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Single-cell analysis identifies dynamic gene
expression networks that govern B cell
development and transformation
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Integration of external signals and B-lymphoid transcription factor activities organise B cell

lineage commitment through alternating cycles of proliferation and differentiation, producing

a diverse repertoire of mature B cells. We use single-cell transcriptomics/proteomics to

identify differentially expressed gene networks across B cell development and correlate these

networks with subtypes of B cell leukemia. Here we show unique transcriptional signatures

that refine the pre-B cell expansion stages into pre-BCR-dependent and pre-BCR-independent

proliferative phases. These changes correlate with reciprocal changes in expression of the

transcription factor EBF1 and the RNA binding protein YBX3, that are defining features of the

pre-BCR-dependent stage. Using pseudotime analysis, we further characterize the expression

kinetics of different biological modalities across B cell development, including transcription

factors, cytokines, chemokines, and their associated receptors. Our findings demonstrate the

underlying heterogeneity of developing B cells and characterise developmental nodes linked

to B cell transformation.
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D istinct stages of B-cell development have been delineated
using flow cytometry and a variety of surface1,2 and
intracellular markers3,4. The use of such markers in

combination with distinct gene knockout mice has greatly
expanded our understanding of specific B-lymphoid transcription
factors5–7, cytokines8–10, and signaling pathways that entrain B
cell development. However, these markers are insufficient to fully
demarcate distinct subsets1, resulting in the analysis of mixed
populations. These limitations have led to an incomplete under-
standing of B-lymphoid transcription-factor expression kinetics
across the B-cell developmental trajectory, and the orchestration
of transcriptional programs underlying the alternating cycles of
proliferation and differentiation. Capturing transition states as B
cells differentiate from one stage to the next is particularly diffi-
cult. Furthermore, perturbations during normal B-cell differ-
entiation can lead to development of B-cell acute lymphoblastic
leukemia (B-ALL)11–13. However, exactly what stages are most
permissive for transformation remains imprecisely defined.
Recent characterization of B-ALL subtypes showed diverse tran-
scriptional signatures, suggesting multiple points of origin, or use
of different signaling pathways to drive transformation12,14.
Therefore, understanding normal B-cell transcriptional programs
can determine where transformation occurs and how B-ALLs
exploit B-cell developmental pathways.

To address the above questions, we used single-cell tran-
scriptomics (scRNA-Seq) and proteomics (CITE-Seq, Cellular
Indexing of Transcriptomes and Epitopes by Sequencing)15 to
precisely characterize different subsets of B-cell development. Our
analysis discovered several stages of pre-B-cell differentiation—
including a pre-BCR-dependent and two pre-BCR-independent
stages that exhibited distinct modalities of proliferation. This
process of pre-B-cell differentiation was characterized by oscil-
latory regulation of the transcription factor EBF1, with reciprocal
changes in the RNA-binding protein YBX3. In contrast, the pre-
BCR-independent stages correlated with changes in chemokine
and cytokine receptors and suggest that these stages may involve
differential localization of pre-BCR-independent stage subsets
within the bone marrow. Finally, comparisons of various human
B-ALL transcriptomes to those of different stages of B-cell
development highlight the developmental nodes that associate
with varying subtypes of B-ALL and how they correlate with
prognosis.

Results
Identifying B-cell development stages using scRNAseq and
CITE-Seq. To couple transcriptional information with B-cell-
stage-defining surface marker expressions, we used combined
single-cell RNA sequencing and CITE-Seq (also referred as
antibody-derived-tags [ADT] hereafter) proteomics. Bone mar-
row from two wildtype C57BL/6 mice was harvested and stained
with two distinct oligo-labeled antibodies that recognize CD45
and MHC class I, which allow identification of cells derived from
each individual mouse (referred to as hashtag antibodies). We
further stained cells with a panel of CITE-Seq antibodies (B220,
CD19, CD93, CD25, IgM, and CD43) as well as fluorescently
labeled B220 and CD43. Cells were sorted (representative gating;
Supplementary Fig. 1a) at a 1:1 ratio of B220+CD43+ and
B220+CD43− cells to enrich for early progenitor B-cell subsets
(Fig. 1a). This sorting scheme captures the vast majority of
developing B cells in the bone marrow but does exclude a small
fraction of developing CD19+ B cells that express CD11c, Ly6G,
or NK1.1 (~1–3%) (Supplementary Fig. 1b). After processing
samples, the data set contained 7454 single cells contributing to
14 transcriptionally unique clusters (Fig. 1b). Cell cycle status was
determined by measuring the average expression of gene sets

representing canonical S and G2M phases and a recently
described postmitotic G1 phase (G1PM) that is associated with
rapidly cycling cells that contain carryover G2M transcripts16,17.
Cells were classified by which gene set was most enriched, while
cells lacking any of these three signatures were labeled G0/G1 by
default (Fig. 1c, Supplementary Fig. 2a). We found that the
proliferating cells (G1PM, S, and G2/M phase) were clustered
together away from quiescent cells (G0/G1), suggesting that
cycling status was a major source of variance (Fig. 1c). Similarly,
Mki67 gene expression levels were high in cells classified as
G1PM, S, or G2/M phase (Fig. 1c). Further, we found that CITE-
seq provided superior sensitivity compared with the corre-
sponding transcript expression (Fig. 1d). Cells marked CD43+ by
CITE-Seq comprised the majority of cycling cells, supporting
previous characterizations of cycling progenitor B cells1. Both
wild-type mice were equally represented in all cell clusters
(Supplementary Fig. 2b) and had equal detection of all CITE-seq
antibodies (Supplementary Fig. 2c, d). Overall, CITE-seq anti-
body expression recapitulated flow cytometry-based staging of
B-cell development and when coupled with transcriptomic sig-
natures provided the basis for demarcating different stages and
transitions during B-cell development.

Transcriptional signatures of pre–pro B cells and committed
pro B cells. We first used antibody-derived CITE-Seq tags to
define B220+CD43+CD19− pre–pro B cells. These cells expressed
early B-lineage-associated genes such as Flt3, Il7r, and Cd79a
(Fig. 2a). Pre–pro B cells have also been shown to express genes
associated with myeloid lineages, consistent with the observation
that they can give rise to myeloid cells as well18,19. Indeed, we
found that the pre–pro B cells have high expression of myeloid
lineage-associated transcription factors such as Runx2, Irf8, and
Tcf4, and plasmacytoid dendritic cell markers, such as Bst2; these
genes were silenced upon commitment to the B-cell lineage at the
pro-B-cell stage (Fig. 2b). We also assessed the expression of
previously described EBF1-repressed target genes, including
Tyrobp, Clec12a, Cd300a, Cd7, Chdh, and Mycl20 (Fig. 2c). These
target genes were highly expressed in the pre–pro B-cell cluster,
while Ebf1-expressing pro-B cells had low or undetectable
expression of these genes, further distinguishing the pre–pro
B cells from pro-B cells (Fig. 2b). To identify the presence of
B cell-biased uncommitted progenitors in this cluster, we used
CD93 ADT expression, previously shown to enrich for B cell
progenitors21. A median split of CD93 expression was performed
in this cluster, and the CD93 above-median expressing cells had
enrichment of B-cell commitment associated genes, such as Ebf1,
Cd24a, and Vpreb1 (Fig. 2d). Pro-B cells, traditionally delineated
as c-KIT+ cells22 had Kit gene expression (Fig. 2e). In addition,
pro-B cells expressed the Bcl-2 family gene, Bok, and interferon-
stimulated genes, such as Ifitm2 and Ifitm3 (Fig. 2e, Supple-
mentary Data 1) Finally, EBF1 positively regulates the expression
of pre-BCR-surrogate light-chain genes, Vpreb1 and Igll123. We
found that cycling pro-B cells had high expression of both Vpreb1
and Igll1, compared with the pre–pro B cells that do not express
Ebf1 (Fig. 2f). Thus, our analysis confirmed several genes
expression patterns associated with the transition from pre–pro-B
to pro-B cells, as well as identified highly specific markers of pro-
B cells such as Bok.

