
Stargardt disease (STGD, OMIM 248200) is an autosomal 
recessive retinal degenerative disease caused by defects in the 
ABCA4 gene (OMIM 601691). The disease causes functional 
and structural retinal damage, and the main characteristic is 
central vision impairment. Stargardt disease exhibits great 
clinical variability and may diffusely alter the retina in the 
most severe cases. Since the first descriptions of this disease, 
diagnosis has been based on phenotypic characteristics [1,2]. 
Because the gene responsible for this disease has been identi-
fied, clinical diagnosis of these patients may be confirmed 
genetically with gene sequencing [3].

Decreased central vision is the initial symptom of 
Stargardt disease; it classically occurs between the first and 
second decades of life and progressively worsens with age 

[1,2]. This progressive decline in bilateral central vision is 
related to retinal atrophy of the macular region due to loss of 
the external segments of photoreceptors and retinal pigment 
epithelium (RPE) cells [4,5]. Lipofuscin deposits in the 
RPE and photoreceptors (called flecks) are key markers for 
a diagnosis of Stargardt disease. In addition, these clinical 
signs, which are clearly identified with a fundus autofluores-
cence examination, determine the phenotypic classification 
of patients with this disease [6]. For example, areas of RPE 
atrophy are hypoautofluorescent on retinal autofluorescence 
examination, whereas the hyperautofluorescence points 
identified in this examination are related to lipofuscin 
accumulation in RPE cells [6]. Lipofuscin accumulation in 
the RPE layer masks choroidal fluorescence on fluorescein 
angiography, an effect is known as the dark or silent choroid 
sign [7].

The ABCA4 gene is exclusively expressed in photo-
receptors, cones and rods [8,9]. The loss or decreased 
function of the protein encoded by the ABCA4 gene 
causes deposition of the main component of lipofuscin 
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[N-retinylidene-N-retinylethanolamine (A2-E)] in the RPE 
and the formation of retinal flecks. This accumulation slows 
adaptation to darkness [10,11]. The presence of lipofuscin 
in RPE cells causes oxidative damage to these cells, which 
become apoptotic. Moreover, loss of the RPE layer leads to 
secondary photoreceptor death, resulting in reduced vision 
[11-13].

ABCA4 is a polymorphic gene with low conservation 
due to the high frequency of allelic variation in the gene. It 
presents many benign variants, with a frequency higher than 
1% in the population, as are hundreds of pathogenic vari-
ants [14]. The majority of variants are missense mutations, 
followed by protein-truncating variants [15]. Complex alleles 
and intronic variants have also been described for the ABCA4 
gene [14-17]. The presence of pathogenic variants of this gene 
is the most common cause of retinal diseases among children 
and young adults and is primarily related to autosomal reces-
sive Stargardt disease [14,18]. Involvement of ABCA4 has also 
been reported in cases of cone–rod dystrophy and autosomal 
recessive retinitis pigmentosa [19,20].

The phenotypic characteristics of each case demonstrate 
particularities corresponding to the combination of patho-
genic variants in the ABCA4 gene in compound heterozygous 
and homozygous individuals. The phenotypic characteristics 
of certain variants, including p.Gly1961Glu and the complex 
allele p.[Leu541Pro; Ala1038Val], have been established 
[21,22]. Overall, the clinical outcome depends on the severity 
of the combined alleles [15].

Little is known to date about the pathogenic variants in 
the Brazilian population with Stargardt disease. Thus, the aim 
of this study was to analyze and describe pathogenic vari-
ants in the ABCA4 gene in Brazilian patients with a clinical 
diagnosis of Stargardt disease.

METHODS

This retrospective study evaluated variants in the ABCA4 
gene in Brazilian patients with a Stargardt disease diagnosis. 
Cases were selected based on a review of 254 genetic tests 
for retinal dystrophy performed between January 2009 
and January 2017 at the Federal University of São Paulo 
(UNIFESP) and the Ocular Genetics Institute (IGO), São 
Paulo, Brazil. All patients signed informed consent. The 
study was approved by the Research Ethics Committee of 
UNIFESP (Protocol No. 6159), Brazil, and was conducted in 
accordance with the ethical standards of the 1964 Declaration 
of Helsinki and the Association for Research in Vision and 
Ophthalmology (ARVO) statement on human subjects, and 
its subsequent amendments.

From a pool of 254 retinal dystrophy tests, patients with 
Stargardt for whom the ABCA4 gene was sequenced using 
next-generation sequencing (NGS) were included in the 
study. Patients with a clinical diagnosis of Stargardt disease 
and conclusive molecular testing regarding other Stargardt 
genes were excluded. Among the study group, there were 
patients with clinically Stargardt with a conclusive ABCA4 
test, an inconclusive test with one variant, and patients with 
no variant.

