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One of the most cumbersome and time-demanding tasks in

completing a protein model is building short missing regions

or ‘loops’. A method is presented that uses structural and

electron-density information to build the most likely confor-

mations of such loops. Using the distribution of angles and

dihedral angles in pentapeptides as the driving parameters, a

set of possible conformations for the C� backbone of loops

was generated. The most likely candidate is then selected in a

hierarchical manner: new and stronger restraints are added

while the loop is built. The weight of the electron-density

correlation relative to geometrical considerations is gradually

increased until the most likely loop is selected on map

correlation alone. To conclude, the loop is refined against the

electron density in real space. This is started by using

structural information to trace a set of models for the C�

backbone of the loop. Only in later steps of the algorithm is

the electron-density correlation used as a criterion to select

the loop(s). Thus, this method is more robust in low-density

regions than an approach using density as a primary criterion.

The algorithm is implemented in a loop-building program,

Loopy, which can be used either alone or as part of an

automatic building cycle. Loopy can build loops of up to 14

residues in length within a couple of minutes. The average

root-mean-square deviation of the C� atoms in the loops built

during validation was less than 0.4 Å. When implemented in

the context of automated model building in ARP/wARP,

Loopy can increase the completeness of the built models.
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1. Introduction

In macromolecular X-ray crystallography, building a complete

model from a density map remains a challenging task. Even

though several programs exist that aim towards automated

model building [for example, ARP/wARP (Perrakis et al.,

1999), RESOLVE (Terwilliger, 2003a), TEXTAL (Ioerger et

al., 1999), MAID (Levitt, 2001) and Buccaneer (Cowtan,

2006)], none of these programs is expected to return a

‘complete’ model. This means that no matter how far the

automated model building has progressed, part of the model

still needs to be built manually. Low-density regions, for

example, can cause gaps in the model. In these regions the

user has to build the model using interactive graphics, which

can be quite a laborious task.

All automated model-building programs start by tracing the

backbone of the protein from the density map, albeit in

different manners. In ARP/wARP, for example, the electron

density is first modelled by free atoms, from which the C�

backbone of the structure is traced (Morris et al., 2002). The



next step is to assign the known protein sequence to the main-

chain fragments that were found (‘sequence docking’; see, for

example, Cohen et al., 2004; Terwilliger, 2003b). However, at

the end, even after a successful automated model-building

run, some regions of known start, end, length and amino-acid

sequence remain to be built.

Software that uses this information to complete the model

has also been developed. For example, Xpleo (van den Bedem

et al., 2005), LAFIRE (Yao et al., 2006) and RAPPER (de

Bakker et al., 2006) are tools for automated model completion.

In this paper, we describe the use of structural information on

the C� backbone to fill in the gaps and build the loops of the

model. It has been shown (Jones et al., 1991) that a database of

five-residue-long fragments (pentapeptides) could be used to

complete and improve the backbone structure found by

skeletonization of the density map. It has also been shown that

protein conformation can be described by the angles and

dihedral angles between successive C� atoms (Kleywegt, 1997;

Esnouf, 1997).

We use knowledge from pentapeptides to predict the

probable positions of the fifth C� atom from the terminal

tetrapeptides of main-chain fragments, thus extending the

peptide segment. By iterating this process, using each set of

new C� atoms as a new set of terminal tetrapeptides, we create

a tree of possible backbones for the loop. In several steps

based on different features we remove less likely options until

the most probable loop(s) is/are selected from the tree. Our

loop-building method can be used in two modes. In the first

case, gaps are automatically detected, the best loop for each

gap is selected and the resulting model is returned to the user.

In this mode, Loopy can easily be incorporated into an

automated package. In the second case, the user can define an

area to (re-)build. The program now provides a selection of

the best possible loops ordered by density correlation. This

allows the creation of an ensemble of models (Terwilliger et

al., 2007; de Bakker et al., 2006; DePristo et al., 2004; Furnham

et al., 2006), at least locally; this selection can also aid the user

in building the loop manually by interactively inspecting and

editing the given choices.