Pre-B-cell expansion comprises distinct pre-BCR-dependent
and pre-BCR-independent proliferation stages. Next, we
assessed the transcriptional signature of the ADT-B220+CD19+

CD43+CD25− cells. We refer to these cells as the pre-BCR-
dependent proliferation cluster (also referred to pre-BCRd here-
after) (Fig. 3a). Pre-BCR signaling initiates silencing of the surrogate
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light-chain locus24. In accordance with this, the pre-BCR-
dependent cells have intermediate expression of both Vpreb1 and
Igll1 (Fig. 2f). Genes that were uniquely upregulated in this cluster
included Nrgn and Ybx3 (Fig. 3a, Supplementary Figure 3a and
Supplementary Data 2). NRGN (Neurogranin) is a calmodulin-
binding protein that regulates the dynamics of calcium binding to
calmodulin25. Neurogranin is upregulated in activated26 and aner-
gic B cells27, which suggests that neurogranin expression is con-
trolled by B-cell receptor signaling. YBX3 is a DNA/RNA-binding
protein that was recently shown to stabilize the amino acid trans-
porter transcripts Slc7a5 and Slc3a2 in HELA cells, allowing for
their robust translation28. SLC7A5 and SLC3A2 heterodimerize to
form CD98, a large neutral amino acid transporter. Expression of
CD98 in CD8+ T cells has been shown to be tightly controlled by
antigen-receptor signaling and is critical for MYC expression29. Our
findings suggest that pre-BCR signaling may serve a similar

function. Consistent with this idea, Myc was most highly expressed
in the Ybx3, Slc7a5, and Slc3a2 expressing pre-BCRd cluster
(Fig. 3a). Surprisingly Ebf1 expression is significantly reduced, while
expression of the transcription factor Pax5 was largely unchanged
and Ikzf1 was modestly induced (Fig. 3b). Concordant with low
Ebf1 expression, EBF1-target genes, such as Cd79a30,31 and
Cd79b32, are also significantly reduced in the pre-BCRd stage
(Fig. 3c). In addition, Il7r expression, a negative regulator of pre-
BCR-signaling components33, is also reduced (Fig. 3c). To identify
potential transcriptional regulators that govern this pre-BCR-
dependent expansion stage, we performed a Landscape In Silico
deletion Analysis (LISA)34 using the top 100 differentially upregu-
lated genes in the pre-BCRd cluster. After excluding factors not
expressed in B cells (i.e., MYCN), we found MYC to be the top
predicted regulator of this gene set in pre-BCRd cells. Consistent
with its decreased expression, EBF1 was predicted to have minimal
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Fig. 1 Identifying B-cell development stages using scRNAseq and CITE-Seq. a Schematic of the experimental setup. WT wild type. b UMAP dimension-
reduction projection of all cells (n= 7454) from two wild-type C57BL6 mice. Fourteen clusters were identified and the corresponding population names for
each cluster are listed (Pre-BCRd pre-BCR-dependent, Pre-BCRi pre-BCR-independent) c Feature plot of cells that are labeled according to their cell cycle
status based on gene expression (left) andMki67 transcription expression (right). Cell cycle status was determined by the average expression of gene sets
representing each cell cycle, including postmitotic G1 phase (G1PM), S phase, or G2/M phase, and cells that did not harbor any of these signatures were
labeled as G0/G1. Color scale represents natural log-transformed SCTransform corrected counts. d Feature plot of cells for their CITE-Seq/ADT antibody
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contributions in pre-BCRd cells (Fig. 3d). In addition, we per-
formed a gene-set enrichment analysis (GSEA), which further
supported a MYC expression signature and enrichment of meta-
bolic reprogramming signatures (Fig. 3d). Together, this suggests
that MYC is the critical transcription factor that governs the

transcriptional landscape during pre-BCR-dependent expansion. To
further understand the importance of Ebf1 downregulation during
pre-BCR signaling, we examined differentially regulated genes that
contained EBF1 binding sites. EBF1 has clear binding sites at the
promoters for Nrgn and Myc (Fig. 3e). Likewise, EBF1 binds to a
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known superenhancer linked to the Myc locus33. In addition,
potential binding sites were observed within the promoters of the
Slc7a5 and Slc3a2 genes (Fig. 3e). We performed RNA-seq in
wildtype and Pax5+/− × Ebf1+/− leukemic progenitor B cells and
evaluated expression changes of Ybx3, Slc7a5, and Slc3a2. We found
that Slc7a5 and Slc3a2, along with other pre-BCR-dependent stage

module genes (Ybx3), were upregulated with decreased Ebf1 gene
dosage (Fig. 3f). This is consistent with our recent observation that
Myc expression is increased in Pax5+/− × Ebf1+/− preleukemic and
Pax5+/− × Ebf1+/− leukemic progenitor B cells35. These findings
suggest that EBF1 mediates repression of the pre-BCR gene
expression module.
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YBX3 binds to Jak1 transcripts and inhibits translation of Jak1 in
HELA cells28. To evaluate whether YBX3 levels correlate with
reduced JAK1 in pre-B cells, and to validate EBF1 downregulation
during pre-BCR signaling, we used flow cytometry to characterize
B220+CD19+CD43+CD98high expressing cells. Ki67+JAK1low cells
have lower EBF1 expression (which correlates with high Ybx3)
compared with the Ki67+JAK1high cells (Supplementary Fig. 4a).
When evaluating the expression of Y-box family genes, Ybx1 was
ubiquitously expressed through all developmental stages, with peak
expression during the pre-BCRd stage, whereas Ybx3 expression was
selectively induced during the pre-BCRd stage (Supplementary
Fig. 3a). We assessed how YBX3 governs B-cell development by
using Ybx3−/− mice with flow cytometry. Ybx3−/− B-lineage cells
had no significant phenotypic defects during the early proliferative
phases (Hardy fractions A–C; Supplementary Fig. 4b, d) and late
stage differentiation of B cell development (Hardy Fractions D–F;
Supplementary Fig. 4c, d). This is consistent with previous findings
that YBX1 and YBX3 have redundancies in both function36 and
target mRNA binding37. Collectively, our data highlight the
reciprocal regulation of Myc and Ebf1 during B-cell development,
where MYC is critical for governing differentially expressed genes in
the pre-BCRd cluster. Furthermore, pre-BCR signaling limits the
IL7R-signaling axis by downregulating Il7r expression and JAK1
protein translation.

