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Abstract

For women with access to healthcare and early detection, breast cancer deaths are caused

primarily by metastasis rather than growth of the primary tumor. Metastasis has been diffi-

cult to study because it happens deep in the body, occurs over years, and involves a small

fraction of cells from the primary tumor. Furthermore, within-tumor heterogeneity relevant to

metastasis can also lead to therapy failures and is obscured by studies of bulk tissue. Here

we exploit heterogeneity to identify molecular mechanisms of metastasis. We use “orga-

noids”, groups of hundreds of tumor cells taken from a patient and grown in the lab, to

probe tumor heterogeneity, with potentially thousands of organoids generated from a single

tumor. We show that organoids have the character of biological replicates: within-tumor and

between-tumor variation are of similar magnitude. We develop new methods based on pop-

ulation genetics and variance components models to build between-tumor and within-tumor

statistical tests, using organoids analogously to large sibships and vastly amplifying the test

power. We show great efficiency for tests based on the organoids with the most extreme

phenotypes and potential cost savings from pooled tests of the extreme tails, with organoids

generated from hundreds of tumors having power predicted to be similar to bulk tests of hun-

dreds of thousands of tumors. We apply these methods to an association test for molecular

correlates of invasion, using a novel quantitative invasion phenotype calculated as the spec-

tral power of the organoid boundary. These new approaches combine to show a strong

association between invasion and protein expression of Keratin 14, a known biomarker for

poor prognosis, with p = 2 × 10−45 for within-tumor tests of individual organoids and p < 10−6

for pooled tests of extreme tails. Future studies using these methods could lead to discover-

ies of new classes of cancer targets and development of corresponding therapeutics.

All data and methods are available under an open source license at https://github.com/

baderzone/invasion_2019.
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Author summary

For women with access to healthcare and early detection, breast cancer deaths are caused

primarily by metastasis rather than growth of the primary tumor. Metastasis has been dif-

ficult to study because it happens deep in the body, occurs over years, and involves a small

fraction of cells from the primary tumor. Furthermore, individual cells within a tumor

can behave very differently, leading to failures of therapies. Here we exploit heterogeneity

to develop new methods to identify molecular mechanisms of metastasis. We use “orga-

noids”, groups of hundreds tumor cells taken from a patient and grown in the lab. Thou-

sands of organoids can be generated from a single tumor sample to probe different

regions and amplify the amount of information provided. Organoids provide information

about metastasis because they vary in their ability to invade the growth medium. We

introduce a new phenotype for invasion obtained by converting the boundary of an orga-

noid into a frequency spectrum, then summing the power across all frequencies. We ana-

lyze this metastasis-related phenotype by adapting methods from population genetics that

compare the most extreme siblings in a family. We analogously compare the most invasive

vs. least invasive organoids from each tumor. Power calculations suggest that studies of

50–100 individuals, with 100-1000 organoids generated from each, could reveal DNA

mutations and aberrant gene expression associated with invasion. We validate this

approach by demonstrating strong statistical significance between invasion and protein

expression of Keratin 14, a known biomarker for poor prognosis. Future studies using

these methods could lead to discoveries of new classes of cancer targets and development

of corresponding therapeutics.

Introduction

Metastasis, rather than growth of the primary tumor, is the major cause of breast cancer mor-

tality in developed nations [1]. Estimates for the United States for 2019 are 271,270 new inva-

sive breast cancer cases and 42,260 deaths [2]. For women with access to healthcare, five-year

survival rates are approximately 95% for localized cancer, 85% for regional cancer, and 35%

for distant-stage disease [1, 3].

Despite its importance in driving mortality, metastasis remains difficult to target clinically.

Most therapies aim to suppress proliferation or eliminate proliferating cells rather than slow or

halt specific stages of the metastatic process, such as invasion, dissemination, and seeding of

secondary micro-metastases. These processes remain challenging to study because they occur

deep in the body, can take years or decades to develop, and may arise in part from genetic and

genomic heterogeneity of tumor cells [4]. Recent studies, for example, suggest that different

tumor cell states are responsible for proliferation versus dissemination [5–8].

Organotypic cell culture has provided powerful new systems for studying metastasis [9].

Organoids are groups of hundreds of cells that self-organize in three-dimensional medium

into organ-like structures and have phenotypes that are proxies for the corresponding in vivo
system. Organoids derived from mammary tissues and tumors have been used to represent

multiple stages of breast cancer metastasis, including invasion [10] and dissemination [11].