Since our approach is based on the usage of structural

information from pentapeptides, we will start with a descrip-

tion of the function we use and how we obtained our data.

Next, we will explain the method we use to build the loops.

Results of testing Loopy on manual builds as well as as a part

of ARP/wARP are then described. Finally, we summarize our

results on Loopy and add a few ideas for further improve-

ments.

2. Structure of a five-Ca fragment (pentapetide)

Consider a missing region in the middle of a protein model

(for simplicity, we will refer to such regions as ‘loops’). When

all the fragments of the model are docked into sequence, both

anchors of the loop (the preceding and succeeding residues)

are known and the number of missing residues is also known.

Moreover, not only the position and the amino-acid type of

the anchors are known, but the geometrical features of the

protein model close to the anchors are also known. Our aim is

to use these features to extend the anchors over the number of

missing residues, effectively filling in the gap.

As the main geometrical feature, we consider a fragment of

four C� atoms (or tetrapeptide; see Fig. 1). We define a

tetrapeptide from the N-terminus to the C-terminus as

‘forward’ and one in the opposite direction as ‘backward’.

Initially, we investigated whether one can predict the position

of the fourth C� atom given the positions of the first three C�

atoms of a tetrapeptide. This tripeptide defines an origin and a

natural basis. Under the assumption that the variation in the

distance between successive C� atoms, d (3.8 Å), is negligible,

the relative position of the fourth C� atom can be described by

(d, ’0, �0, ’1). Likewise, the relative position of the fourth C�

atom in a backward tetrapeptide is given by (d, ’1, �0, ’0).

The density profiles of the angle and torsion (’1, �0) for

forward tetrapeptides and (’0, �0) for backward tetrapeptides

have been studied in the PhD thesis of R. Morris (Morris,

2000); his results are illustrated in Fig. 2 and clearly show two

separate peaks: a sharp peak representing the �-helices (at �0

around 50�) and a broad peak representing �-strands (at �0

around �150�). The first peak is roughly a factor of one

hundred higher than the second peak. This suggests that trying

to predict the position of the fourth C� atom using these plots

would strongly favour �-helices, even when we include ’0 for

forward and ’1 for backward peptides. We checked this

suggestion and concluded that we indeed needed to use larger

structural fragments to provide additional information.

Therefore, we decided to consider five-C� fragments

(pentapeptides) instead of tetrapeptides. The fifth C� atom of

a forward pentapeptide can be described in terms of (d, ’0, �0,

’1, �1, ’2) or similarly for a backward pentapeptide in terms of

(d, ’2, �1, ’1, �0, ’0) (see Fig. 1).

To determine the frequency tables for the given combina-

tions of angles and torsions, we downloaded all structures

present in the PDB on 12 October 2005. From these, we kept

for our learning set all structures with a reported Rwork better

than 25% that had been refined at a resolution higher than

2.0 Å, leaving a set of approximately 12 000 structures. These

structures were then randomly distributed over ten sets each

containing 1200 structures. For every protein, we computed

the angles and dihedral angles for every possible pentapeptide

in both the forward and the backward directions. The results

of these analyses were tabulated in multi-dimensional tables;

angles (’) between 75 and 155� were binned every 10� and

dihedral angles (�) between �180 and 180� every were binned

15�. The variation between the frequency tables derived from
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Figure 1
Angles and dihedral angles of the C� atoms in a tetrapeptide or
pentapeptide.



each of the ten sets was used to estimate the accuracy of the

average of all values and look-up tables were constructed. We

found that the variation in ’0 in the forward direction and in

’2 in the backward direction was negligible. Hence, we could

approximate the propensity distributions to the four-dimen-

sional tables of (�0, ’1, �1, ’2) in the forward direction and

(�1, ’1, �0, ’0) in the backward direction.

To ensure that these tables reflect changes in the secondary

structure, we displayed (as in Fig. 3) the retrieved density

profiles in the regions of �-helices and �-strands. The panels

show clearly that the density profile depends strongly on the

secondary structure at a given position in the protein.