The Ion PGMTM System (Life Technologies, Carlsbad, 
CA) and MiSeq by Illumina (Illumina, San Diego, CA) plat-
forms were used for the molecular diagnosis of the cases. 
The ABCA4 gene was included in gene panels related to Star-
gardt disease or macular dystrophies. Only coding regions 
and immediately flanking intron sequences were examined. 
Changes in the promoter region, deep intronic regions, or 
other non-coding regions of the gene were not evaluated. 
Among the patients, only those with an initial clinical diag-
nosis of Stargardt disease were selected for inclusion in this 
study.

Segregation results available in medical records were 
analyzed and included in the study. Sanger sequencing was 
used to identify in relatives pathogenic variants found in 
probands.

Gene sequencing data collected from medical records 
were compared with variants available in the following 
databases: Human Gene Mutation Database (HGMD) [23], 
ClinVar [24], 1000 Genomes Project [25], Exome Aggrega-
tion Consortium (ExAC) [26], and Leiden Open Variation 
Database (LOVD) [27]. The following programs were used to 
predict the pathogenicity of new variants: CADD (deleterious 
threshold: 20) [28], PolyPhen-2 [29], MutationTaster [30], and 
Sorting Intolerant from Tolerant (SIFT) [31]. The nucleotide 
numbering is based on the reference sequence NM_000350, 
with the A of the initiation codon (ATG) representing number 
1.

Data on the patients’ visual acuity and age of symptom 
onset were collected from medical records. Complementary 
examinations, including retinography (RG), fundus autofluo-
rescence imaging (FAF), and optical coherence tomography 
(OCT), were reassessed to confirm the clinical diagnosis of 
Stargardt disease.

The patients were classified according to signs found in 
the autofluorescence test (Heidelberg Retina Angiograph, 
HRA 2, Heidelberg Engineering, Heidelberg, Germany), as 
described by Fujinami et al. [6]. This classification separates 
patients into the following three types: type I (an area of 
foveal hypoautofluorescence surrounded by a retina with a 
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homogeneous appearance, with or without foci of high or 
low autofluorescent signals), type II (an area of foveal hypo-
fluorescence surrounded by an area with a heterogeneous 
appearance and hyperautofluorescent and hypoautofluores-
cent points that extend to the temporal arcades, giving the 
retina a reticulate appearance), and type III (extensive areas 
of hypoautofluorescence in the posterior pole and a hetero-
geneous appearance of the remaining retinal areas, with 
hyperautofluorescent and hypoautofluorescent points) [6].

RESULTS

A total of 50 patients from 44 families (including four sibling 
pairs and two mother-daughter pairs) aged between 10 and 65 
years were included in the study. Three families had a history 
of consanguinity (siblings 4 and 6 and patients 33 and 40). 

Table 1, Table 2, Table 3, Table 4 shows the molecular analysis 
results and clinical characteristics of the Stargardt disease 
cases, including the age of symptom onset (range, 5–40 years; 
mean, 14 years) and visual acuity, which ranged from 20/40 to 
counting fingers at 20 cm during the examination.

All patients included showed changes in pigmentation or 
macular atrophy on retinography examination. Retinal flecks 
were found in almost all cases. OCT revealed focal areas of 
photoreceptor layer discontinuity corresponding to macular 
atrophy (Figure 1). The patients were classified into three 
types of phenotypic characteristics according to the fundus 
autofluorescence examination results (Table 1, Table 2, Table 
3 and Figure 2) [6]. Twelve patients were classified as type I 
(Table 1), 16 patients as type II (Table 2), and 18 patients as 
type III (Table 3). Records of the fundus autofluorescence 

Table 1. Fundus auToFluorescence Type I paTIenTs. paThogenIc varIanTs In The abca4 gene and clInIcal daTa.

Pt S

Pathogenic variants Visual 
acuity

Age of onset/ 
data collect/ 
disease dura-
tion (years)