Invasive structures observed within organoid generated from murine and human human

tumors have properties similar to in vivo tumor-stromal boundaries in genetically engineered

mouse models and in diverse sub-types of human breast tumors [10]. Cell types within these

invasive structures are distinguished by Keratin 14 expression: Keratin 14 positive (K14+) cells

lead collective invasion strands, while Keratin 14 negative (K14−) cells form the bulk of the
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organoid or primary tumor [10]. These results mirror clinical findings of increased mortality

from breast tumors expressing higher levels of K14 [12].

Heterogeneity exists both between tumors and within tumors. Measurements of the tumor

bulk can obscure within-tumor heterogeneity, losing the ability to characterize smaller cell

populations responsible for metastatic phenotypes or therapy resistance. In our context,

however, heterogeneity can be exploited by probing variation in phenotype, genotype, and

gene expression across different organoids generated from a single tumor. We propose that

between-tumor and within-tumor variation are analogous to between-family and within-fam-

ily variation in population genetics, with organoids generated from a single tumor correspond-

ing to siblings within a large family.

We use this insight to quantitatively analyze organoid behavior with methods from

population genetics. Within-tumor methods are particularly powerful because thousands

of organoids can be generated from a single tumor, their shared genetic and environmental

background can be subtracted as a common baseline, and pooled tests of the most extreme

organoids are very efficient. As with genome-wide association studies, genetic and genomic

associations identified by organoid population genetics could then be validated experimentally

by directed perturbations. This combination of population-based organoid studies of invasion

phenotypes and genetic/genomic perturbations could lead to new classes of targets for meta-

static breast cancer and other invasive cancers.

Statistical genetics methods benefit from having quantitative rather than qualitative pheno-

types. Invasion and other metastasis-related phenotypes have generally been qualitative,

however, based on visual sorting into categories often denoted ‘+’, ‘++’, ‘+++’. Reproducible

methods for automated scoring, similar to the quantitative growth rates used for proliferation

phenotypes, have additional value in permitting more systematic, genome-scale studies that

complement detailed phenotyping of individual genetic or chemical perturbations.

Fractal dimension calculations can provide features for image classification [13] and have

been suggested for classifying macroscopic tumor-stromal boundaries [14, 15]. Fractal dimen-

sions can also be related to boundary fluctuations predicted by stochastic models of tumor

growth [16]. Organoids have a natural smallest length scale of a single cell, however, and are

too small to permit the scaling over several orders of magnitude required to calculate a fractal

dimension. Fourier modes of one-dimensional boundary signatures have also been used to

characterize shape, with the amplitude-weighted mean of the inverse of the frequency as a fea-

ture, together with other measures of boundary curvature and compactness [14, 15].

Here we define a quantitative phenotype for the invasive behavior of organoids generated

from human breast tumor tissue. The mathematical technique is motivated by methods devel-

oped for analysis of biological shape using spectral transforms of a boundary [17]. These

methods map two-dimensional boundaries to a curve parameterized by contour length, then

perform Fourier transforms for each coordinate separately to arrive at a lossless representation.

The spectral power is invariant to translation or rotation of the organoid boundary in the

imaging plane. Similar methods have been useful for characterizing the behavior of isolated

single cells [18].

We provide a formal description of the mathematical procedure, including normalization

for organoid size, smoothing of possible pixelation artifacts, and recognizing high-curvature

invasive boundaries. Organoids generated from distinct tumor samples are analyzed using

these methods. A variance components model, the standard framework for quantitative traits

in statistical genetics [19–21], defines contributions to invasiveness due to heterogeneity

between tumors and due to heterogeneity within a single tumor. Heterogeneity is often consid-

ered a difficulty in cancer studies; here we describe how it can be exploited as a source of infor-

mation in population-based studies. The variance components framework suggests that the
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population sizes that will be required to conduct well-powered association studies at genome-

wide significance are highly feasible within single laboratories.

We conduct such an analysis for Keratin 14, using immunofluorescence to characterize

protein expression within each organoid for correlation tests with invasion. We present results

for tests based on all organoids, on the most and least invasive organoids from each tumor,

and on pools of the extreme tails. These tests are all significant. We conclude with implications

for population-based studies of cancer metastasis.

Materials and methods

Ethics statement

The use of human tumor specimens was approved by JHM-IRB X as study number

NA_00077976, “Molecular Regulation of Breast Cancer Invasion”. The IRB determined that

the use of de-identified tumor specimens is not human subjects research for which IRB review

is required.