How can we use these density tables to predict the position

of a fifth C� atom given a tetrapeptide? Let us consider the

C-terminus of a fragment in a protein

model. The final tetrapeptide at this end

of the fragment can be seen as the start

of a forward pentapeptide. The C�-atom

positions of this part of the pentapep-

tide are known and thus (�0, ’1) are

fixed. From Fig. 3 we know that the �0

torsion and the ’1 angle describe the

conformation of this part of the frag-

ment effectively. The probability that

the fifth C� atom lies at an angle ’2 and

a dihedral angle �1 to the tetrapeptide is

given by

Pð’2; �1j’1; �0Þ ¼
Pð’1; ’2; �0; �1Þ

Pð’1; �0Þ
ð1Þ

when we use our observation that ’0 is

independent of the other angles and

torsions.

Equivalently, the final tetrapeptide at

the N-terminus of the fragment can be

seen as the start of a backward penta-

peptide. In this frame of reference, we

found ’2 to be independent of the other

angles and torsions. Thus, we find for

the probability that (’0, �1) describes

the position of the fifth C� atom

Pð’0; �0j’1; �1Þ ¼
Pð’0; ’1; �0; �1Þ

Pð’1; �1Þ
: ð2Þ

In the next section, we explain how we

use the structural information to extend

a fragment by a single C� atom and

iterate it to obtain loops.

3. Method

Let us consider two main-chain frag-

ments which are docked into sequence.

The gap between these successive frag-

ments is n residues long. Let us call the

C� atom of the N-terminus of the loop

the ‘N-anchor’ of the loop to be built. It

is connected to the C-terminus of the

preceding main-chain fragment. By

extending this fragment iteratively in

the forward direction, a connection can

be made with the succeeding fragment.

We call the C� atom of the second

anchor point the ‘C-anchor’ of the loop.
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Figure 3
Examples of the logarithmic occurrence of angle and dihedral angle of the C� atoms in
pentapeptides.

Figure 2
Logarithmic occurrence of angle and dihedral angle of the C� atoms in tetrapeptides.



Of course, a loop can also be built in the opposite direction by

iterating the extension from the C-anchor backwards.

In our loop-building algorithm, the creation of C� back-

bones for possible loops is initially geometry-driven. Initially,

the electron-density map plays the role of a ‘mask’; it is used to

avoid building over the existing model by applying negative

density around the atoms of the model. As the ‘tree’ of

possible conformations is reduced to the most likely candi-

dates in a hierarchical manner, the contribution of the

electron-density correlation to the selection criteria is slowly

increased. The value of the correlation is only used to compare

loops with each other; it is not used as a global measure. As a

result, this method can easily bridge areas of low electron

density using geometry, while at the end loops are finally

selected based on the electron-density map.

A flowchart of our algorithm is given in Fig. 4. A short

description of the algorithm steps is given below; each step is

discussed separately in the following sections.

(i) Select a small number of possible C�-atom positions, p,

based on the structural information; these are likely exten-

sions of a fragment by a single C� atom. This step is iterated n

times, creating a tree of possible loop backbones.

(ii) The large tree (which initially contains approximately pn

conformations or ‘paths’) is pruned by removing the most

unlikely ‘branches’. Removing a single branch, which can be

furcated, can result in the removal of multiple paths. Loops

leading far away from the opposite anchor are removed, as

well as loops with a geometrically unfavourable connection

with the opposite anchor and those with a relatively low C�

electron-density correlation.

(iii) Determine the position of all main-chain atoms of the

remaining loop conformations. In this step, we remove paths

that are unlikely based on failure to find a peptide plane for

the main-chain atoms, unlikely Ramachandran dihedral angles

or too low density correlation of all main-chain atoms. Steps

(i)–(iii) are performed twice, once for each direction in which

the loop can be built (forward and backward). This is impor-

tant as the tree of possible branches depends strongly on the

structure of the anchor tetrapeptides.

(iv) Build the side chains of all peptides in the remaining

loops. The best loop(s) is/are selected based on the density

correlation of the all the atoms in the loop.

(v) Finally, the best loop(s) are refined in real space.

