the oxidoreductase enzymatic activity of

DsbA. In our studies we found that the CXXC motif was critical

for FipB’s role in intracellular survival and in vivo virulence, but

does not appear to be essential for bacterial uptake. In the

intracellular growth assays mutation of two cysteines individually

did not produce identical results; the first cysteine residue was

essential, while the second cysteine mutant had only reduced

function. This finding is consistent with functional characterization

of the CXXC motif of EcDsbA. Based on biochemical and

crystallographic studies, the first cysteine is the nucleophilic

residue that forms a mixed disulfide bond with its substrates.

The second cysteine is hidden within the molecule and less

accessible to solvent. One study that illustrates this difference

examined the oxidation of beta-lactamase, a substrate of EcDsbA.

When a CXXS mutant of EcDsbA was expressed in a wild-type

strain it acted as a dominant negative mutant, which produced a

decrease in the oxidation of beta-lactamase [35]. However,

addition of oxidized glutathione to the media restored beta-

lactamase folding. A SXXC mutant expressed in a wild-type strain

did not exhibit a similar dominant negative phenotype. Based on

this model, our in vivo experiments suggest that the in vivo

environment must be sufficiently oxidizing so that the CXXA FipB

mutant is able to carry its function at a level that is sufficient to

promote virulence.

It is likely that at least part of FipB’s role in virulence is through

the folding of substrates that have critical roles in virulence. In

other pathogenic bacteria DsbA is important for the structure or

function of a number of virulence factors including the biogenesis

of type IV pili in bacteria such as EPEC E. coli, and Pseudomonas

aeruginosa [36,37], the assembly and function of type III secretion

systems in Salmonella typhimurium and Shigella flexneri [38,39,40], and

the Dot/Icm type IV secretion system of L. pneumophila [41].

Identifying FipB substrates will help to define the essential

elements of F. tularensis pathogenicity. However, proteins that

contain a conserved DsbA pfam motif can be quite diverse [42].

With the exception of the active site and a few other conserved

amino acids, many share very little additional sequence similarity.

Therefore, it is likely that the function or structure of some
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proteins that contain the DsbA pfam is different, narrowed, or

expanded. A number of bacteria have more than one DsbA-

related protein, which also suggests more specialized functions

[42]. Salmonella typhimurium, for example, contains plasmid

encoded protein SrgA, which is a DsbA-related protein that has

a restricted substrate specificity for the plasmid encoded fimbriae

PefA [43]. The usual features of FipB, which include the FKBP-N

domain and some interaction with FipA, suggest that FipB may

also have specialized roles in virulence. The observation that

complementation with CXXA and AXXC alleles was able to

restore uptake supports a specialized role for FipB. FipB may act

as a chaperone, or perhaps more directly mediate this activity.

Indentifying these roles will help to define the essential aspects of

F. tularensis subsp. tularensis virulence.

Materials and Methods

Ethics Statement
All experimental procedures and care of animals was approved

by the University of Virginia’s Institutional Animal Care and Use

Committee. The University’s Animal Welfare Assurance number

is Animal Welfare Assurance #A3245-01, and the vivarium is

accredited by the Association for Assessment Accreditation of

Laboratory Animal Care International.

Bacterial strains, primers, plasmids and culture
Bacterial strains, plasmids, and primers used in these experi-

ments are listed in Tables 1 and 3. Plasmids pGIR463 and

pMP815 were kind gifts of Girija Ramakrishnan and Martin

Pavelka, respectively. E. coli strains were grown in Luria-Bertani

(LB) broth or on LB plates with kanamycin (50 mg/ml) or

ampicillin (100 mg/ml) when required. F. tularensis subsp. tularensis

(type A) Schu S4 was cultured on cysteine supplemented Muller-

Hinton agar (MHA/c) or in cysteine supplemented Trypticase Soy

broth (TSB/c) [44]. For F. tularensis strains 15 mg/ml of kanamycin

was added when appropriate. Studies involving Schu S4 and

derived strains were carried out in an approved Biosafety Level 3

laboratory.

DNA manipulation, cloning, and transformation
DNA was prepared and purified using a commercial kit

(Qiagen, Valencia, CA). Oligonucleotides were synthesized by

Integrated DNA Technologies Inc. (Coralville, IA). Restriction

endonucleases and ligase were purchased from New England

Biolabs (Ipswich, MA). HotStartH Taq (Qiagen) was used for

routine PCR. FastStartH High fidelity PCR system (Roche,

Indianapolis, IN) was used for construction of complementary

and suicide plasmids. All cloning products were verified by DNA

sequencing, which was performed at the University of Virginia

Biomolecular Research Facility. Site direct mutagenesis was

accomplished with a site-directed mutagenesis kit (QuikChangeH,

Agilent Technologies, Cedar Creek, TX) using primer pairs

BM150/BM151 or BM152/153, and pAQ038 as template.

Expression of fipB and mutant genes was verified by Western blot

with rabbit anti-FipB antibody (1:10,000) [14]. DNA transforma-

tion was performed as previously described [44].

Construction of deletion and integration plasmids
To confirm the non-polarity of our deletion mutants we first

complemented these mutations using the Francisella shuttle vector,

pFNLTP [25]. However, in-trans complementation only partially

restored the intracellular growth defect, and these strains also grew

poorly in liquid culture (data not shown). We hypothesized that

over-expression of fipB was deleterious. To circumvent this

problem we integrated the fipAB genes, along with the 262 bps

upstream, into the blaB locus using the plasmid developed by

Lovullo et al. [26]. To construct in-frame deletions of fipA and

fipAB PCR products corresponding to regions upstream and

downstream of fipA or fipAB were produced with primer pairs

BM248/BM249 and BM250/BM251 for fipA and BM256/

BM085 for fipAB (Table 3), and then cloned into the sacB suicide

vector pGIR463 [45]. Plasmids for in cis complementation of fipA,

Table 3. Primers used in this study.

