Pharmaceutical Chemistry

JYP

Design and Microwave-assisted Synthesis of 1,3,4-Oxadiazole Derivatives for Analgesic and Anti-inflammatory Activity

Biju CR^{1,4}, Ilango K², Manju Prathap³, Rekha K¹

¹Department of Pharmaceutical Chemistry, Devaki Amma Memorial College of Pharmacy, Malappuram, Kerala, ²SRM College of Pharmacy, SRM University, Kancheepuram, Chennai, Tamil Nadu, ³Department of Pharmaceutical Chemistry, Amrutha Institute of Medical Sciences, Cochin, Kerala, ⁴Karpagam University, Echanari, Coimbatore, Tamil Nadu, India

Address for correspondence: Mr. Biju CR; E-mail: bijucrmpharm@gmail.com

ABSTRACT

1,3,4-Oxadizoles form a biologically important group of compounds having activities like analgesic, antiinflammatory, bactericidal, antifungal, anticonvulsant, psychotropic, plant growth regulating and mono amino oxidase inhibition. This research has focused on the incorporation of the oxadiazole moiety into isoniazid because of their versatile biological action, to get 2-aryl-5-(4-pyridyl)-1,3,4-oxadiazole to explore the possibilities of some altered biological action. 1,3,4-Oxadiazole derivatives were synthesized by microwave-assisted synthesis and screened for their analgesic, anti-inflammatory activities. The synthesized compounds were characterized by Melting point, Thin layer chromatographylnfra red, Nuclear magnetic resonance spectroscopy, etc. Almost all the synthesized compounds possessed good activity as compared to the standard.

Key words: 1,3,4-Oxadiazole, analgesic, anti-inflammatory, isoniazid

INTRODUCTION

Microwave-enhanced synthesis^[1,2] represents a fundamental step forward in the capabilities of synthetic chemistry. It allows organic chemists to work faster, generating higher yields with increased product purity, and to scale experiments up reliably from milligrams to much larger quantities without the need to alter reaction

Access this article online		
Quick Response Code:		
	Website: www.jyoungpharm.in	
	DOI: 10.4103/0975-1483.93576	

parameters. It offers much more precise control over conditions of temperature and pressure than any previous technology. Ultimately, by eliminating much of the time and effort from the process of performing chemical reactions, it allows chemists to focus on what is most important—the development of new compounds, or refined methods for generating known products. In a solvent-less reaction all the microwave energy is directly absorbed by the reactant molecules.^[3] Under these conditions, the non-thermal microwave effect will be operative at high efficiency.

This work aims at the development of a newer isoniazid-based oxadiazole ring system. 1,3,4-Oxadiazole derivatives show a broad spectrum of biological activities, which include analgesic and anti-inflammatory, antimicrobial, anticonvulsant, antifungal, anticancer, antimycobacterial,^[3,4] etc. The research envisages a meaningful exploration of this lead molecule for novel analgesic, anti-inflammatory activities with minimum toxicity and high potency.^[5] The lead compound was structurally modified by incorporating various substitutions at the second and fifth position of the heterocyclic ring system [Table 1]. From a review of the literature it is clear that 2,5 disubstituted 1,3,4-oxadiazole derivatives of oxadiazole possess remarkable analgesic, anti-inflammatory activity.^[5,6]

MATERIALS AND METHODS

Microwave-assisted synthetic procedure

Step 1

A mixture of (0.01 mole, 1.37 g) isoniazid, (0.01 mole) aromatic aldehyde and DMF (5 drops) was subjected to microwave irradiation at 300 w internally at 30-sec intervals for 3 min. The reaction mixture was cooled and treated with ice cold water. The resulting solid product was