Allele 1 Allele 2
Nucleotide 
change

Protein 
change

Nucleotide 
change

Protein 
change

RE 
LE

1• F
c.4926C>G p.Ser1642Arg c.5882G>A p.Gly1961Glu 20/200 

20/200 12/30/18
c.5044_5058del15‡ p.Val1682_Val1686del‡   

9 M c.6112C>T p.Arg2038Trp c.6320G>A p.Arg2107His 20/200 
20/150 11/35/24

14 M not detected  not detected  FC 2m 
20/40 30/42/12

31• M
c.1622T>C p.Leu541Pro c.3386G>T p.Arg1129Leu N/A 

N/A
N/A/23/ N/A

c.4328G>A p.Arg1443His   

49• M
c.5282C>G p.Pro1761Arg c.2345G>A p.Trp782* 20/400 

20/400 15/25/10
c.6316C>T p.Arg2106Cys   

43• F c.5882G>A p.Gly1961Glu c.66G>T p.Lys22Asn 20/60 
20/60 19/20/1

51• M
c.1622T>C p.Leu541Pro c.5882G>A p.Gly1961Glu 20/30 

20/30 10/11/1
c.3113C>T p.Ala1038Val   

28 M c.70C>T p.Arg24Cys c.1804C>T p.Arg602Trp 20/50 
20/60 16/26/10

33§• M c.3862+1G>A† p.? c.3862+1G>A† p.? 20/200 
20/200 10/10/0

35• M c.6079C>T p.Leu2027Phe c.6250G>C p.Ala2084Pro 20/25 
20/25 20/20/0

48• F
c.5882 G>A p.Gly1961Glu c.1364T>A p.Leu455Gln 20/60 

20/150 32/32/0
c.3113 C>T p.Ala1038Val   

36• F c.1804C>T p.Arg602Trp not detected  20/25 
20/25 7/28/21

Pt, Patient; S, Sex; N/A, not available; FC, Finger counting. Novel variant. • Segregation analysis performed †Homozygous variants 
‡c.5044_del15bp, nonframeshift deletion (c.5044_5058delGTTGCCATCTGCGTG). § Consanguinity Families: Siblings: 41(Table 4) 
and 49. Mother 44 (Table 3) and daughter 43. Mother 45 (Table 3) and daughter 36.
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examination were lacking for four patients (Table 4), who, 
therefore, were not classified.

The ABCA4 gene sequencing results were conclusive 
for 40 patients (80%) but negative for patients 8 and 14 
(4%). An additional eight patients (7, 11, 16, 21, 26, 32, 36, 
and 39) carried only one pathogenic variant in the ABCA4 
gene, rendering their molecular test inconclusive (16%). 
Patients 8, 14, 7, 11, 16, 21, and 39 were evaluated using a 
small Stargardt disease panel that included the ABCA4 (ID: 

24, OMIM: 601691), ELOVL4 (ID: 6785, OMIM: 605512), 
and PROM1 (ID: 8842, OMIM: 604365) genes, although 
no pathogenic variants in those other genes were found. 
Patients 26 and 32 were assessed for the ABCA4, ELOVL4, 
PROM1, BEST1 (ID: 7439, OMIM: 607854), and PRPH2 (ID: 
5961, OMIM: 179605) genes and patient 36 for the ABCA4, 
ELOVL4, PROM1, BEST1, PRPH2, CDH3 (ID: 1001, OMIM: 
114021), EFEMP1 (ID: 2202, OMIM: 601548), IMPG1 (ID: 
3617, OMIM: 602870), IMPG2 (ID:50939, OMIM: 607056) 

Table 2. Fundus auToFluorescence Type II paTIenTs. paThogenIc varIanTs In The abca4 gene and clInIcal daTa.

Pt S

Pathogenic variants Visual 
acuity

Age of onset/ 
data collect/ 
disease dura-
tion (years)