We next examined the identity and signature of the remaining
cycling cells (Fig. 4a). These cells have minimal surrogate light-
chain expression (Fig. 2f), indicating further silencing of the
locus. Notably, these cells have intermediate expression of the
ADT-CD43 (Fig. 4a), which suggests that they are transitioning
toward the quiescent CD43lo/− small pre-B-cell stage. Some cells
within these clusters also express CD25 protein (Fig. 4a), a
marker for pre-B cells2. A subset of these cells still expressed high
levels of Nrgn (Fig. 3a), which may suggest continued pre-BCR
signaling. However, unlike the pre-BCR-dependent cluster, these
cells have high expression of Bach2 (Fig. 4b), a transcription
factor that restrains antigen-receptor signaling38,39, and low
expression of Ybx3 and Myc (Figs. 3a and 4c). This suggests that
these pre-B cells are proliferating independently of pre-BCR
signaling. When comparing the differentially expressed genes
between the pre-BCR-dependent cells and the pre-BCR-
independent cells from cluster I (Pre-BCRi I, Fig. 4a), we found
that pre-BCR-independent cells reexpress high levels of Il7r and
Ebf1 (Figs. 3b, c, and 4d), in accordance with restrained pre-BCR
signaling. When comparing the two different pre-BCR-
independent clusters (pre-BCRi I and pre-BCRi II), pre-BCRi I
had heightened expression of histone genes (Hist1h2ae,
Hist1h2ap, Hist1h1b, Hist1h1e, and Hist1h4d) (Fig. 4d), but no
difference in Mki67 expression (Supplementary Fig. 3b). On the
contrary, the pre-BCRi II cluster is enriched for cells expressing

cell motility-associated actin (Actg1), dynein (Dynll1), and
thymosin (Tmsb4x and Tmsb10) genes (Fig. 4e). Interestingly,
expression of Cxcr4 is further induced as pre-B cells reach the
pre-BCRi stages (Fig. 4b). Expression of CXCR4 would promote
targeting of pre-BCRi cells to CXCL12-expressing cells, which
also often express high levels of IL7 in the bone marrow40,41.
Since Il7r also increases in pre-BCRi cells, these changes in gene
expression suggest that pre-BCRd cells rely on pre-BCR signals
for survival/proliferation, while pre-BCRi cells rely on IL7 signals.
Although the IL7R and CXCR4 likely promote pre-BCRi cell
survival, we did observe that pre-BCRi cells also started to express
Cd74 as well as Cd44 (Fig. 4e), which complex together to form a
receptor for the chemokine ligand, MIF. This could promote
chemotaxis of pre-BCRi cells to Mif-expressing Fbn1highIgf1high

osteogenic cells41,42 that also express IGF141, a paracrine growth
factor that has been previously shown to be important for the
generation of small pre-B cells43. Thus, pre-BCRi cells likely
require CXCR4/IL7R signals, with a possible contribution from
the MIF/CD74/CD44 and IGF1/IGF1R signaling axes, to
efficiently transit from a pre-BCR-dependent to a pre-BCR-
independent state.

To better characterize the pre-BCR-dependent and pre-BCR-
independent populations, we used flow cytometry using the
markers identified from our single-cell study. We observed that
surface CD74 expression was the highest in the early CD43+

progenitor B cells and had a stepwise decrease in surface
expression as the cells matured into mature B cells (Supplemen-
tary Fig. 5a). In contrast, intracellular CD74 expression was low in
the CD43+ progenitor B cells and small pre-B cells but was the
highest in the immature and mature B cells (Supplementary
Figure 5a), consistent with transcript expression (Fig. 4b).
These results suggest spatiotemporal regulation of CD74 during
B-cell development and may point to a differential function of
CD74 -serving as a chemokine coreceptor early in development
and in antigen processing, as the invariant chain, in more mature
stages of development. Finally, to characterize the dynamic Ebf1
gene expression between the preBCR-dependent and preBCR-
independent populations, we used Myc-GFP reporter mice to
query for EBF1 protein expression. MYC-GFP-expressing pro-
genitor B cells (B220+CD19+CD43+IgM−GFP+) had a hetero-
geneous EBF1 protein expression (Supplementary Fig. 5b).
Compared with the MYC-GFP+EBF1high cells, the MYC-GFP+

EBF1low expressing cells also had lower IL7R, CXCR4, and CD74
expression (Supplementary Fig. 5c), which is consistent with
transcript expression in the pre-BCR-dependent cluster. To ensure
that MYC-GFP-expressing pro-B cells were not the predominant
population in the MYC-GFP+EBF1low population, we examined
cKIT expression and observed that MYC-GFP+EBF1low cells were
primarily cKIT-negative (Supplementary Fig. 5d).

Fig. 3 The transcriptome of the pre-BCR-dependent expansion stage is governed by MYC-associated gene expression networks and requires
repression of Ebf1 expression. a Highlighted population of the pre-BCR-dependent cluster (left) and feature plots for the pre-BCR-dependent markers
highly expressed during this stage (right). b Violin plot of B-lymphoid transcription-factor expression, including Ebf1, Pax5, and Ikzf1 across B-cell
development. c Violin plot of additional genes that are downregulated during pre-BCR-dependent proliferation, which includes Il7r, and EBF1-target genes
such as Cd79a and Cd79b. d Landscape In silico Deletion Analysis (LISA) to predict the transcriptional regulator of the top 100 differentially upregulated
genes during pre-BCR-dependent proliferation (left table). Gene-set enrichment analysis was performed to identify gene sets from the Molecular Signature
Database that were enriched in the pre-BCR-dependent cells. Comparison between the pre-BCR-independent cells (left side) and the pre-BCR-dependent
cells was performed (right side). Statistical significance was calculated using one-sided Wilcoxon rank-sum test. e EBF1-binding sites at the promoters of
Nrgn, Slc7a5 and Slc3a2 with indicated MACS peak calls20. Data were obtained from GSM2863146. f Log2-transformed FPKM expression values obtained
from RNA-seq of wild-type and Pax5+/− × Ebf1+/− (PE) leukemic progenitor B cells. Progenitor B cells were obtained via negative selection of CD11c,
TER119, Ly6G, Ig Kappa, and Ig Lambda and positive selection of CD19. Statistical significance was determined using a two-tailed unpaired student t-test
for Ybx3 (P= 0.0024) and Slc7a5 (P= 0.0001). RNA-seq data were obtained from GSE148680. A two-tailed Mann–Whitney test was performed for
Slc3a2 (P= 0.0083) due to non-normal distribution. n= 7 biologically independent samples over one independent experiment. Color scales in a, b, and
c represent natural log-transformed SCTransform-corrected counts.
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Fig. 4 Pre-BCR-independent proliferation is distinct from pre-BCR-dependent proliferation. a Highlighted pre-BCRi I and pre-BCRi II populations (left).
Violin plots of expression of ADT-CD43 and ADT-CD25 across the B-cell development stages (right). b Feature plot and violin plot for Cd74, Cd44, and
Bach2. c Heatmap of differentially expressed genes between the pre-BCR-dependent (Pre-BCRd), pre-BCR-independent I (Pre-BCRi I), and pre-BCR-
independent II (Pre-BCRi II) S, or G2/M phase. Scale represents normalized counts centered and scaled across cells. d Volcano plot showing differentially
regulated genes between the pre-BCRd cluster and the pre-BCRi I cluster. e Differentially regulated genes between the pre-BCRi I cluster and the pre-BCRi
II cluster. Color scales in a, b represent natural log-transformed SCTransform-corrected counts.
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B-cell differentiation and maturation. Quiescent IgM− cells
have high expression of Rag1 and Rag2, suggesting V(D)J
recombination of pro-B and pre-B cells (Fig. 5a). While Igkc
expression is detectable in all subsets, except for cycling pro-B
cells and pre-BCR-dependent B cells, Iglc1, Iglc2, and Iglc3 are
only expressed in a subset of cells (Fig. 5a). Furthermore, different
B-cell stages exhibited differential expression of trace-element-
associated genes such as selenoprotein genes. Selenom was
expressed in a subset of pro-B VDJ cells (Supplementary Fig. 6a).
Selenop was expressed in both pro-B and pre-B cells undergoing
recombination, whereas Selenoh was highly expressed in cycling
pro-B and pre-B cells (Supplementary Fig. 6a). The significance of
this differential gene expression program remains to be ascer-
tained, although selenium has been associated with immune
function and activation44. Finally, the IgM+ cells were broken
down into three clusters corresponding to immature B cells,
cycling immature B cells, and mature B cells. The cycling
immature B cells have high expression of surface IgM. (Supple-
mentary Fig. 6b). Immature B cells express Ms4a1 (CD20),