3.1. Extending fragments by a single Ca atom at a time

We start by creating a ‘real-space’ residual map, as shown in

Jones & Liljas (1984) and described in a similar implementa-

tion in Cohen et al. (2004). This sets the map density around

each atom of the existing model to a negative value. Next, we

create a uniform spherical grid with radius d (3.8 Å) around

one of the anchor points of our loop. The

algorithm we use to create a uniform sphe-

rical grid restricts the number of grid points

to the Fibonacci sequence. Tests showed that

the performance was optimal for 377 nodes.

For each node in the grid, we determine the

density at the node itself and midway

between the node and the anchor. Since we

expect at least some density at both points,

we remove nodes with negative density at

either position (the density map has the

mean set to zero, as commonly performed).

We have found that including the require-

ment for positive density at the midway

point strongly improved the performance of

the program. Note also that this is a very

generous density constraint, which mostly
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Figure 4
Flowchart of Loopy.

Figure 5
Example of possible points p from an existing candidate terminal C� atom (large grey sphere)
in stereographic view. Candidate positions are shown as smaller spheres using a ‘heat’ colour
scheme: blue refers to a low score and red to a high score.



ensures that we do not build over existing fragments or over

the fragment itself.

For the remaining nodes, we compute the angle and torsion

(’, �) and look up the corresponding structural probability

from our tables. We use this value in combination with the

electron density at the node to score the nodes. The contri-

bution of the electron density is approximately a factor of ten

smaller than the structural probability (the relative weights

are set empirically) and thus the contribution of the density

only involves the fine-tuning of the scoring.

Since the above procedure is iterated n times, the number of

nodes may lead to a combinatorial explosion, pn. Thus, it is

desirable to keep the number of nodes to a minimum.

However, we cannot simply select nodes with the highest

score. Consider the example displayed in Fig. 5: the figure

shows that nodes tend to cluster together, with a single cluster

having several high-scoring nodes (red spheres; lower scores

are blue). We try to select the representative nodes from each

cluster by taking the one with the highest score within a sphere

of 0.3 Å radius. We found that in general five nodes per

extension sphere suffice to build most loops.

3.2. Removing unlikely conformations

The single extension for the p node candidates n times

creates a tree of possibly up to pn C� atoms representing

possible backbones for the loop. The tree can grow in every

direction, restricted only by the structural probability and

positive electron density. In this step, we prune the tree by

removing the least likely paths as follows.

(i) Those ending too far away from the opposite loop

anchor are removed.

(ii) Loop paths are ordered according to the density at each

C� node and their density midway from the edges. Only a best

selection is kept (typically around 100).

(iii) Structural probability is determined for the connection

of each loop end node to the opposite anchor point. Again, the

branches are ordered according to the structural probability

and the best ones are kept (typically a few dozen).

3.3. Building the main-chain atoms

After the first round of pruning, we determine the position

of the main-chain atoms for each residue in the loop tree. The

main-chain atoms of a peptide lie approximately in a plane.

Their relative positions are known to high accuracy and with

negligible variations within this plane. Currently, we only

consider trans-peptides.

For all amino acids except glycine, the position of the

anchor C� atom can be determined from the positions of the C

and the N atom around the anchor C� atom. Furthermore,

little or no density is expected outside the peptide plane. We

selected four points (E+
max, E�max, E+

min, E�min) which we found to

have low density in comparison to the main-chain atom

positions. The exact location of these points was chosen such

that the procedure gave optimal results for the reproduction

of the orientation for each peptide plane in the structure 1lml

at a resolution of 2.0 Å. This yields eight (or seven for glycine)

points to determine the orientation of the peptide plane

between two successive C� atoms.

Let �(x) be the density at the position of atom x. The plane

is rotated through two successive nodes, maximizing the value

of

�total ¼ �ðCÞ þ �ðOÞ þ �ðNÞ þ �ðC
�
Þ

� �ðEþminÞ � �ðE
�
minÞ � �ðE

þ
maxÞ � �ðE

�
maxÞ: ð3Þ

This search is restricted by the constraint that the angle

between N, C� and C should be 109 � 20�. If no peptide plane

is found which complies with this restraint, it is assumed that

the corresponding C� candidates are wrong and all paths

containing this edge in the tree are removed.