Allele 1 Allele 2
Nucleotide 
change

Protein 
change

Nucleotide 
change

Protein 
change

RE 
LE

3• F
c.4926C>G p.Ser1642Arg c.2791G>A p.Val931Met 20/150 

20/150 14/37/23
c.5044_5058del15‡ p.Val1682_Val1686del‡   

5 F c.3898C>T p.Arg1300* c.1804C>T p.Arg602Trp 20/200 
20/200 7/17/10

8 F not detected  not detected  20/400 
20/400 32/44/12

11 M c.6079C>T p.Leu2027Phe not detected  FC1m 
20/200 12/24/12

12• M
c.4328G>A p.Leu541Pro c.2743G>A p.Asp915Asn 20/200 

20/200 8/13/5
c.1622T>C p.Arg1443His   

16 M c.4720G>T p.Glu1574* not detected  20/150 
20/200 6/38/32

18 M c.634C>T p.Arg212Cys c.1804C>T p.Arg602Trp 20/400 
20/400 6/31/25

19 M c.634C>T p.Arg212Cys c.1804C>T p.Arg602Trp FC1.5m 
FC1.5m 11/26/15

21 M c.3386G>T p.Arg1129Leu not detected  20/150 
20/150 16/32/16

22• M
c.4926C>G p.Ser1642Arg c.4340A>T p.Glu1447Val 20/200 

FC2m 8/10/2
c.5044_5058del15‡ p.Val1682_Val1686del‡   

29 F c.223T>G p.Cys75Gly c.6088C>T p.Arg2030* N/A 
N/A 8/16/8

32 M c.455G>A p.Arg152Gln not detected  20/30 
FC10cm 36/39/3

46 F c.5461–10T>C p.[Thr1821Valfs*13, 
Thr1821Aspfs*6] c.1804C>T p.Arg602Trp 20/200 

20/200 9/10/1

47• F
c.1622T>C p.Leu541Pro c.286A>G p.Asn96Asp 20/400 

20/400 7/26/19
c.4328G>A p.Arg1443His   

50• M c.1804C>T p.Arg602Trp c.5381C>A p.Ala1794Asp 20/400 
20/400 15/31/16

26 F c.5714+5G>A p.? not detected  20/80 
20/80 9/14/5

Pt, Patient; S, Sex; N/A, not available; FC, Finger counting.• Segregation analysis performed ‡c.5044_del15bp, nonframeshift deletion 
(c.5044_5058delGTTGCCATCTGCGTG).Families: Siblings: 18 and 19.
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Table 3. Fundus auToFluorescence Type III paTIenTs. paThogenIc varIanTs In The abca4 gene and clInIcal daTa.

Pt S

Pathogenic variants Visual 
acuity

Age of onset/ 
data collect/ 
disease dura-
tion (years)

Allele 1 Allele 2
Nucleotide 
change

Protein 
change

Nucleotide 
change

Protein 
change

RE 
LE

4§ F c.286A>G p.Asn96Asp† c.286A>G p.Asn96Asp† 20/400 
20/400 23/39/16

6§ M c.286A>G p.Asn96Asp† c.286A>G p.Asn96Asp† FC2m 
FC2m 14/47/33

7 M c.3862+1G>A p.? not detected  FC20cm 
FC20cm 16/63/47

10• F
c.4926C>G p.Ser1642Arg c.3056C>T p.Thr1019Met FC2m 

FC1m 5/26/21
c.5044_5058del15‡ p.Val1682_Val1686del‡   

13• M
c.4926C>G p.Ser1642Arg c.1804C>T p.Arg602Trp FC50cm 

FC2m 8/26/18
c.5044_5058del15‡ p.Val1682_Val1686del‡   

15 F c.5714+5G>A p.? c.6005+1G>T p.? FC20cm 
FC10cm 12/40/28

17• F
c.1622T>C p.Leu541Pro c.3329–2A>T p.? HM 

FC10cm 7/59/52
c.3113C>T p.Ala1038Val   

20• M
c.1622T>C p.Leu541Pro c.3329–2A>T p.? HM 

HM 8/65/57
c.3113C>T p.Ala1038Val   

23• F
c.1622T>C p.Leu541Pro c.1804C>T p.Arg602Trp FC1.5m 

FC1.5m 7/31/24
c.4328G>A p.Arg1443His   

24 M c.4457C>T p.Pro1486Leu c.1804C>T p.Arg602Trp FC1.5m 
FC1.5m 15/46/31

44• F
c.4926C>G p.Ser1642Arg c.66G>T p.Lys22Asn N/A 

N/A N/A
c.5044_5058del15‡ p.Val1682_Val1686del‡   

30• F c.6088C>T p.Arg2030* † c.6088C>T p.Arg2030* † FC1.5m 
20/400 7/38/31

37 F c.4003_4004delCC p.Pro1335Argfs*86 c.658C>T p.Arg220Cys 20/30 
20/30 28/31/3

39 F c.1648G>A p.Gly550Arg not detected  FC1.5m 
FC1.5m 8/36/28

42• M c.2894 A>G p.Asn965Ser c.5381C>A p.Ala1794Asp 20/400 
20/400 17/38/21

25 M c.5044_5058del15‡ p.Val1682_Val1686del‡ c.1804C>T p.Arg602Trp 20/400 
20/400 7/26/19

34• M
c.4926C>G p.Ser1642Arg c.1622T>C p.Leu541Pro N/A 

N/A 7/33/26
c.5044_5058del15‡ p.Val1682_Val1686del‡ c.4328G>A p.Arg1443His

45• F c.1804C>T p.Arg602Trp c.3386G>T p.Arg1129Leu 20/400 
20/400 18/61/43

Pt, Patient; S, Sex; N/A, not available; HM, Hand movement; FC, Finger counting.• Segregation analysis performed †Homozygous vari-
ants. ‡c.5044_del15bp, nonframeshift deletion (c.5044_5058delGTTGCCATCTGCGTG). § Consanguinity Families: Siblings:4 and 6; 
17 and 20. Mother 44 and daughter 43 (Table 1). Mother 45 and daughter 36 (Table 1).
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and TIMP3 (ID: 7078, OMIM: 188826) genes. No pathogenic 
variants were found in the other genes.