whereas the mature B cells express Ms4a4c, H2-Aa, Sell
(L-selectin), and Ltb (Fig. 5b). Notably, a subset of mature B cells
expressed Apoe (Fig. 5b) and showed overlapping detection of
both IgM and CD43 (Fig. 1d). This subset shares features with
previously described B1 bone marrow B cells45, although the
function of Apoe in these cells remains unknown.

Pseudotime and module analysis of the B-cell development
trajectory. To understand the relationship between develop-
mental stages and changes in gene expression over the B-cell
developmental trajectory, we performed pseudotime analysis
using Monocle46. To lessen the influence of cell cycle on UMAP
positioning, we regressed out cell cycle genes within Monocle and
performed UMAP dimension reduction. Using stage-defining
markers, we identified 13 transcriptionally distinct B-cell devel-
opmental stages (Fig. 6a and Supplementary Fig. 7). Compared
with the Seurat-based clustering (Fig. 1b), the immature B cell
subset was split into two clusters and the preBCRi II S and G2/M
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Fig. 5 B-cell differentiation and maturation. a Highlighted B-cell clusters undergoing V(D)J recombination (left). Feature plot of genes involved in V(D)J
recombination or specific for pre-B-cell expression (right). b Highlighted B-cell clusters for late B-cell maturation (left). Feature plot of genes highly
expressed in immature or mature B cells (right). Color scale in a,b represents normalized counts centered and scaled across cells.
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Fig. 6 Pseudotime analysis illustrates the kinetics of transcription-factor expression and gene modules that are differentially expressed across the
B-cell development trajectory. a Cell cycle-related genes were regressed within Monocle3 and UMAP dimension reduction was performed. Clustering was
performed based on the Monocle3 clusters (left). Cells from Monocle-based clustering labeled with Seurat cluster labels (right). b Pseudotime values were
calculated and plotted. c Module analysis to demonstrate gene modules that change across the B-cell developmental trajectory. A total of 33 modules and
their expression intensity for each stage are shown. Color scale represents normalized module gene expression. d Gene ontology term analysis of selected
modules 1, 6, and 8. e Expression of B-lymphoid transcription factors and epigenetic factors across B-cell development stages. f Expression of cytokine,
chemokine and cytokine/chemokine receptors across the B-cell developmental trajectory.
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subsets from Seurat were combined into one cluster in Monocle
(Fig. 6a). Despite the differing clustering methods and regression
of cell cycle genes, the Seurat and Monocle labeling of B-cell
subsets demonstrated a high degree of overlap (Fig. 6a and
Supplementary Data 3). Pseudotime values were then calculated
to establish a developmental trajectory (Fig. 6b). This analysis let
us identify modules of genes that are changing across the devel-
opmental trajectory (Fig. 6c). Gene ontology analysis of these
gene modules suggested that the early B-cell stages, including
pre–pro B and pro-B cells, are significantly enriched for cell-
adhesion processes, whereas these signals are diminished in pre-B
cells (Module 1 and Module 8, Fig. 6c, d). This is in accordance
with previous findings that pro-B cells strongly promote adhesion
to IL7-producing stromal cells47, whereas pre-BCR-signaling and
its downstream target IKZF1, are important for downregulating
stromal adhesion components7,48. Furthermore, the cycling pro-B
cells and pre-BCR-dependent cells were enriched for genes
involved in metabolic processes (Module 6; Fig. 6d), suggesting
metabolic reprogramming after major checkpoints (B-cell lineage
commitment and pre-BCR selection, respectively) during B-cell
development. Finally, evaluation of the expression of transcrip-
tion factors, epigenetic modifiers (Fig. 6e), cytokines, chemokines
and their respective receptors (Fig. 6f) indicates differential
expression kinetics across the B-cell development trajectory.
Thus, our findings confirm some previous observations, but also
identify distinct gene programs that exhibit highly dynamic
changes during B-cell development.

Stage-specific gene expression networks correlate with various
human B-ALL subtypes and prognosis. Defects in B-cell dif-
ferentiation and dysregulation of signaling pathways lead to B-cell
transformation. To identify B cell developmental pathways that
are associated with human B-ALL subtypes, we used differentially
upregulated gene markers identified in both the Seurat and
Monocle analyses. Using averaged z-scores of upregulated genes
from each cluster, the transcriptional network of each stage was
compared with various human B-ALL subtypes. This resulted in
the hierarchical clustering of proliferation and differentiation
stages (Fig. 7a).

Interestingly, the human B-ALL subtypes that were enriched
for proliferating pro-B, pre-BCRd, and preBCRi clusters, included
the BCL2/MYC, IKZF1 N159Y, and KMT2A subtypes, which are
all associated with high risk poor prognosis49–51 (Fig. 7a). In
contrast, the B-ALL subtypes that were enriched for genes
characteristic of other B cell differentiation stages, such as
ETV6–RUNX1 and ZNF384 rearrangements, were the ones with
favorable outcomes52–55 (Fig. 7a). Performing hierarchical
clustering using only the Monocle gene list gave identical
clustering patterns. We then performed statistical testing for
significance of the hierarchical clustering56. Testing of the row-
based hierarchical clustering of different developing B-cell stages
showed statistically significant differences in the proliferating B
cells versus the differentiation stages (Fig. 7b, left, P= 0.006,
Monte Carlo test corrected for familywise error rate). Notably, the
preBCRd stage was also distinct from the preBCRi and
proliferating pro-B stage (Fig. 7b, left, P= 0.006, Monte Carlo
test corrected for family-wise error rate). Likewise, column-based
hierarchical clustering testing of the human B-ALL subtypes
demonstrated that the high-risk leukemias that correlated with
proliferative B cells were significantly distinct from the low-risk
leukemias that correlated with differentiating B cells (Fig. 7b;
right, P= 0.001; Monte Carlos test corrected for family-wise error
rate). The pre-BCR module genes, including YBX3 and NRGN,
are significantly upregulated in BCL2/MYC, IKZF1 N159Y,
and MEF2D B-ALL subtypes (Fig. 7c). Despite the numerous

pre-BCR module genes highly expressed in various B-ALL
subtypes, not all pre-BCR genes share this pattern, indicating
transcriptional heterogeneity of B-ALLs compared with normal-
developing B cells (Fig. 7c, Supplementary Fig. 8a). Finally, we
examined whether YBX3 expression correlated with outcome in
B-ALL. We observed that pediatric B-ALLs with above-median
YBX3 expression are associated with worse prognosis (Fig. 7d,
hazard ratio= 2.03, P= 0.032, log-rank test), whereas adult
B-ALL patients (that mainly comprise Ph+ B-ALLs) show no
significant difference in survival (Fig. 7d). Overall, we identify
B-cell gene expression networks that are modulated during B-cell
development (Fig. 7e) and correlate with human B-ALL subtypes.
In addition, we specifically demonstrate that a YBX3-related
module is associated with a poor prognosis in human B-ALLs.