Primer Sequence 59-39 Descript. Restr. Enz.

BM063 TCCATATGCAAGAAATGGCTGCTC F fipB NdeI

BM064 GCGGCCGCTATAAGAAGGATAGGC F fipA NotI

BM066 GGATCCTATCATCATCTTGGCTGAGC R fipB BamHI

BM150 CTTTGATTATCAAGCTATGTACTGTTCTAAGCTTGC F fipB C164A

BM151 GCAAGCTTAGAACAGTACATAGCTTGATAATCAAAG R fipB C164A

BM152 CAATGTATGTACGCTTCTAAGCTTGCTTGCTCC F fipB C167A

BM153 GGAGCAAGCAAGCTTAGAAGCTTACATACATTG R fipB C167A

BM245 AGAAAATATGCGGCCGCGAAATAATAGGAG F fipA NotI

BM208 TCCTCGAGCTTATTTCTTTTGAGCAGCC R fipA XhoI

BM248 GAGCCCTAGGTAGAACAATGGCAACAGG F fipA 59deletion AvrII

BM249 AGGCGGCCGCATTATTTAGTTTCTCCTA R fipA 59deletion NotI

BM250 ATAGATCAGCGGCCGCATGCAATGATTGAATTCC F fipA 39deletion NotI

BM251 ATTAGAGCTCAACACTATCATCATCTTGGCTGAGC R fipA 39deletion XhoI

BM256 CTAAGTCTGCGGCCGCAACAACTAGTACTAGC F fipAB 59deletion NotI

BM085 CTCGAGATTACAGCATTACCAGCTGC F fipAB 39deletion XhoI

BM297 GAGGAATAATAAATGAAATTAACTAAAACTCT F fipA

BM298 TTATTTCTTTTGAGCAGCCAT R fipA

doi:10.1371/journal.pone.0024611.t003
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and fipAB, and the CXXC mutants were produced by PCR

amplification of the genes using the primers listed in Table 2. Each

amplicon contained 262 bp of the sequence upstream of fipA. PCR

products were ligated into the blaB region of pMP815 [26]. The

resulting plasmids were introduced into the appropriate host

strain, and integrants or subsequent gene deletion mutants were

selected as previously described [14]. The nonpolarity of the fipA

deletion was verified by the detection of FipB on Western blot with

anti-FipB antibody.

Reverse Transcription PCR
Total RNA was isolated from overnight cultures using an

RNeasy Protect mini kit (Qiagen) and treated with DNase I

(Qiagen) to remove contaminating genomic DNA according to the

manufacture’s instructions. First strand cDNA was generated using

SuperScript II Reverse transcriptase (Invitrogen) and random

primers. A parallel transcription reaction without the reverse

transcriptase enzyme was conducted to control for DNA

contamination. Two ml of each reaction was used as a template

for 50 ml PCR reaction.

Uptake and Intracellular growth assays
Assays were performed with murine macrophage J774A.1

(ATCC#TIB-67) cells propagated in high glucose DMEM

supplemented with 10% fetal bovine serum. Cells (2.56105/well)

were seeded in 24 well plates, and incubated at 37uC, 5% CO2 for

18 h. Fresh cultures of F. tularensis were diluted in cell culture

medium to reach the desired multiplicity of infection (MOI).

Actual inoculum amounts of bacteria were determined by plating

serial dilutions of the culture inoculum. The plates were

centrifuged at 8006g for 8 min to start the infection, and then

incubated at 37uC for l h. Cells were washed three times in PBS,

and then extracellular bacteria were killed by gentamicin

treatment (50 mg/ml). At the assay endpoint cells were washed,

and then lysed with 0.1% sodium deoxycholate. Lysates were

diluted and plated to determine the number of colony form units

(CFU) in each well. Each experiment had triplicate wells and

repeated a minimum of two times.

Production of FipB antiserum
The DNA sequence of fipB gene was resynthesized with a his-

tag and codons that were biased for E. coli expression (Accession

#JN120022), and then cloned in pET Universal [46]. The

expression of recombinant fipB was induced by the addition of

1 mM IPTG to log phase bacteria. The protein was purified from

induced lysates using Talon beads (Clontech) and eluted with

imidazole according to manufacturer’s recommendations. Purified

protein was dialyzed against PBS, and protein concentration was

determined by BCA assay (Pierce). Purity was verified by SDS-

PAGE and Western blots. Rabbit anti-his-tagged FipB serum was

prepared by Covance Research products Inc (Emeryville, CA).

Mouse anti-FipB serum was made in house.

Mouse virulence studies
For intranasal inoculation 8 to 10-week-old C57BL/6 mice

(Jackson Laboratory) were anesthetized with ketamine-HCl-

xylazine. Twenty microliters of bacteria or PBS was inoculated

into the nares. The actual inoculation doses were confirmed by

viable plate counting. The mice were monitored daily. Mice were

humanely euthanized when death was considered to occur within

24 h. The University of Virginia’s Animal Care and Use

Committee approved all mouse studies.

Statistical analysis
All values were expressed as Mean 6SD and evaluated by using

Student’s unpaired Two-tailed t test with log transformed data,

and assuming unequal variance.
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