In the group of 40 conclusive patients, five (12.5%) had 
homozygous pathogenic variants in the ABCA4 gene, with 35 
being compound heterozygous variants (85.5%); segregation 
analysis data were available for 26 patients (65%) [32]. Segre-
gation analysis confirmed complex alleles in 20 patients (50% 
of 40 patients), all of whom showed three pathogenic variants; 
confirmation that the third variation was in trans rendered 
these cases conclusive for molecular diagnosis. Although 
patient 27 showed three pathogenic variants, segregation 
analysis data were not available for this patient.

The following six complex alleles were found: 
p.[Leu541Pro; Arg1443His]; p.[Leu541Pro; Ala1038Val]; 
p.[Ser1642Arg; Val1682_Val1686del]; p.[Pro1761Arg; 
Arg2106Cys] and p.[Ala1038Val; Gly1961Glu] p.[Ala1038Val; 
Met669Ile]. All of these alleles were confirmed with segrega-
tion analysis to be in cis.

One novel variant, p.Ala2084Pro (Table 5), not present 
in genetic variant (HGMD, ClinVar and LOVD) or population 
(1000 Genomes and ExAC) databases was found. Pathoge-
nicity prediction software (CADD, SIFT, MutationTaster, 
and PolyPhen-2) classified the variant p.Ala2084Pro as 
disease-causing. It was found in one allele of patient 35 and 
was considered pathogenic to conclude the genotype test. In 
addition, three variants that had previously been described 
without pathogenic classification or with conflicting patho-
genicity classifications (p.Met669Ile, p.Arg152Gln, and 
p.Thr897Ile) were analyzed, as outlined in Table 5 [33-36].

Among the four families (patients 4 and 6 (siblings), 30, 
33, and 40) with homozygous variants (Table 1, Table 3, Table 
4) only patient 30 denied a history of consanguinity. The most 
frequent variant in this population was p.Arg602Trp (12/100 
alleles). It was present in two cases with phenotype type I, 
five with type II, and five with type III.

Other frequent variants among patients with Stargardt 
disease, such as p.Gly1961Glu, p.[Leu541Pro; Ala1038Val], 
and c.5461–10T>C, were also found in the study population 
[15,37]. The variants identified in this study are distributed 
throughout the ABCA4 gene, including intronic and exonic 
regions (Table 6, Table 7), and no preferential region for the 
occurrence of the variants was observed.

DISCUSSION

The ABCA4 gene is highly polymorphic, and there are 
a large number of benign variants in addition to the more 
than 900 pathogenic variants that have been described to 
date [14,15,17]. The allelic heterogeneity and distribution of 
pathogenic variants along the 50 exons and introns of this 
gene demonstrate the complexity of the encoded protein and 
its role in Stargardt disease (Table 6, Table 7) [38]. More-
over, the large number of variants complicates predictions 
of disease-causing mutations [39]. Another characteristic of 
the ABCA4 gene is the presence of pathogenic variants in 
cis (Table 6) [32,40]. For this reason, segregation analysis is 
crucial for clarifying the family origin of each pathogenic 
variant in compound heterozygotes and for reaching a conclu-
sive molecular diagnosis.

Table 4. paThogenIc varIanTs In The abca4 gene and clInIcal daTa oF 
paTIenTs wITh no Fundus auToFluorescence classIFIcaTIon.

Pt S

Pathogenic variants Visual 
acuity

Age of onset/ 
data collect/ 

disease duration 
(years)

Allele 1 Allele 2
Nucleotide 
change

Protein 
change

Nucleotide 
change

Protein 
change

RE 
LE

40§• M
c.1622T>C p.Leu541Pro† c.1622T>C p.Leu541Pro† N/A 

N/A
N/A/35/N/A

c.4328G>A p.Arg1443His† c.4328G>A p.Arg1443His†

41• F
c.5282C>G p.Pro1761Arg c.2345G>A p.Trp782* 20/200 

20/200
N/A/27/N/A

c.6316C>T p.Arg2106Cys   

27Ω F
c.868C>T p.Arg290Trp c.5882G>A p.Gly1961Glu 20/400 

20/400 40/61/21
c.2690C>T p.Thr897Ile   

38• M c.32T>C p. Leu11Pro c.3113C>T p. Ala1038Val 20/400 
20/400 20/21/1

Pt, Patient; S, Sex; N/A, not available • Segregation analysis performed †Homozygous variants. § Consanguinity Families: Siblings: 41 
and 49 (Table 1). ΩPatient 27 present 3 patogenic variants, but without segregation analisys it was impossible to determinate which of 
them are combined in cis.