Discussion
The evaluation of different organs57 and niches41,58 at single-cell
resolution has greatly expanded our understanding of the cellular
diversity that is present within the bone marrow. However, these
previous studies have not resulted in a detailed description of
B-cell development. This is due to the paucity of developing B
cells in these broad surveys of the bone marrow compartment.
B-cell development has also been examined using cell surface
markers in conjunction with flow cytometry1. These studies, in
conjunction with in vivo reconstitution experiments to ascertain
precursor–progeny relationships, have provided a general outline
of B-cell development1,59. Furthermore, resources such as Imm-
gen provide a wealth of transcriptional data about various sorted
B-cell compartments60. However, these sorted-cell populations
are relatively heterogeneous and thus fail to provide detailed
single-cell resolution of B-cell development. In this study, we
coupled the conventional surface marker-based staging of B-cell
development using CITE-Seq with single-cell transcriptomics to
identify unappreciated transcriptional heterogeneity during B cell
development and link them to various underlying biological
processes. In addition, we identify the RNA-binding protein
YBX3 as a marker of pre-B cell differentiation and correlate Ybx3
expression with outcomes in patients with B cell acute lympho-
blastic leukemia.

Proliferation and differentiation during B-cell development are
important biological modalities that underpin selection and BCR-
repertoire diversification. Given our sorting strategy (Supple-
mentary Fig. 1a), we did not capture all possible subsets of B cells,
such as B220−CD19+ B1 progenitor cells or CD11c-expressing B
cells. Nonetheless, our results highlight the diversity of tran-
scriptional networks that are present within both proliferation
and differentiation modalities during B-cell development. Speci-
fically, the proliferating B cells were clustered tightly and labeled
as G1PM, S, and G2/M-phase cells (Fig. 1c) based on their
transcript status using a predetermined cell cycle gene list. The
postmitotic G1 phase (G1PM) was recently described in a study
demonstrating that stimulated splenic B cells undergo mitogen-
independent proliferation in which genes associated with G2/M
phase are not fully extinguished during the G1 phase17. Thus,
proliferating B cells can undergo an extremely short G1 stage that
bears features of G2/M. Our study highlights that proliferating
progenitor B cells also exhibit a G1 phase containing many G2/
M-signature genes (Fig. 1c and Supplementary Fig. 2a), which is
consistent with rapidly proliferating B cells with very short
G1 stages.

Our studies demonstrate unexpected dynamic changes in
transcription factors that orchestrate B-cell development. We
were largely able to confirm the expression kinetics for the critical
B-lymphoid lineage transcription factors Pax5 and Ikzf1 across B
cell development stages (Fig. 3b). In contrast, Ebf1, another key
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B-cell transcription factor, has a strikingly large dynamic range of
expression (Fig. 3b) that varies greatly over the course of B-cell
development. Ebf1 has the highest expression during both heavy
and light chain recombination stages, intermediate expression
during cytokine-mediated proliferative stages, and the lowest
expression during pre-BCR and BCR-signaling stages (Fig. 3b).
Likewise, the expression of EBF1-target genes exhibited the same
patterns (Fig. 3c). This points to dynamic changes in Ebf1 in

regulating key gene expression networks throughout B-cell
development. Furthermore, B-lymphoid transcription factors,
including Ebf1, have been shown to serve as metabolic gate-
keepers, where they repress genes encoding proteins for glucose
uptake and utilization, and thereby prevent malignant
transformation61. In light of this, we provide evidence that EBF1
represses Myc and that low gene expression of Ebf1 correlates
strongly with the activation of pre-BCR-dependent gene modules
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that promote metabolic reprogramming (such as amino acid
transporters) and proliferation. Therefore, the expression kinetics
of Ebf1 are tightly controlled to enable the unique aspects of
alternating cycles of proliferation and differentiation throughout
B-cell development.

Our single-cell RNA-Seq data pointed to an unappreciated
expression of the RNA binding protein YBX3 in pre-B-cell dif-
ferentiation and proliferation. Notably, Ybx3 expression was
significantly upregulated during the pre-BCR dependent stage
(Fig. 3a). Likewise, the related YBX family member Ybx1 is also
most highly expressed at the pre-BCRd stage (Fig. 3a). Analysis of
Ybx3−/− mice did not show major developmental defects (Sup-
plementary Fig. 4b, c) and thus YBX1 likely serves a redundant
function with YBX3 in developing B cells. Therefore, YBX1 and
YBX3 may initiate the MYC-dependent transcriptional program
that characterizes the pre-BCR-dependent expansion stage29.

Elucidating the requirements and regulation of normal B-cell
development has significantly improved our understanding of
how developing B cells can undergo transformation and maintain
leukemic states. B-ALL subtypes exhibit significant transcrip-
tional diversity12. While differences between mouse and human B
cell populations exist, many aspects of mouse and human B cell
development are highly analogous. Our comparative analysis
between stage-defining gene expression in wild-type progenitor B
cells and different human B-ALL subtypes suggests that cycling
pro-B, pre-BCR-dependent, and preBCR-independent subsets
shared the highest similarities with high-risk human B-ALL
subsets, including BCL2/MYC, IKZF1 N159Y, and KMT2A-
rearranged leukemias. In contrast, the absence of these cycling-
stage signatures was associated with low-risk human B-ALL
subsets, including ETV6-RUNX1 and ZNF3840-rearranged leu-
kemias (Fig. 7a). Importantly, while these cycling stage gene
signatures do include some canonical cell cycle genes, they are
also characterized by non-cell cycle related unique gene sets
associated with these specific developmental stages, which may
promote a more aggressive disease state (Supplementary Fig. 8).
Therefore, our findings suggest that the presence or absence of
stage-specific genes may associate with prognosis and could be
targeted to further improve outcome.