We complete the loop tree with the main-chain atoms and

remove those branches that are unlikely in the following steps.

(i) Determine the most probable position of the main-chain

atoms by rotating the peptide plane as described above.

Branches with residues for which we cannot find a plane are

completely removed from the tree.

(ii) Determine the Ramachandran angles (Ramachandran

et al., 1963) for the residues in every possible loop. In this

reduction, glycines aside, loops which include peptides with a

value of zero in the four-valued Ramachandran plot described

in Kelly (2008) are removed.

(iii) Order the loops based on the density correlation of all

main-chain atoms and, if present, the C� atoms. Typically,

about five loops are kept for the final selection step.

3.4. Completion of the loop

After the latter selection step, in which we were still

working both in the forward and the backward directions, only

a small number of possible loop paths remain. For this final

selection, the positions of all side-chain atoms in each candi-

date loop are determined using the algorithm from ARP/

wARP. A weighted combination of the density correlation of

the side-chain atoms and that of the main-chain atoms is used

for the final scoring of the paths.

3.5. Real-space refinement

After a loop with all side chains has been built, we refine it

in real space. Real-space refinement for the purpose of this

study has been performed as implemented in the program

Coot (Emsley & Cowtan, 2004) utilizing a script that refines

the loop in real space with geometrical restraints.

3.6. Implementation and hardware details

Loopy was written in C++. The ATLAS library (Whaley &

Petitet, 2005) provided us with an automatically optimized

BLAS/LAPACK implementation for linear algebraic

computations. Clipper (Cowtan, 2003) was used for handling

electron-density maps. In the initial stage of the algorithm a

linear interpolation was used to determine the electron-

density correlation. This method is ten times faster than the
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Gaussian interpolation method that we use in the final stage,

although less accurate. However, at the beginning many map

correlations need to be determined and accuracy is less

important at this stage than speed. In the final stage, where we

determine the side-chain atoms and score all loops, we need a

better and more precise interpolation method. In this stage,

we compute the electron-density correlation by approximating

the atoms by Gaussian distributions centred at the atomic

position (Cowtan, 2003).

Loopy compiles under different architectures and operating

systems, including Linux, Mac OSC, Alpha Tru64 Unix and

SGI Irix. The validation was performed on an Intel Xeon

2.66 GHz machine under Fedora core 5. Testing in the context

of ARP/wARP model building was performed on an Intel

Pentium 4 3.00 GHz and on a cluster of five Apple X-serve G5

nodes.

4. Results

The results of our program were examined in two stages.

Firstly, we wanted to validate Loopy: could the program

rebuild parts of a model using the best available map? In the

next stage, we considered a more interesting question: can

Loopy build loops in difficult parts of the density map? In

other words, could Loopy add to the model completion by

building loops where another program, in this case ARP/

wARP, failed? All these tests will be described in the next

subsections.

4.1. Validation

We validated Loopy on two structures: 1lml and 1o1z. Both

structures had been refined to a resolution of 2.0 Å. For the

initial validation of Loopy, we ran it in the manual mode to

rebuild a few random parts of 1lml and checked the generated

loop suggestions visually. In Fig. 6, a representative example of

a loop test is shown for a loop with anchor points at residues

35 and 43. In this example, all loop suggestions closely

resemble the final model (pink). The loop with the highest

score (green) is very close to the reference

structure.

For a more extensive validation, we used

the structure 1o1z which had also been used

for the validation of Xpleo (van den Bedem

et al., 2005). We rebuilt every polypeptide in

the final structure of 4, 6, 8, 10, 12 and 14

residues long. Results for the various loop

lengths are given in Fig. 7, which displays a

box plot for the r.m.s.d. of all atoms after

real-space refinement. Each time around

100 loops were built. In Table 1 we show

how various settings of the maximum

number of nodes per extension and loop

length affect the average building time,

success rate and accuracy of the loops.

Based on these tests, we adjusted the default

number of maximum number of nodes per

extension to balance time, success and

accuracy (defaults are highlighted in

Table 1).