http://www.molvis.org/molvis/v24/546
https://www.ncbi.nlm.nih.gov/omim/?term=188826


Molecular Vision 2018; 24:546-559 <http://www.molvis.org/molvis/v24/546> © 2018 Molecular Vision 

552

Phenotypic severity is directly linked to the protein 
damage caused by a pathogenic variant [12,15,22], and clin-
ical heterogeneity can be explained by different combinations 
of pathogenic variants in the ABCA4 gene [40,41]. Therefore, 
knowledge of variant pathogenicity may affect disease prog-
nosis and genetic counseling in each case [15]. Some studies 

have addressed the presence of homozygous mutations in the 
ABCA4 gene to assess the effect of a pathogenic variant alone 
[6,15].

Among the four families with homozygous pathogenic 
variants in this study, three could be classified based on 
their phenotypic characteristics. Patients 4 and 6, who were 

Figure 1. Type I FAF phenotype: 
patients 14, 51, 35, and 48. Type II 
FAF phenotype: patients 5, 8, 11, 
16, 18, 19, 21, 47, and 50. Type III 
FAF phenotype: patients 4, 6, 7, 15, 
and 24. Negative cases at molecular 
testing: patients 14 and 8. Incon-
clusive cases at molecular testing: 
patients 11, 16, 21, and 7. Patient, Pt; 
retinography, RG; fundus autofluo-
rescence, FAF; infrared imaging, 
IR; optical coherence tomography, 
OCT.
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siblings, carried the homozygous variant p.Asn96Asp and 
were classified as having the type III phenotype 16 and 33 
years, respectively, after symptom onset. Despite denying 
family consanguinity, patient 30 carried the homozygous 
pathogenic variant p.Arg2030* and was also classified with 
the type III phenotype at 38 years of age. These clinical char-
acteristics suggest that those changes are associated with a 
worse disease prognosis. Conversely, the phenotype of patient 
33, with the homozygous intronic variant c.3862+1G>A, at 
diagnosis at 10 years of age was type I. The pathogenic variant 
c.3862+1G>A causes a splicing defect, and this intronic 
variant has been found in cases of cone–rod degeneration and 
retinitis pigmentosa in addition to cases of Stargardt disease 
[42,43]. Follow-up of the phenotypic progression of patient 33 
will indicate the prognosis for this variant.

The pathogenic variant most commonly found in this 
group was p.Arg602Trp, which was present in 12 patients 
(12 alleles). Wiszniewski et al. described the missense 
p.Arg602Trp as being responsible for mislocalization of 
the ABCA4 protein, resulting in the absence of physiologic 
protein function [21]. These authors further suggested that 
this missense variant is a severe variant due to the early age 
of symptom onset when associated with another mislocaliza-
tion or nonsense variant [21]. Symptoms in patient 5, who 
presented p.Arg1300* and p.Arg602Trp, started at age 7, with 
phenotype II showing after 10 years (Table 2). However, the 
results suggest that the severity of the disease does not depend 
exclusively on the pathogenic effect of p.Arg602Trp. Patients 
with this variant exhibited all three phenotypes, demon-
strating that the combination of pathogenic variant effects in 
both alleles is important for determining the phenotype (or 

Figure 2. Fundus autofluorescence pictures of Stargardt cases. A: Patient 9 with the type I phenotype. B: Patient 5 with the type II phenotype. 
C: Patient 6 with the type III phenotype.

Table 5. novel varIanT and varIanTs wITh uncerTaIn sIgnIFIcance.

Patient 35 38 32 27
Nucleotide change c.6250G>C c.2007G>C c.455G>A c.2690C>T
Protein change p.Ala2084Pro p.Met669Ile p.Arg152Gln p.Thr897Ile
dbSNP N/A N/A rs62646862 rs61749440
ClinVar N/A N/A Conflicting Conflicting

CADD score/pathogenicity 34/ 
Deleterious

23.9/ 
Deleterious

21.5/ 
Deleterious

23.6/ 
Deleterious

MutationTaster score/
pathogenicity

1/ 
Disease-causing

1/ 
Disease-causing

0.775/ 
Disease-causing

0.989/ 
Disease-causing

SIFT score/pathogenicity 0.019/ 
Deleterious

0.189/ 
Tolerated

0.124/ 
Tolerated

0.188/ 
Tolerated

PolyPhen-2 HumVar score/
pathogenicity

1.000/ 
Damage

0.413/ 
Benign

0.015/ 
Benign

0.994/ 
Damage

1000 genomes N/A N/A 0,00159744 0,00159744
ExAC N/A N/A 0,0024 0,0011
References Novel variant 35 33 and 34 32