When looking at individual genes from each cluster in different
B-ALL subtypes, we found both overlapping and nonoverlapping
gene modules, suggesting that B-cell leukemias partially associate
with specific gene expression modules of multiple B-cell devel-
opment stages. In particular, we found that pre-BCR module
genes, including Nrgn and Ybx3, were significantly upregulated in
the high-risk BCL2/MYC, IKZF1 N159Y, and MEF2D B-ALL
subtypes (Fig. 7b). In addition to our findings on the importance
of MYC during pre-BCR signaling, previous studies have
demonstrated the upregulation of IKZF1 and MEF2D62 upon
pre-BCR signaling. Therefore, aberrant dysregulation through
mutations and rearrangements in IKZF1 and MEF2D, respec-
tively, may lead to the heightened usage of pre-BCR-signaling
related genes for transformation. Importantly, we were able to
demonstrate that high expression of Ybx3, a key component of

the pre-BCR-signaling module, correlates with poor prognosis in
pediatric B-ALL (Fig. 7c). Interestingly, high expression of Ybx3
also correlates with dramatic downregulation of Ebf1. The com-
bination of elevated YBX3 and reduced EBF163 expression likely
establishes the MYC-driven transcriptional program that con-
tributes to pre-B-cell transformation. As YBX3 has been shown to
repress JAK1 translation28, this may explain the requirement for
ectopic activation of the JAK/STAT5 pathway to overcome a
potential YBX3-driven negative feedback loop. Collectively, our
data and previously published findings converge on multiple
mechanisms that can activate different proliferation modules,
leading to high risk-leukemia and a poor prognosis. Using stra-
tegies that target YBX3 or pre-BCR-related modules in pre-
BCRd-related leukemias may also further improve outcomes in
patients with these subsets of high-risk B-ALL.

Methods
Animals. All animals used were bred and housed in specific pathogen-free facilities
at the University of Minnesota and animal experiment protocols were approved by
Institutional Animal Care and Use Committees (IACUC 2010-38515A and IACUC
1904-36975A). All of the animals used were 6- to 12-week-old C57BL/6 J males and
females with appropriate age- and sex-matched controls. Specifically, the two wild-
type mice used for the single-cell RNA-seq experiment were C57BL/6 J males,
CD45.2, and 8-week-old mice. The mice used for assessing B cells that were
potentially excluded from analysis due to flow sorting gating scheme, were C57BL/
6 J males, CD45.2, that were 7–10-weeks old. The JAK1 and EBF1 flow experiment
was performed with C57BL/6 J male and female mice, CD45.1 and CD45.2, that
were 7-weeks old. The Ybx3−/− phenotyping experiments were performed with
C57BL/6 J male and female mice, CD45.2, and 6–12-weeks old. Myc-GFP mouse
experiments were performed with C57/BL6 male and female mice, CD45.2, that
were 8–10-weeks old. The Ybx3−/− mice were graciously provided by Dr. Timothy
Ley at Washington University in St. Louis and have been previously described36.
Myc-GFP reporter mice were obtained from The Jackson Laboratory. All animals
were housed in a dark/light cycle of 14 h/10 h. Light cycle was from 6 AM to 8 PM.
Ambient temperature was at 72Fo with a humidity ranging from 30 to 40%.

Tissue processing and cell preparation. For flow-cytometry and cell-sorting
experiments, bilateral femurs and tibias were harvested from mice. Bones were
flushed with 1X PBS with 2% fetal bovine serum (Sigma Aldrich, 12133 C), 0.1%
sodium azide (Ricca, 7144.8-16), and 0.5 mM ethylenediaminetetraacetic acids
(EDTA, Fisher Scientific, S3113), pH 7.4. The cells were filtered through a 70 µm
mesh, centrifuged at 350 × g for 5 min, and then incubated for 5 min with 5 mL of
ACK lysis buffer (0.15 M ammonium chloride (Fisher, A661), 10 mM potassium
bicarbonate (Fisher, P184), 1 mM EDTA (Fisher Scientific, S3113)). for red-blood
cell lysis. Cells were then washed and centrifuged at 350 × g and subsequently
resuspended for cell counting on a hemocytometer (Fisher Scientific. 02-671-10)
and staining.

Flow cytometry and antibodies. All flow cytometry was performed using the BD
Fortessa cytometers (BD Biosciences) in the University of Minnesota Flow Cyto-
metry Core. Bone marrow cells obtained using the method above were stained with
various FACS antibodies, including B220-BUV395 (RA3-6B2, BDBiosciences,
563793, 1:100), B220-Pacific Blue (RA3-6B2, BDBiosciences, 558108, 1:100) B220-
PE-Cy7 (RA3-6B2, BioLegend, 103222, 1:100), CD11c-APCef780 (N418, Ther-
moFisher, 47-0114-82, 1:100), CD11c-BUV395, (N418, BD Biosciences, 744180,
1:100), GhostRed780 (Tonbo Biosciences, 13-0865, 1:1000), Ter119-APCef780
(TER-119, ThermoFisher, 47-5921-82, 1:100), NK1.1-APCef780 (PK136, Ther-
moFisher, 47-5941-82, 1:100), NK1.1-PE (PK136, eBioscience, 12-5941-82, 1:100),
Ly6G-APCef780 (RB6-8C5, ThermoFisher, 47-5931-82, 1:100), Ly6G-BV421
(RB6-8C5, BioLegend, 127627, 1:100), CD4-APCef780 (GK1.5, ThermoFisher,
47-0041-82, 1:100), CD8-APCef780 (53-6.7, ThermoFisher, 47-0081-82, 1:100),

Fig. 7 B-cell developmental gene networks correlate with various B-ALL subtypes and associate with prognosis. a Heatmap of cluster gene sets and
various human B-ALL subtypes. n_number denotes the number of patient samples falling in each B-ALL subtype. Average z-score of cluster marker genes
was calculated for each cluster and hierarchical clustering was performed for both B-ALL subtype and average cluster z-score. b Monte-Carlo-based
statistical testing of the hierarchical clustering was performed for row (B-cell development stages) and column (human B-ALL subtypes). Significant
p-values (<0.05) are shown and colored as a red line. c Overlapping differentially upregulated gene markers in the pre-BCR-dependent clusters from Seurat
and Monocle are plotted (y axis). The expression of these genes was queried across various B-ALL subtypes (x axis). The number of B-ALL samples (n) is
listed after each subtype. d Survival curve of pediatric B-ALL (left, time in years) and adult B-ALL (right, time in months). Low and high expression
correspond to below-median and above-median expression of YBX3, respectively. Survival data were obtained from Prediction of Clinical Outcomes from
Genomic Profiles (PRECOG)71 e Proposed model of B-cell development.
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CD43-Biotin (S7, BDBiosciences, 553269, 1:100), CD43-BV786 (S7, BDBiosciences,
740857, 1:100), CD19-BV605 (6D5, BioLegend, 115540, 1:100), IL7R-BV421
(A7R34, BioLegend, 135023, 1:100), CXCR4-PerCP-Cy5.5 (L276F12, BioLegend,
146509, 1:100), CD74-BUV395 (In-1, BDBiosciences, 740274, 1:100), CD98-PE-
Cy7 (RL388, BioLegend, 128124, 1:100), and cKIT-PE-Cy7 (2B8, eBioscience,
25-1171-82, 1:100). In short, surface staining was performed for 20 minutes with
FACS antibodies on ice, washed and either analyzed or stained for intracellular
FACS antibodies. For intracellular staining of JAK1-AF488 (413104, R&D Systems,
IC4260G, 1:100), EBF1-PE (T26-818, BD Biosciences, 565494, 1:100), and anti-
GFP-FITC (Rockland, 600-402-215, 1:400) surface stained cells were fixed/per-
meabilized using the eBioscience Transcription Factor staining kit (eBioscience, 00-
5523-00) for 30 minutes at room temperature, washed, and then stained for
30 minutes in permeabilization buffer. Cells were then washed and resuspended in
1X PBS with 2% fetal bovine serum (FBS), 0.1% sodium azide and 0.5 mM ethy-
lenediaminetetraacetic acid, pH 7.4, for flow cytometric analysis. Cell sorting was
performed on a BD FACSAria sorter (BD Biosciences). All flow-cytometry data
acquired were analyzed using FlowJo software (Tree Star)

