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D-38304 Wolfenbüttel, Germany and 2Department of Bioinformatics, UKG, University of Göttingen,
Goldschmidtstrasse 1, D-37077 Göttingen, Germany

Received August 12, 2005; Revised October 7, 2005; Accepted October 18, 2005

ABSTRACT

TiProD is a database of human promoter sequences
for which some functional features are known. It
allows a user to query individual promoters and the
expression pattern they mediate, gene expression
signatures of individual tissues, and to retrieve sets
of promoters according to their tissue-specific activ-
ity or according to individual Gene Ontology terms
the corresponding genes are assigned to. We have
defined a measure for tissue-specificity that allows
the user to discriminate between ubiquitously and
specificallyexpressedgenes.Thedatabase isaccess-
ible at http://tiprod.cbi.pku.edu.cn:8080/index.html.

INTRODUCTION

Promoters are genomic DNA sequences that enable and con-
trol transcription of the gene(s) they are associated with. In
particular in multicellular organisms, they are involved in a
complex coordination of transcription under all conceivable
spatio-temporal-conditional circumstances. This is achieved
by their internal structure, consisting of arrays of individual
protein (transcription factor) binding sites, that form a hier-
archical structure of modules, i.e. functionally important and
transferable TFBS combinations. In the last few years, several
authors have published approaches to systematically identify
modules in promoters of co-regulated, or at least co-expressed,
genes (1–5). These systematic approaches have used (i) the
manually annotated promoters provided by the Eukaryotic
Promoter Database (EPD) (6), which is very reliable but has
relatively low coverage; (ii) regions around gene starts from
Ensembl (7), which ensures high coverage but provides mixed
quality; or obtaining regions around the experimentally deter-
mined transcription start sites (TSSs) from DBTSS (8,9),
which at present provides the best combination of coverage
and quality. However, it is still cumbersome to retrieve the
promoter sequences of genes that share a certain activity. As a
step toward facilitating these kind of investigations, we have

constructed a promoter database that allows easy retrieval of
promoter sequences which share a certain tissue-specificity
or any Gene Ontology (GO)-assignment, e.g. to a given bio-
logical process.

DATABASE CONTENTS

Promoter data

As anchor points for promoters, we assigned the TSSs of as
many human genes as possible. Based on information avail-
able in EPD (6), DBTSS (8,9) and Ensembl (7), we assigned
‘Virtual TSSs’ by summarizing information from these three
resources. This was necessary because collected TSSs for a
given gene may be located on a sequence fragment spanning
several thousand nucleotides, in some cases even more than
100 kb. Sometimes, these TSSs occur in clusters of only a few
dozen nucleotides length, but often they are scattered over a
large sequence range.

Therefore, an algorithm was designed to apply a set of
rules to the data collection in order to find clusters of TSSs.
A window of 1000 nt length was slid along the entire sequence
fragment. A ‘clustering score’ was calculated by summing
up weighted contributions from each TSS in each window.
For each TSS derived from a DBTSS one-pass mRNA or
an Ensembl mRNA model we give one evidence point. We
assume EPD TSSs to have a higher reliability owing to the fact
that they are annotated by hand and give 50 evidence points
each. The weights of evidence points were additionally mul-
tiplied by a distance score: the central position is multiplied
by 1, the outer positions are multiplied by 0, and all positions
in between by a value taken from a cosine function, according
to the distance from the center of the window. The peaks of
the resulting clustering score were regarded as potential
‘virtual TSSs’. However, for some of the genes only a handful
of evidence points are available, resulting in multiple ‘virtual
TSSs’, each consisting of only one or two evidence points.
Therefore, for all those genes where less than 20 evidence
points are available only the most 50 ‘virtual TSS’ was accep-
ted. For all other genes, peaks were accepted as ‘virtual TSSs’
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for which the respective sequence window contains at least
5% of all evidence points. This method of defining the
virtual TSSs ensured that the equal weighting of DBTSS
and Ensembl TSSs does not unduly neglect their different
experimental evidence base: on average, virtual TSSs derived
from Ensembl alone map onto a position which is even 1–2 nt
more upstream than those derived from DBTSS.

The collection of ‘virtual TSSs’ determined in this way
forms the basis of the commercial database TRANSPRO�
(release 2.1; http://www.biobase.de/pages/products/transpro.
html), which is part of the TRANSFAC� family of databases
[(10); see separate publication in this issue] and from which
the TiProD sequences were derived. For the TiProD database,
we have extracted �500 to +60 sequences around these
‘virtual TSSs’ from the corresponding sequences of the
human genome. The exact location of the sequence within
the human genome can be retrieved from the corresponding
TRANSPRO entry.

Calculation of ‘virtual TSSs’ and the subsequent data
extraction are fully automated processes; whenever conflicts
or inconsistencies occur the respective gene is excluded from
the database. Presently, TiProD provides data about 15 384
human promoters (Table 1).