N/A, Not available

http://www.molvis.org/molvis/v24/546


Molecular Vision 2018; 24:546-559 <http://www.molvis.org/molvis/v24/546> © 2018 Molecular Vision 

554

the Stargardt disease severity). This dependence is illustrated 
in the following cases. Patient 46 presented the first symp-
toms at age 9, and after only 1 year, her phenotype was type II 
(Table 2). She carried p.Arg602Trp and c.5461–10T>C vari-
ants, and the latter is described as a severe pathogenic variant 
[37] because it leads to abnormal mRNA and ABCA4 protein 
truncation. In addition, patients homozygous for this variant 
have a severe phenotype. In contrast, patient 28 presented 
two missense variants (p.Arg24Cys and p.Arg602Trp). His 
first symptoms were at age 16, and after 10 years, his pheno-
type was type I (Table 1). Although the age of onset of the 
disease may be related to its severity, the natural history of 
the disease may better reflect the pathogenicity of variants.

The variant p.Gly1961Glu is associated with milder 
disease and causes late onset of visual symptoms, with a 
phenotype that does not evolve to type III [44]. This charac-
teristic was also observed in patients 1, 43, 48, and 51, who 
carried this variant and showed symptoms after 10 years 
of age. All patients were classified as type I based on the 
fundus autofluorescence examinations, and patient 1 main-
tained these phenotypic characteristics after 18 years of the 
disease (Table 1). The phenotypic characteristics of these four 
patients corroborate the hypothesis that variant p.Gly1961Glu 
causes milder disease.

Variants c.5714+5G>A and c.6005+1G>T were present 
in patient 15. According to Burke et al., the latter is likely 
to completely abolish splicing and to cause a frameshift that 
results in severe protein dysfunction [45]. Conversely, variant 
c.5714+5G>A is associated with a mild pathogenic effect and 
a later median age of onset [15,46,47]; nonetheless, Cremers 
et al. proposed that this variant has a moderately severe effect 

[19]. Patient 15 was classified as the type III phenotype at 
28 years after symptom onset (Table 3), suggesting a severe 
effect of those variants.

Analysis of the relationship between the genetic variants 
and the phenotype of each patient showed that sibling patients 
had the same mutations and phenotypic classifications. 
Conversely, the two mother-and-daughter families showed 
an autosomal dominant inheritance pattern, which suggests 
that another gene is responsible for their Stargardt disease, 
even though molecular testing confirmed Stargardt disease 
linked to the ABCA4 gene. Because of different mutation 
combinations, the mother and daughter exhibited different 
phenotypes. The high frequency of variants in ABCA4 may 
have led to the identification of three different pathogenic 
variants in the same family.

This study reports pathogenic variants in the ABCA4 
gene in Brazilian patients with a clinical diagnosis of Star-
gardt disease. Thus far, little is known about the genetic char-
acteristics of the Brazilian population with retinal dystrophy. 
The presence of variants previously described and with a 
founder effect known for ethnic group-specific populations 
[48] confirms the miscegenation of Brazilians, including 
p.Arg1129Leu of Spanish origin [42,49] and p.[Leu541Pro; 
Ala1038Val] and p.Gly1961Glu of German origin [47,50].

Six complex alleles were found in this study (Table 6). 
These complex alleles were present in 20 patients distributed 
among all three phenotypes (Table 1, Table 2, Table 3) and 
no phenotype–genotype correlation was observed. Although 
the complex allele p.[Leu541Pro; Ala1038Val] has reportedly 
high frequency, the allele was present in only three patients in 
this study [50]. Conversely, the variant p.Leu541Pro formed 

Table 6. dIsTrIbuTIon oF paThogenIc varIanTs In The ABCA4 gene.

Complex alleles
Nucleotide Change Protein Change Location Allele†
c.4926C>G p.Ser1642Arg 35

7
c.5044_5058del15‡ p.Val1682_Val1686del 36
c.1622T>C p.Leu541Pro 12

7
c.4328G>A p.Arg1443His 29
c.5282C>G p.Pro1761Arg 37

2
c.6316C>T p.Arg2106Cys 46
c.5882 G>A p.Gly1961Glu 42

1
c.3113 C>T p.Ala1038Val 21
c.1622T>C p.Leu541Pro 12

3
c.3113C>T p.Ala1038Val 21
c.3113C>T p.Ala1038Val 21 1

† Number of alleles that each complex allele has apear.
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Table 7. dIsTrIbuTIon oF paThogenIc varIanTs In The ABCA4 gene.