Cell hashing and CITE-Seq. Bone marrow cells from two 8-week-old wild-type
mice were each stained with 1 µg of different hashtag antibodies, TotalSeq A0301
(M1/42, BioLegend, 115801, 1 µg) and TotalSeqA0302, (M1/42, BioLegend,
115803, 1 µg). At the same time, cells were stained with FACS antibodies: B220-
Pacific Blue (RA3-6B2, BDBiosciences, 558108, 1:100), CD43-Biotin (S7, BD
Biosciences, 553269, 1:100), CD11c-APCef780 (N418, ThermoFisher, 47-0114-82),
Ter119-APCef780 (TER-119, ThermoFisher, 47-5921-82, 1:100), NK1.1-APCef780
(PK136, ThermoFisher, 47-5941-82, 1:100), Ly6G-APCef780 (RB6-8C5, Thermo-
Fisher, 47-5931-82, 1:100), CD4-APCef780 (GK1.5, ThermoFisher, 47-0041-82,
1:100), CD8-APCef780 (53-6.7, ThermoFisher, 47-0081-82, 1:100), GhostDye
Red780 viability dye (Tonbo Bioscienes, 13-0865, 1:1000) and 1 µg of CITE-Seq
antibodies: B220 (TotalSeq-A0103, RA3-6B2, BioLegend, 103263), CD19 (TotalSeq
A0093, 6D5, BioLegend, 115559), CD93 (TotalSeq A0113, AA4.1, BioLegend,
136513), CD25 (TotalSeq A0097, PC61, BioLegend, 102055) and IgM (TotalSeq
A0450, RMM-1, BioLegend, 406535). Cells were stained with the above-mentioned
antibodies for 20 minutes on ice, washed, and resuspended in 1X PBS with 2% fetal
bovine serum (FBS), 2 mM ethylenediaminetetraacetic acid, and pH 7.4 buffer
containing 1 µg of streptavidin-PE (TotalSeq A0113, BioLegend, 405251), which
served the dual purpose of cell sorting and CITE-Seq for the CD43 antigen
expression. scRNAseq was performed in parallel to FACS analysis.

Single-cell RNA sequencing. For 10X Genomics scRNA-seq, we generated three
libraries that measure (1) mRNA transcript expression (RNA), (2) mouse-specific
hashtag oligos (HTO), and (3) cell surface marker levels using antibody-derived
tags (ADT). Cells were harvested and stained as described above. In order to have
balanced populations of various B-cell development stages, we enriched for earlier
progenitor B cells (B220+CD43+) by sorting at a 1:1 ratio of Dump−B220+CD43+

cells and Dump−B220+CD43− cells. A total of 20,000 cells per mouse were sorted
into a single microtube containing 1X PBS with 50% FBS and were washed and
resuspended in 1X PBS with 10% FBS prior to cell capture. The sample was split
into three libraries (RNA, HTO, and ADT). Reverse transcription PCR and library
preparation were carried out under the Chromium Single Cell 3′ v3 protocol (10X
Genomics) as per the manufacturer’s recommendations. After library prep, quality
control was performed using a bioanalyzer (Agilent 2100 Bioanalyzer, Agilent
Technologies) and preliminary sequencing of the RNA library on a MiSeq (Illu-
mina) to determine the approximate number of cells and general quality. After
passing quality control, the library was sequenced on the NovaSeq 6000 with
2 × 150-bp paired-end reads (Illumina). Raw and processed data have been
deposited at Gene Expression Omnibus and are available via GEO accession
GSE168158. The code used in this study can be obtained upon request.

Single-cell bioinformatic analyses. Raw sequencing data were processed using
the CellRanger pipeline (version 3.1.0, 10X Genomics) “mkfastq” to demultiplex
the three Illumina libraries (RNA, HTO, and ADT) and “count” was used to align
reads to the mouse genome (mm10, provided by 10X Genomics, ver 3.0.0) and
generate mRNA transcript, HTO, and ADT count tables. Raw count data were
loaded into R (v. 3.6.1) and analyzed with the Seurat R package (v 3.0.3.9039). The
RNA dataset was filtered to include only GEMs (gel beads in emulsion, which are
oil droplets containing uniquely barcoded beads that ideally contain one individual
cell) expressing more than 300 genes (counts > 0) and genes expressed in more
than 3 GEMs (counts > 0). The proportion of mitochondrial RNA in each GEM
was calculated and GEMs with extreme levels (top 0.5% of all GEMs) were
removed from the analysis. For the remaining GEMs, the HTO count table was
added to the dataset and normalized by a centered-log ratio method. Multiplets
(i.e., GEMs containing one or more cells) were discovered using two independent
orthogonal methods: (1) DoubletFinder software (version 2.0.3)64 utilized only the
RNA expression dataset to predict GEMs as doublets or singlets and (2) the HTO
sample-based expression dataset was supplied to the HTODemux Seurat function
for doublet classification. The default DoubletFinder analysis method searched for
optimal classification parameters and returned 8,209 singlets (3458 WT-1 or 3103
WT-2) and 4427 doublets. The HTODemux function clustered GEMs by their

HTO expression levels, resulting in six major clusters of singlet GEMs representing
each of the individual HTOs in the experiment (i.e., two HTOs represented WT-1,2
and four other HTOs were present, but excluded to derive only the wildtype B
cells). This function was tested using a range of initial k-values (7–26), where
k= 22 provided the cleanest classification results. Four other hashtag samples were
present in this experiment and were excluded to derive only the wildtype B cells. A
total of 7454 GEMs contained WT singlets (3902 WT-1 or 3552 WT-2) and 5182
GEMs contained HTO multiplets. Cross table comparison between DoubletFinder
and HTODemux results demonstrated 893 WT GEMs called doublets by Dou-
bletFinder and singlets by HTODemux. Conversely, 1576 WT GEMs were labeled
doublets by HTODemux and singlets by DoubletFinder. This latter discrepancy
along with the difficulty of DoubletFinder to accurately identify transcriptionally
similar doublets led us to exclude the DoubletFinder classifications going forward.
Using only the HTODemux classifications, GEMs identified as multiplets or
negative were removed from further analysis. The WT singlets expressed a median
of 1409 genes with a median of 3548 counts. For the WT singlets, the raw RNA
counts were transformed using the Seurat function “SCTransform”65 including the
percent of mitochondria expression as a regression factor. Principal components
analysis (PCA) was performed using the normalized SCT dataset (RunPCA
function) and two-dimensional representations were generated using the top 30
PCA vectors as input to the RunTSNE and RunUMAP functions. Cells were
clustered using the FindNeighbors function (top 30 PCA vectors) and FindClusters
function (testing a range of possible resolutions: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and
0.4). A final resolution of 0.4 was used to classify cells into gene expression clusters.
The robustness of cluster classifications was validated using the significant DE lists.
Any pairwise cluster comparison that had fewer than 5 differentially expressed
genes was merged into a newly labeled joint cluster, and the process of pairwise DE
testing would begin again using the revised cluster classifications. At the final
cluster resolution of 0.4, there were zero cluster merging steps. Each cell was
classified according to its expression of canonical cell cycle genes using the Cell-
CycleScoring function. The CellCycleScoring function was used to calculate the
average expression of three different cell cycle phase related gene sets: S, G2M
(genesets provided in Seurat), and a recently described G1 postmitotic (G1PM)
gene set (Birc5, Myc, Mki67, Foxm1, Aurkb, and Plk1)17. Cell cycle scores were
calculated from the SCT normalized expression values and used as input to dis-
cretely classify each cell by phase. The highest cell cycle score was used to label each
cell by phase, unless all three scores were negative, resulting in the default G0/G1
classification. These S and G2M phase scores for each cell were used as additive
factors in a linear model of gene expression (i.e., when regressing out the influence
of cell cycle).