Table 1: SMILES and cLog P values of proposed analogues (generated by molinspiration software)				
Compound	R ₁	R ₂	SMILES notation	cLog P
2a	N	ОСН	COc3ccc(c2nnc(c1ccncc1)o2)cc3	2.494
2b	N	OCH 3	COc1ccccc1c3nnc(c2ccncc2)o3	2.446
2c	N.	ОН	Oc3ccc(c2nnc(c1ccncc1)o2)cc3	1.958
2d	N.	ОН	Oc3ccc(c2nnc(c1ccncc1)o2)c(O)c3	1.667
2e	N N	NO ₂	O = N(=O)c3cccc(c2nnc(c1ccncc1)o2)c3	2.372
2f	N.	NO ₂	O = N(= O)c1ccccc1c3nnc(c2ccncc2)o3	2.348
2g	N N	CI	Clc3ccc(c2nnc(c1ccncc1)o2)cc3	3.115
2h	N.	. CI	Clc3ccc(c2nnc(c1ccncc1)o2)c(Cl)c3	3.721
2i	N N	осн3	COc3cc(c2nnc(c1ccncc1)o2)cc(OC)c3O	1.792

filtered, washed with water and recrystallized from ethanol [Table 2].^[7-11]

Step 2

To a solution of compound 1a (0.01 mole) in ethanol (15 ml), chloramine-T (0.01 mole) was added. The reaction mixture was exposed to microwave irradiation at 300W internally at 30-sec intervals for 4 min. The reaction mixture was cooled and digested with cold water. The solid thus obtained was filtered, washed with water and recrystallized from methanol to give the product [Figure 1].^[9,11-13]

RESULTS AND DISCUSSION

The purity of the synthesized molecules was ascertained routinely by TLC, and melting points were noted with an open capillary tube method and are uncorrected.^[12-16]

Infra-red spectral analysis

Infra-red (IR) spectra were recorded using KBr pellets in the range of $4000-500 \text{ cm}^{-1}$ on Jasco FTIR model 4100 type A to elucidate the structure of the compounds [Table 3].

¹H NMR spectral analysis

Proton NMR (300 MHz) spectra were recorded in CDCl₃. Chemical shifts were recorded in parts per million downfield with reference to internal standard Tetra Methyl Silane (TMS) on BurkerAvance DPX 300. The total number of proton obtained from NMR spectra was in accordance with that of respective analogues.

PHARMACOLOGICAL SCREENING

Acute toxicity study

A prototype molecule was randomly selected for the study of the safety dose range of the analogues.^[11,14,15]

Table 2: Charact	eristic ¹ H NMR spectrum of the
synthesized com	pounds

Compound	¹ H NMR (CDCl ₃) δ ppm
2a	¹ HNMR (CDCl ₃) δ ppm: 2.54(1H, O-H), 6.13-7.78(Ar-
	H, 8H)
2b	¹ HNMR (CDCl ₃) δ ppm: 2.52(1H, O-H), 4.23-7.9(Ar-H,
	8H)
2c	¹ HNMR (CDCl ₃) δ ppm: 2.40(1H, O-H), 7.23-7.78(Ar-
	H, 8H)
2d	¹ HNMR (CDCl ₃) δ ppm: 2.40(2H, O-H), 6.22-7.78(Ar-
	H, 8H)
2e	¹ HNMR (CDCl ₃) δ ppm: 2.85(2H, O-H), 7.23-6.98(Ar-
	H, 8H)
2f	¹ HNMR (CDCl ₃) δ ppm: 2.40(1H, O-H), 8.23-7.88(Ar-
	H, 8H)