We also showed that the r.m.s.d. of the C�

atoms alone gives a good indication of the

quality of the loop. Furthermore, real-space
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Figure 6
Example of loops for 1lml between residue 35 and 43 in stereographic view. The pink loop is
the reference structure, the green loop is the loop with the highest score and grey loops are
alternative loops. (a) Before and (b) after real-space refinement.

Table 1
Nodes per extension and average time per number of residues.

The default choices for the maximum number of point per extension, pmax, for
each loop length are shown in bold. Time is the average time per loop for
about 100 loops in each case, including real-space refinement. The success rate
is calculated as the percentage of times that Loopy actually returned a
solution. R.m.s.d. C� is the root-mean-square deviation from the final structure
for all built loops after real-space refinement.

pmax

Length 2 3 4 5 6

4 Time (h:min:s) 0:0:10 0:0:12 0:0:14 0:0:15 0:0:16
Success (%) 98.1 99.1 99.1 99.1 99.1
R.m.s.d. C� (Å) 0.08 0.06 0.06 0.05 0.06

6 Time (h:min:s) 0:0:13 0:0:19 0:0:30 0:0:52 0:1:24
Success (%) 94.3 99.1 99.1 100.0 100.0
R.m.s.d. C� (Å) 0.12 0.09 0.08 0.08 0.07

8 Time (h:min:s) 0:0:17 0:0:46 0:2:49
Success (%) 93.4 100.0 100.0
R.m.s.d. C� (Å) 0.29 0.08 0.06

10 Time (h:min:s) 0:0:25 0:3:20
Success (%) 85.7 99.0
R.m.s.d. C� (Å) 0.25 0.08

12 Time(h:min:s) 0:0:50 0:6:01
Success(%) 76.9 97.1
R.m.s.d. C� (Å) 0.37 0.09

14 Time (h:min:s) 0:2:14 2–3 h
Success (%) 76.7 —
R.m.s.d. C� (Å) 0.37 —



refinement improves the loops considerably, demonstrating

that despite the inherent inaccuracy of its building algorithm,

Loopy places the loops accurately enough to be positioned

correctly by real-space refinement. Details of this are illu-

strated in Fig. 1 of the supplementary material1.

The validation gave us confidence to run the test as part of

an automatic building procedure.

4.2. Loop building after ARP/wARP main-chain tracing

To test how Loopy performs in the most difficult regions of

a structure, which are typically those that need to be built in

order to obtain a complete model, we devised the following

protocol. The main-chain tracing and side-chain tracing

modules of ARP/wARP were run on the best available map

using as free atoms the atomic coordinates from the final

structure, only once and without any iteration with refinement.

This is the best possible scenario for the ARP/wARP tracing

modules: the best map and the most accurate free-atom

coordinates are used. Under these conditions, the regions of

the structure that are not built by the ARP/wARP main

tracing modules would almost certainly never be built by

ARP/wARP and thus represent the most challenging areas of

the structure. The test set was composed of a broad range of

different structures for which we know the final model. The set

contained 38 structures in total and included structures with

multiple chains and/or NCS. The resolution of the data sets

ranged from 1.0 to 3.3 Å.

In the automatic mode Loopy determines the loop positions

from the PDB file of the model; the sequence of the structure

is provided in a PIR format file, like in a classic ARP/wARP

run. Loopy then tries to build all loops according to the user

input. Before starting to build each loop, the program checks

that the anchors or their symmetry mates lie within reasonable

distance. For our test, we used a maximum loop length of 14

residues. The value of p (see x3.1) was varied with the length of

the loop, starting between six for short loops and two for the

longest loops. The loop quality was determined as the r.m.s.d.

between the C� atoms in the loops and those in the reference

structure. Since we expect that the anchors are wrong when

the gap consists of only one or two residues, for these small

loops the gap was broadened on each side if possible. This

effectively meant that we rebuilt the initial anchors.

Table 2 shows that Loopy can build difficult regions of the

structure. Thus, it adds many additional correct C� atoms to

the structure built by the protocol described in x4.2 without

adding too many incorrect atoms. It should also be noted that

in an iterative ARP/wARP run the wrong loops would be most
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Table 2
The results of the testing protocol described in x4.2.