Single cell surface protein expression data (ADT) were filtered to include only
the WT singlets and counts were normalized according to the centered-log-ratio
method in Seurat. For each of the six markers measured (B220, CD19, CD93,
CD25, IgM, and CD43), the normalized counts were centered (subtracting the
mean expression from each value) and scaled (dividing centered value by standard
deviation) across all cells. The Seurat object with S and G2M phase scores and a
resolution = 0.4 was converted into a cell_data_set object for use with the Monocle
(v3) R package66. The aligncds function was used with
residual_model_formula_str= “~S.Score+G2M.Score” to adjust for the cell cycle
status. After adjustment for cell cycle status, UMAP dimensional reduction and
clustering were performed in Monocle. The final resolution for Monocle clustering
was 0.0009. This resolution resulted in 3 separate partitions for the clusters. The
plasma cell cluster was in its own partition and was excluded from the Pseudotime
trajectory analysis. The remaining two partitions were (1) pre–pro B cells and (2)
all other cell populations. We relabeled the partitions so that the pre–pro B cells
and the remaining cell populations of interest would be in the same partition for
pseudotime analysis. We initiated the pseudotime trajectory in the pre–pro B cell
population, using a custom function described in the Monocle 3 documentation
(get_earliest_principal_node) to automatically select the starting point for the
pseudotime analysis. To compare the Monocle and Seurat clustering results, the
number of cells and frequency of cluster membership overlap between Monocle
and Seurat was calculated.

We used Monocle 3 methods to identify modules of coregulated genes. First, we
used the function graph_test to identify variable genes in the data using the
Moran’s I statistic. Then we identified the genes that had a significant q-value
(<0.05) from the autocorrelation analysis and then grouped these genes into
modules using UMAP and Louvain community analysis. We used the enrichGO
function in the clusterProfiler package (v 3.14.3) to evaluate enrichment of the
modules in GO terms across all three ontologies (BP, CC, and MF)67,68.

Landscape in silico deletion analysis (LISA) and gene set enrichment analysis
(GSEA). The top 100 differentially upregulated genes obtained from Seurat Fin-
dAllMarkers function were used as input into the LISA Cistrome (lisa.cistrome.org).
The transcription factor ChIP-Seq dataset was used to infer the transcriptional reg-
ulators for differentially regulated genes of the pre-BCR-dependent proliferation stage.
We used the Gene set enrichment analysis (GSEA) software to identify gene sets from
the Molecular Signature Databases69,70, comparing the differentially expressed genes in
the pre-BCR-independent proliferating cells versus the pre-BCR-dependent cells. The
MSigDB (v 7.0) annotations were extracted from the msigdbr R package (v 7.0.1).
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GSEA and gene ontology analysis was completed using the “enricher” function from
the clusterProfiler R package (v 3.14.0).

Enrichment analysis of single cell RNA-Seq cluster marker genes in human
B-ALL gene expression. We used enrichment analysis to examine whether human
B-ALL subtypes have similarity to particular B cell progenitor populations. We
created robust signatures for each cell type using the Seurat and Monocle top
cluster marker genes independently, and we also created combined cluster marker
gene sets by taking the intersection of the independent Seurat and Monocle cluster
gene signatures for each of the different cell types we identified in the single cell
data. The top marker genes are the genes that are differentially expressed for a
given cluster when compared with all other clusters. Default approaches for finding
top marker genes were used for both Seurat and Monocle. The findAllMarkers()
function from Seurat was used as described in the previous section, “Single-cell
Bioinformatic Analyses”, to identify which genes are differentially expressed in one
cluster compared with all other clusters for the Seurat cluster. The top_markers()
function from Monocle was used to identify which genes are differentially
expressed in one cluster compared with all others for the Monocle cluster defini-
tions. We used the Monocle default parameters, so 25 genes were returned per
Monocle cluster with the top_markers() function. We did not apply any additional
filters to the top gene markers for the Monocle analysis. For the Seurat cluster
marker genes we only used genes with positive log fold changes to better match the
Monocle cluster gene marker results. We did not include downregulated marker
genes from the Seurat analysis. For both Monocle and Seurat cluster gene lists
we had to convert the mouse gene names to human gene names, so some genes
were removed that did not have appropriate human homologs. Additionally, when
there was not a direct 1:1 mapping between the Monocle and Seurat clusters,
cluster gene lists from one method were merged before comparison to the other
method’s cluster gene list. We then used the intersection of the Monocle lists and
the Seurat lists to get our final list of genes for each cluster for our individual
B-ALL heatmaps for each group of cluster-marker genes.

We downloaded publicly available B-ALL bulk RNA-Seq count data12. We
summed expression values for each gene across biological replicates for each B-ALL
subtype to create an average sample for each sub-type. We normalized and log2-
transformed the data to create log2cpm values for unsupervised hierarchical
clustering of each combined cluster marker gene set against all B-ALL subtypes. To
gain a bigger picture view of the association between gene networks and human
B-ALL subtypes, we created a single heatmap showing a summarized cluster gene
set z-score for each B-ALL subtype. We calculated each cluster gene set z-score by
averaging the z-scores of the cluster marker genes in each individual cluster
gene set for each B-ALL subtype. In the heatmap of these data we allowed for
both column (B-ALL subtype) and row (average cluster z-score) hierarchical
clustering.

Statistical analysis. Differential gene expression (DE) analysis was completed
using the FindMarkers function, employing a Wilcoxon rank-sum test between all
pairwise clusters or between a single cluster vs. all others. Genes were considered
significant if the absolute value of log2-fold-change was >= 0.25 and Bonferroni-
adjusted p-value <= 0.01. The statistical significance of hierarchical clustering for
the human B-ALL heatmaps was done using a Monte-Carlo based method56.
Specifically, the sigclust2 package was used with the parameters of Euclidean dis-
tance and complete linkage for clustering methods. Data and statistical analyses
were performed using Prism 8 (Graphpad). A Shapiro-Wilk test was performed to
assess data normality, and unpaired data that passed normality were analyzed using
an unpaired student t-test. Paired data derived from the same mouse were analyzed
using a parametric paired student t-test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the paper and
supplementary information file. Single-cell RNA-Seq data were deposited at Gene
Expression Omnibus, with the primary accession code: GSE168158. Mouse genome
mm10 was used as reference sequence (https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001635.20/). EBF1 ChIP-Seq data for Fig. 3e were obtained from GSM2863146.
Bulk RNA-seq data for wild type and Pax5+/− x Ebf1+/− leukemia for Fig. 3f was
obtained from GSE148680. Source data are provided with this paper.

Code availability
No custom code was used or generated in this paper, as publicly available software and
code was used (Seurat, Monocle3, DoubletFinder, GSEA, and GO-term analysis). Code
can be provided upon request.
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