Single alleles
Nucleotide Change Protein Change Location Allele†
c.32T>C p.Leu11Pro 1 1
c.66G>T p.Lys22Asn 1 2
c.70C>T p.Arg24Cys 2 1
c.223T>G p.Cys75Gly 3 1
c.286A>G p.Asn96Asp 3 5
c.455G>A p.Arg152Gln 5 1
c.634C>T p.Arg212Cys 6 2
c.658C>T p.Arg220Cys 6 1
c.1364 T>A p.Leu455Gln 11 1
c.1648G>A p.Gly550Arg 12 1
c.1804C>T p.Arg602Trp 13 12
c.2345G>A p.Trp782* 15 2
c.2743G>A p.Asp915Asn 19 1
c.2791G>A p.Val931Met 19 1
c.2894 A>G p.Asn965Ser 19 1
c.3056C>T p.Thr1019Met 21 1
c.3329–2A>T p.? Intron 22 2
c.3386G>T p.Arg1129Leu 23 3
c.3862+1G>A p.? Intron 26 3
c.3898C>T p.Arg1300* 27 1
c.4003_4004delCC p.Pro1335Argfs*86 27 1
c.4340A>T p.Glu1447Val 29 1
c.4457C>T p.Pro1486Leu 30 1
c.4720G>T p.Glu1574* 33 1
c.5044_5058del15 p.Val1682_Val1686del 36 1
c.5381C>A p.Ala1794Asp 38 2
c.5461–10T>C p.[Thr1821Valfs*13, Thr1821Aspfs*6] Intron 38 1
c.5714+5G>A p.? Intron 40 2
c.6005+1G>T p.? Intron 43 1
c.6079C>T p.Leu2027Phe 44 2
c.6088C>T p.Arg2030* 44 3
c.6112C>T p.Arg2038Trp 44 1
c.6250G>C p.Ala2084Pro 45 1
c.6320G>A p.Arg2107His 46 1

Novel vatiant.† Number of alleles that each variant has apear.Patient 27 was excluded of this table due 
to the absence of segregation analysis. FAF, Fundus autofluorescence; Pt, Patient; N/A, not available; 
HM, Hand movement; FC, Finger counting. Novel variant. †Homozygous variants. ‡c.5044_del15bp, non-
frameshift deletion (c.5044_5058delGTTGCCATCTGCGTG). Families: Siblings: 4 and 6; 17 and 20; 18 
and 19; 41 and 49. Mother 44 and daughter 43. Mother 45 and daughter 36. § Consanguinity •Patient 27 
presented with 3 pathogenic variants, but without segregation analysis it was impossible to determinate 
which of them are combined in cis.
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a complex allele with p.Arg1443His in patients 12, 23, 31, 34, 
40, and 47 [6]. This high frequency of complex alleles (20 of 
40 conclusive cases) and the possibility of different variant 
combinations in cis emphasize the importance of segregation 
analysis for a correct molecular diagnosis [32].

NGS has been found to be effective for the molecular 
diagnosis of patients with Stargardt disease [51] and was used 
for molecular diagnosis in all cases reported in this study. 
These patients were assessed using a gene panel for Star-
gardt disease or macular dystrophies. In this study, the rate of 
conclusive molecular diagnosis was 80% (40/50), higher than 
the rate reported in other studies with patients with Stargardt 
disease using NGS (ranging from 50% to 60%) [51-54].

The negative and inconclusive cases may be explained 
by mutations in non-sequenced regions, such as intronic, 
untranslated, and regulatory regions, and/or a lack of knowl-
edge of the pathogenicity of new variants in the ABCA4 gene. 
In addition, other genes not analyzed or not yet related to the 
disease might cause these phenotypes [14]. New studies are 
evaluating other regions of the ABCA4 gene that were previ-
ously considered irrelevant for protein formation, including 
deep-intronic regions [52,53], in an effort to validate vari-
ants as disease causing and to improve molecular diagnosis 
[14,55,56]. Genes other than ABCA4 have been evaluated to 
clarify inconclusive cases [35,57-59].

The importance of a conclusive molecular diagnosis 
is directly related to new treatments for retinal dystrophies 
[15]. Identifying pathogenic variants responsible for disease 
enables the inclusion of patients in clinical trials and renders 
them eligible for future commercial therapies [14,60].

CONCLUSION: NGS is effective for the molecular diagnosis 
of genetic diseases, and this approach specifically allowed 
a conclusive diagnosis in 80% (40/50) of the patients. The 
ABCA4 gene does not show a preferential region for patho-
genic variants; thus, the diagnosis of Stargardt disease 
depends on broader analysis of the gene. The most common 
pathogenic variants in ABCA4 described in the literature were 
also found in the Brazilian patients in this study. Some geno-
type–phenotype correlations were found, but more studies on 
the progression of Stargardt disease will help us understand 
the pathogenicity of variants in genes.
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