Table 3: Characteristic IR peaks of the synthesized compounds

compounds	
Compound	IR (KBr vcm ⁻¹)
2a	3240.79(Methyl C-H stretching),1597.739(C-H bend, alkyl),1326.79(C-N(stretching(ring)),1151.29 (Phenolic C-Ostretch),1085.73(Symmetric C-O-C ring stretch),670.14(aromatic bend)
2b	3340.79(N-H stretching),1597.739(C-H bend, alkyl),1326.79(C-N stretching(ring)),1151.29 (Phenolic C-Ostretch),1085.73(Symmetric C-O-C ring stretch),670.14(aromatic bend)
2c	3322.39(OH(Phenolic)stretching),1573.63(C=C (aromatic)stretching),1495.53(OHbending),1325.82 (CN(stretching(ring)),1172.51(asymmetric C-O-C ring stretch)670.14(C-H aromatic bend)
2d	3322.39(OH(Phenolic)stretching),1573.63(C=C (aromatic)stretching),1495.53(OHbending),1325.82 (CN(stretching(ring)),1172.51(asymmetric C-O-C ring stretch)670.14(C-H aromatic bend)
2e	3434.6(AromaticCHstretch),1529.27 (asymmetric(ArNO ₂)(N=O)stretch),1411.64(C Nstretching(ring)),1299.79(symmetric(ArNO ₂) (N=O)stretch),1155.15(asymmetric C-O-C ring stretch)814.77(C-N stretch(ArNO ₂))
2f	3434.60(AromaticCHstretch),1303.64(symmetric (ArNO ₂)(N=O)stretch),1159.01(asymmetric C-O-C ring stretch)
2g	3019,(C-H str), 1590.02,(C=N imine stretching)1260(C-O str),820(C-Haromatic bending),614.21(C-Cl stretching)
2h	3019,(C-H str),1590.02,(C=N imine stretching),1260(C-O str),820(C-Haromatic bending),614.21(C-Cl stretching)
2i	3359.39 (O-H stretching), 3261.04 (Methyl C-H stretch), 1495.53 (O-H bending), 1389.46 (Alkyl C-H bend), 1159.01 (Phenolic C-O stretch), 1097.3 (Symmetric C-O-C (ring) stretch).669.17(C-H bend)

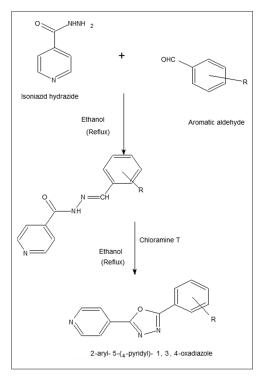


Figure 1: Synthetic scheme of 1,3,4 oxadiazole derivative

Biju, et al.: Microwave-assisted synthesis of 1,3,4-oxadiazole for anaigesic and anti-inflammatory activity

Compound	Molar	Molar volume cm ³	Parachor cm ³	Polarizability cm ³	cLog P
	refractivity cm ³				
2a	68.68 ± 0.3	206.4 ± 3.0	547.0 ± 4.0	$27.23 \pm 0.5 \ 10^{-24}$	2.494
2b	68.68 ± 0.3	206.4 ± 3.0	547.0 ± 4.0	$27.23 \pm 0.5 10^{-24}$	2.446
2c	63.89 ± 0.3	180.8 ± 3.0	505.4 ± 4.0	25.32 ± 0.510^{-24}	1.958
2d	65.77 ± 0.3	179.3 ± 3.0	520.4 ± 4.0	26.07 ± 0.510^{-24}	1.667
2e	68.55 ± 0.3	194.3 ± 3.0	545.8 ± 4.0	$27.17 \pm 0.5 10^{-24}$	2.372
2f	68.55 ± 0.3	194.3 ± 3.0	545.8 ± 4.0	$27.17 \pm 0.5 \ 10^{-24}$	2.348
2g	66.90 ± 0.3	194.4 ± 3.0	526.2 ± 4.0	$26.52 \pm 0.5 \ 10^{-24}$	3.115
2h	71.80 ± 0.3	206.3 ± 3.0	562.1 ± 4.0	$28.46 \pm 0.5 \ 10^{-24}$	3.721
2i	77.24 ± 0.3	228.9 ± 3.0	$= 618.7 \pm 4.0$	$30.62 \pm 0.5 \ 10^{-24}$	1.792