R, resolution; f, number of residues in the final model. We firstly show the
results after running the main-chain and side-chain building modules of ARP/
wARP alone (C, chains; r, correct residues) and then we indicate the same
numbers after running Loopy [C(L), r(L)]; t, time.

Protein R (Å) f C r C(L) r(L) t (s)

2abb 1.0 361 7 334 1 356 51
2jae 1.3 955 17 909 6 929 18
1i12 1.3 619 8 579 6 585 16
1wpn 1.3 374 16 312 8 342 84
1zua 1.3 317 11 260 1 307 30
2a50 1.3 457 21 386 8 425 131
2nw8 1.6 534 8 495 7 497 141
1fgo 1.6 817 22 731 3 791 53
1h5a 1.6 306 13 259 1 303 29
1ou8 1.6 231 5 215 4 217 14
1tm7 1.6 345 4 303 2 333 102
2b3k 1.6 304 5 287 2 294 94
2b9h 1.6 349 5 329 3 334 66
1j4a 1.9 1325 19 1171 12 1188 72
2fsa 1.9 507 6 481 3 492 37
2ij3 1.9 907 17 842 5 885 20
2aka 1.9 1069 17 931 7 966 74
1oim 2.2 887 12 852 3 868 40
2aa5 2.2 510 7 485 4 491 309
1zrq 2.2 836 17 753 12 767 88
1vg0 2.2 663 9 640 5 650 126
1e8h 2.6 1090 25 1002 10 1029 42
1o70 2.6 296 5 279 1 292 81
2arh 2.6 584 16 503 9 520 13
2bvm 2.6 541 8 504 2 520 50
1gmo 3.0 1369 73 820 67 828 242
2bxr 3.0 890 40 590 21 604 96
1b9x 3.0 577 16 444 8 460 28
1r5o 3.0 409 16 258 6 273 31
1yhn 3.0 248 7 186 4 193 7
1zy1 3.0 388 18 292 8 321 16
2a2z 3.0 885 31 742 21 754 235
2deo 3.0 399 12 310 10 313 63
1s78 3.3 1995 72 952 39 974 232
1j1e 3.3 720 14 164 14 164 99
2dcu 3.3 544 24 293 13 312 11
2ffl 3.3 2896 105 1839 76 1844 126

Figure 7
For validation purposes, portions of the original structure were rebuilt.
This plot shows the r.m.s.d. of all atoms in a loop versus its number of
residues. The median is displayed as a thick bar, the first and third quartile
are represented by the rectangle and the minimum and maximum are
shown by the caps of the dotted lines. Outliers are determined as 1.5 times
the interquartile range. They are displayed as circles.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: GX5125). Services for accessing this material are described at the
back of the journal.



likely removed or, in the context of flex-wARP, flagged as

wrong by ElAl (Cohen et al., 2004). The time needed per

structure varied from a couple of seconds to 4 min at the most.

To quantify the quality of the built loops, we studied the

r.m.s.d. of the C� atoms per loop (see Fig. 8) and observed a

decrease in the accuracy of the loops with resolution. For a

resolution <2.0 Å the median of the r.m.s.d. lies at 0.2 Å and it

increases to 0.8 Å for resolutions lower than 3 Å. We

furthermore observe that the value of the r.m.s.d. increases

with the length of the loop; since only a few loops with a length

of eight residues or more are available, the decrease in the

median r.m.s.d. is hardly significant. In supplementary Fig. 2,

we show that the percentage of C� atoms in each loop that lie

within 0.7 Å of the reference structure is also very high.