Tissue-specificity of the promoters

The sequencing and analysis of expressed sequence tags
(ESTs) is one of the most important techniques used to reveal
gene expression profiles. Currently there are over 25 million
EST sequences in NCBI’s dbEST database (http://www.ncbi.
nlm.nih.gov/dbEST/). Because the same gene may be repres-
ented by many different EST sequences, the UniGene data-
base (http://www.ncbi.nlm.nih.gov/UniGene) was developed
to subsume nucleotide sequences into a non-redundant set of
gene-oriented clusters (11,12). Furthermore, the EST servers
that do exist, including Digital Differential Display (DDD,
http://www.ncbi.nlm.nih.gov/UniGene/info_ddd.html), cDNA
Digital Gene Expression Displayer (DGED, http://cgap.nci.
nih.gov/Tissues/GXS) and xProfiler (http://cgap.nci.nih.gov/
Tissues/xProfiler), all aim at finding differentially expressed
genes in different pools of tissues or samples.

CGAP represents expression strengths in terms of numbers
of ESTs for each gene in each pool. These numbers are used
in TiProD as additional filtering criterion. We have parsed the
UniGene Library Data and Expression Data files from CGAP
(http://cgap.nci.nih.gov/Info/CGAPDownload/) (13,14) and
loaded the data into a relational database (MySQL). Since
TRANSPRO promoter sequences are assigned to UniGene
entries as well, these common links were used to connect the

promoter sequences of a gene with the corresponding expres-
sion data. The overall schema of the database and the data
flow are shown in Figure 1. Altogether, TiProD holds infor-
mation about 52 tissues and their gene signatures (Table 1).
All these tissues (organs and cells) have been mapped onto the
proper items of the CYTOMER database (15,16).

To enable the selection of tissue-specific promoters from the
database we have computed an index of tissue-specificity for
each gene in each tissue library.

Let nij be a number of ESTs of gene i (I ¼ 1, G) in the tissue
library j ( j ¼ 1, L). First, we normalize frequencies of genes in
each library and calculated an abundancy score aij:

aij ¼
nijP

i¼1‚G nij
: 1

Then we compute the average abundancy score �aai for each
gene i among all tissues j:

�aai ¼
P

j¼1‚L aij

L
: 2

The tissue-specificity index tij then is the ratio of the abund-
ancy to the average abundancy score:

tij ¼
aij
�aai

: 3

The value will be close to 1 for a gene that is expressed in
a tissue at an average level compared with other tissues, but
significantly higher than 1 if a gene is specifically expressed in
that tissue. This specificity measure worked well and is equi-
valent to the ‘relative expression’ defined by Schug et al. (17)
multiplied by the number of tissue libraries considered.
This type of normalization helps to cope with the problems
of low- versus high-expressing genes inherent to the EST
methodology.

Thus, in addition to the frequency values, the tissue-
specificity index can be used as another selection criteria to
retrieve promoter sets.

Table 1. Statistics of the TiProD data content

General Total number of entries

Genes 12 785
Promoter sequencesa 15 384
cDNA libraries 8547
EST expression frequency data 1 965 392
Links to UniGene 12 785
Links to GO 4403
Links to CYTOMER 52

aAll promoter sequences have a link to the TRANSPRO database.

Figure 1. Data flow and schema of the TiProD database. Indicated are the main
tables of the database (open rectangles), the used source databases (shaded ovals
and rectangles), as well as the links between them (straight lines) and the data
flow to TiProD (light gray arrows).
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GO assignments

The TiProD database also makes use of the linking of UniGene
clusters to Gene Ontology terms of all three subontologies:
biological process, cellular compartment and molecular
function (18). The corresponding data were obtained from
CGAP (http://cgap.nci.nih.gov/Info/CGAPDownload/).

As a result, TiProD allows the user to input an Entrez Gene
ID or gene symbol and retrieve extensive functional infor-
mation about the gene. Alternatively, it also allows a user
to input an ID from GO (GO term) and to retrieve all UniGene
clusters involved in the particular GO function. At present,
TiProD strictly adheres to the hierarchical gene assignments
done by the GO consortium and does not summarize sub-
classes with each other and with the genes directly linked
to the corresponding top node. TiProD release 1.0 comprises
4403 GO term assignments (Table 1).

FUNCTIONALITY OF THE DATABASE

The major aim of the TiProD database is to retrieve
promoter sequences according to their tissue-specificity or
other functional groupings. Each entry in the TiProD database
corresponds to a particular promoter, or a set of promoters, of
a human gene and contains the gene name, a description, syn-
onyms, Entrez Gene ID, expression information (including
cDNA library ID, IDs of the tissue database CYTOMER, tissue
name and expression frequency from CGAP), GO terms and the
sequence of the corresponding upstream region. The TiProD
interface (Figure 2) allows the retrieval of expression patterns
and promoter sequences for individual human genes. It also
enables the retrieval of the gene expression signature for a
certain tissue (organ and cell type), including the selection either
of all active genes, or of those that are specifically expressed
in this tissue. Similarly, all promoters of genes that are assigned
to a certain GO term (or GO ID) can be retrieved.

DISCUSSION AND FUTURE DEVELOPMENTS

Continued efforts will be made to update the promoter
sequence and expression data. We are aware that working
with EST data has some pitfalls since, e.g. the experimental
conditions may significantly affect the detection of low-
expressing genes and the ratios of expression levels among
different genes in general. Therefore, we plan to include addi-
tional high-throughput as well as conventional expression data
and to further refine the statistics applied. We also plan to add
data about additional organisms such as mouse and rat. Also,
in the next release the system will be able to deal with hier-
archical dependences, for instance between organs and their
substructures, or between the different levels of GO term
assignments, in a more flexible manner.
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