Compound	Substituent	Molecular formula	Molecular weight	mp°C	R _f
2a	OCH3	$C_{14}H_{11}N_3O_2$	253.261	163	0.57
2b	· · · · · · · · · · · · · · · · · · ·	$C_{14}H_{11}N_3O_2$	253.261	165	0.74
2c	ОН	$C_{13}H_9N_3O_2$	239.234	159	0.61
2d	ОН	$C_{13}H_9N_3O_3$	255.233	160	0.53
2e		$C_{13}H_8N_4O_3$	268.232	160	0.57
2f	NO 2	$C_{13}H_8N_4O_3$	268.232	168	0.55
2g	CI	C ₁₃ H ₈ Cl N ₃ O	257.68	163	0.63
2h		C ₁₃ H ₇ Cl ₂ N ₃ O	292.125	163	0.67
2i		$C_{15}H_{13}N_3O_4$	299.286	164	0.52

Table 5: Physicochemical data of newly synthesized

Table 6: Analgesic activity (acetic acid-induced Writhing method)

Name of group	Treatment	No. of Writhing in 20 min (mean+SEM)	Percentage reduction of Writhing
Vehicle control (1%CMC)	20 mg/kg	39.2 ± 0.04	-
Aspirin	40 mg/kg	16.4 ± 0.08	58.16
2a	500 mg/kg	13.6 ± 0.74	65.30
2c	500 mg/kg	12.8 ± 0.48	67.34
2e	500 mg/kg	19.9 ± 0.74	49.23
2g	500 mg/kg	19.4 ± 0.87	50.51
21	500 mg/kg	16.2 ± 0.73	58.86

Table 7: Anti-inflammatory activity (Carageenaninduced rat paw edema method)

Treatment	Dose (per Kg)	in paw	inhibition
		thickness = SEM	of edema
Vehicle control (1%CMC)	20 mg/kg	2.23 ± 0.09	-
Indomethacin	20 mg/kg	0.72 ± 0.08	67.71
2a	500 mg/kg	0.70 ± 0.03	68.60
2c	500 mg/kg	0.69 ± 0.04	69.05
2e	500 mg/kg	0.96 ± 0.03	56.95
2g	500 mg/kg	0.89 ± 0.02	60.08
21	500 mg/kg	0.86 ± 0.04	61.43

behavioral change in the animals used.^[17-24]

SUMMARY AND CONCLUSION

This research work was focused on the rational approach in the design and development of 1,3,4 oxadiazole derivatives as novel analgesic, anti-inflammatory drugs.

The candidates which obeyed the Lipinski rule of five were taken for wet lab synthesis. Nine different analogues were synthesized by microwave methods and the purity of the compounds thus synthesized was ascertained by consistency in melting point and Rf value and characterized by UV, IR and ¹H NMR spectral studies [Tables 4 and 5].

In this study, it was found that up to 1600 mg/kg dose, the compound is safe. i.e. there was no mortality or gross

Among the newly synthesized 1,3,4 oxadiazole analogues

Biju, et al.: Microwave-assisted synthesis of 1,3,4-oxadiazole for analgesic and anti-inflammatory activity

five were screened for analgesic and anti-inflammatory activity and the compounds 2a, 2c and 2i showed good analgesic and anti-inflammatory activity. Acute toxicity studies showed that the analogues were safe with low toxicity. So these derivatives may be future leads for analgesic and anti-inflammatory drug discovery [Tables 6 and 7].