4.3. Loop building within the ARP/wARP flex-wARP module

As a final test, we implemented Loopy within the ARP/

wARP flex-wARP module (Cohen et al., 2004) that was

introduced in ARP/wARP release 7.0 (July 2007). In this

flexible module of ARP/wARP, we could not only implement

Loopy after the full ARP/wARP run but could also run Loopy

internally after each model-building cycle. In this test, we want

to establish whether the overall completeness of the models

delivered by ARP/wARP increases when Loopy is run in

every ARP/wARP model-building cycle. More precisely, each

time the ARP/wARP main-chain tracing module is run and the

resulting main-chain fragments are docked into sequence, all

possible loops shorter than ten residues are built. After the

final main-chain tracing cycle all possible loops shorter than 14

residues are built. For a set of 30 structures from the ARP/

wARP test-cases deposition site (http://xtal.nki.nl/Depot), the

best possible results were compared with those of a flex-wARP

run without Loopy. The results are displayed in Fig. 9. Usage

of Loopy generally increases the completeness of the models,

sometimes significantly, especially for higher resolution. In a

small number of the cases the number of residues found using

Loopy was slightly reduced.

5. Discussion

We have shown that using the geometry of pentapeptides as a

driving force combined with a hierarchical pruning algorithm

is a powerful and accurate method for loop building. The

validation of Loopy showed that for high-resolution data

Loopy can rebuild parts of a structure up to 14 residues long

with a median accuracy below 0.5 Å within a couple of minutes

on a 2.66 GHz Pentium 4.

During the tests on ‘real’ loops, we found that Loopy can

build difficult regions and add to model completeness, espe-
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Figure 8
The C� r.m.s.d. of the loops built by Loopy on models computed using the
protocol described in x4.2 are displayed against the resolution (a) and the
loop length (b). The C� r.m.s.d. clearly increases with the resolution. For
the loop length, the number of loops per length (given above the median
line in the box plot) is insufficient to derive any statistical conclusions for
the C� r.m.s.d. as a function of the loop length. (See the caption of Fig. 7
for an explanation of the box plot).

Figure 9
Extra correct residues built with Loopy integrated within flex-wARP
compared with models created by flex-wARP without Loopy.



cially at resolutions higher than 2.6 Å. The average r.m.s.d. of

the C� atoms in the loops lies around 0.5 Å, although the

r.m.s.d. increases with the loop length. For lower resolution

data, Loopy still improves the model completeness, but the

number of C� atoms further than 0.7 Å from their equivalents

in the reference structure increases. Note, however, that at

lower resolution the accuracy of position of the atoms in the

reference structure also decreases.

In the future, we would like to improve the performance of

Loopy, in particular for lower resolution and longer loops. We

have found that in these cases a failure to find the correct loop

often originates from the pruning algorithm. When we verified

our scoring function (see Fig. 10), we found that its (negative)

correlation with the r.m.s.d. is not very strong. As a result, we

are at present not able to use the scoring as a measure of

accuracy or as an indicator for incorrect loops. We aim to

rectify this in the future. Furthermore, we have found that for

lower resolutions and for longer loops our method for finding

main-chain atoms often fails to find any possible peptide

plane. This may be caused by the selection criteria used in

previous steps of the pruning algorithm or by the plane-search

algorithm. We plan to study this problem and to try to improve

the robustness of this part of the algorithm. Finally, we would

like to remedy the exponential time and memory usage of

Loopy. One idea is to check the distance to the opposite

anchor point during the building of the tree and remove the

suggested C� atoms that are unlikely based on that distance.

This should reduce the size of the loop tree generated and

thereby reduce both the time and the memory usage. A first

test with this idea shows that it will indeed increase the speed

and as a side effect improve the accuracy of the loops. As a

final remark we would like to note that Loopy is currently

unable to build cis-peptides. The method we use to search the

plane of the main-chain atoms of the peptide implies trans-

peptides. We expect as well that the angles and torsions of a

pentapeptide that includes a cis-peptide will deviate from the

data that we have acquired.

Overall, we conclude that Loopy is useful software that

increases model completeness in automated model building. It

is also a valuable tool for suggesting loop conformations

during manual model building. Finally, it can facilitate the

building of ensembles of loops and testing the idea of refining

partial model ensembles along the lines suggested by Furnham

et al. (2006).
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Figure 10
The scoring function is plotted against the r.m.s.d. of the C� atoms per
loop built by Loopy after the protocol described in x4.2. The figure
displays a negative correlation. The symbols in the plot represent the
percentage of C� atoms in a loop that are within 0.7 Å of the reference.
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