REFERENCES

- Khan MS, Chawla G, Mueed MA. Synthesis characterization and biological evaluation of substituted oxadiazole, and triazole derivatives. Indian J Chem 2004;43B:1302-5.
- Zheng L, Wang X, China PR, Wang X. Synthesis and antibacterial activities of 1,3,4-oxadiazole derivatives. Indian J Chem 2003;42B:941.
- 3. Govt. of India, Ministry of Health and Family Wefare, Indian Pharmacopoeia. Delhi: Controller of Publications; 1996. p. 408.
- Khan MS, Anther M. Microwave assisted synthesis of 2,5- disubstituted 1,3,4- oxadiazole derivatives. Indian J Chem 2003;42B:900-4.
- Hui XP, CnuCH, Zhang ZY. Synthesis and anti-inflammatory activities of 1,3,4-oxadiazole derivatives containing 5-methylisoxazole moiety. Indian J Chem 2002;41B:2176-9.
- David AW, Thomas LL. Foye's Principles of medicinal chemistry. 5thed. New York: Lippincott Williams and Wilkins; 2002. p. 12-7.
- King FB. Medicinal chemistry Principles and practice. 2nd ed. UK: Royal Society of Chemistry; 2002.
- Thomas G. Fundamentals of medicinal chemistry. New York: John Wiley and Sons; 2003. p. 57-61.
- Manfred EW. Burger's medicinal chemistry and drug discovery. 5thed. New York: John Wiley and Sons; Synthesis and anti-inflammatory activity of 1,3,4-oxadiazole derivatives 2003. p. 10-6.
- Patrick GL. An introduction to medicinal chemistry. 2nd ed. New York: Oxford University Press; 2001. 142-7.
- Rand HP, Dale MM, Ritter MM, Moore PK. Pharmacology. 5th ed. NewYork: Churchill Livingstone; 2003. p. 51-63.

- David AW, Thomas LL.Foye's Principles of medicinal chemistry. 5th ed. New York: Lippincott Williams and Wilkins; 2002. p. 751-94.
- Jaime ND, William AR. Wilson and Gisvold's text book of organic medicinal and pharmaceutical chemistry. 10th ed. New York: Lippincott-Raven; 1998. p. 687-795.
- Goodman and Gilman's, The Pharmacological basis of therapeutics. 11th ed.1998. Mc Graw Hill company Publication, New york. p. 617-47.
- Jaime ND, William AR. Wilson and Gisvold's text book of organic medicinal and pharmaceutical chemistry. 11th ed. New York: Lippincott-Raven; 2004. p. 822-9.
- 16. Chemical and Engineering News, American Chemical Soc. Vol. 80. 2002. p. 16.
- Patrick GL. An introduction to medicinal chemistry. 2nd ed. New York: Oxford University Press; 2001. p. 258-88.
- Kappe CO, Dallinger D. The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 2006;5:51-63.
- Abd el-Samii ZK.Synthesis and anti-inflammatory activity of some novel 1,3,4-oxadiazole derivatives. J Chem Technol Biotechnol 1992;53:143-6.
- Mullican MD, Wilson MW, Connor DT, Kostlan CR, Schrier DJ, Dyer RD. Design of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3,4thiadiazoles, -1,3,4-oxadiazoles, and -1,2,4-triazoles as orally-active, nonulcerogenicantiinflammatory agents. J Med Chem 1993;36:1090-9.
- Boschelli DH, Connor DT, Bornemeier DA, Dyer RD, Kennedy JA, Kuipers PJ, et al. 1,3,4-Oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazole analogs of the fenamates: *In vitro* inhibition of cyclooxygenase and 5-lipoxygenase activities. J Med Chem 1993;36:1802-10.
- Omar FA. Synthesis of some novel 1,3,4-oxadiazole derivatives for anti diabetic activity. EurJ Med Chem 1996;31:819-25.
- Palaska E, Sahin G, Kelicen P, Durlu NT, Altinok G. Synthesis and antiinflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco 2002;57:101-7.
- Jakubkiene V, Burbuliene MM, Mekuskiene G, Udrenaite E, Gaidelis P, Vainilavicius P. Synthesis and anti-inflammatory activity of 5-(6-methyl-2substituted 4-pyrimidinyloxymethyl)-1,3,4-oxadiazole-2-thiones and their 3-morpholinomethyl derivatives. Farmaco 2003;58:323-8.

How to cite this article: Biju CR, Ilango K, Prathap M, Rekha K. Design and microwave-assisted synthesis of 1,3,4-oxadiazole derivatives for analgesic and anti-inflammatory activity. J Young Pharmacists 2012;4:33-7.

Source of Support: Nil, Conflict of Interest: None declared.