Clinical cohort

A total of 60 human breast tumor specimens were obtained as surgical samples from the Coop-

erative Human Tissue Network in accordance with a Johns Hopkins School of Medicine IRB

acknowledged exempt study design. Basic demographic information (age, ethnicity, sex), entry

date, and type of sample (primary tumor, recurrence) was available for every specimen. A total

of 823 organoids were generated from 52 of the specimens. Most statistical analyses were lim-

ited to 47 specimens with 5 or more organoids, corresponding to 811 organoids. While all

samples were consented for organoid generation and analysis, consent for continued access to

medical records was not consistently requested; consequently, this study was not designed for

analysis of outcomes. For more detail about the clinical cohort, see S1 Table.

Organoid generation

Breast tumor specimens were processed individually to generate organoids, with approxi-

mately 300–500 cells per organoids, according to published protocols [10, 22]. The organoids

were cultured in collagen I for six days and then imaged. Each organoid was imaged using

differential interference contrast (DIC) microscopy and at identical resolution and position

using epifluorescence for Keratin-14 immunofluorescence (Biolegend Cat. No. 005301). Epi-

fluorescence and DIC both yielded 1040×1388 pixel images. Microscope optics defined a reso-

lution of 0.51190476 μm per pixel (full precision based on stated values), corresponding to a

532.4×710.5 μm field of view. A total of 823 organoids were imaged, corresponding to an aver-

age of 16 organoids per tumor.

Organoids in DIC images were manually traced using IMAGEJ [23] to define their bound-

aries as pairs of points {xv, yv} for v 2 0. . .V − 1. The total number of points V depended on the

manual outline, and the spacing between adjacent points was variable. The organoid bound-

aries were then used to define a spatial mask to extract pixel intensities from the paired epi-

fluorescence image. Pixel intensities were recorded as integers in the range 0 (no fluorescence)

through 255 (saturation) and scaled to the closed interval [0, 1] by dividing by 255. The scaled

values within the organoid boundary were summed. The total K14 intensity was then defined

as the sum divided by 1,443,520, the number of pixels in the image, and the mean K14 intensity

was defined as the sum divided by the area of the organoid in pixels. As a final step to ensure

robust analysis unaffected by details of the K14 distribution or epifluorescence dynamic range,

we calculated rank-normalized values for total K14 by replacing each of the n = 823 values by
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its rank in the range 1. . .n, with ties assigned the average value, subtracting 0.5 and then divid-

ing by n to obtain a value in the open interval (0, 1). The same procedure was used to calculate

rank-normalized mean K14.

Spectral power

Boundary coordinates were analyzed using custom software, IBIS2D (see S1 File, provided

under an open source license), implementing a spectral transform method. First, the overall

contour length L of each organoid was calculated as

L ¼
XV� 1

v¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxv � xv� 1Þ
2
þ ðyv � yv� 1Þ

2

q

: ð1Þ

The total number of boundary points used for manual segmentation is denoted V. The index

v labels these points with periodic boundary conditions, (x−1, y−1)� (xV−1, yV−1). Next, M
points were chosen along the contour with equal spacing L/M between adjacent points. A new

boundary of equally-spaced points (xj, yj) for integer j 2 {0, 1, . . ., M − 1} was then calculated

using linear interpolation of the original boundary by Python SCIPY.INTERPOLATE.INTERP1D.

Results shown used M = 256 total points.

Areas for organoids were calculated using the shoelace formula applied to the interpolation

points. An effective diameter was calculated as 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=p

p
. Normalized ranks were calcu-

lated for organoid size; because the area and effective diameter are monotonic, they yield the

same ranks for size.

We then used Python NUMPY.FFT.RFFT to perform a fast Fourier transform for real-valued

parametric curve {xj, yj} to obtain fx̂k; ŷkg for integer k 2 {0, 1, . . ., (M/2) + 1}, with

x̂k ¼
XM� 1

j¼0

e� 2pijk=Mxj: ð2Þ

An analogous transform provided ŷk. The terms fx̂k; ŷkg are in general complex valued, except

for the zero-frequency terms ðx̂0; ŷ0Þ which, when normalized by M, give the boundary centroid.

Note that x̂k ¼ x̂k mod M, so that x̂ � 1 ¼ x̂M� 1 and so on; the entire Fourier spectrum has frequen-

cies k 2 {0, 1, . . ., M − 1} or equivalently k 2 {0, ±1, . . ., ±M/2} for even-valued M. Because

(xk, yk) and (x−k, y−k) are complex conjugates, only the k� 0 Fourier terms are computed.

The spectral power Pk at frequency k is

Pk ¼ x̂k � x̂ � k þ ŷk � ŷ � k ¼ jx̂kj
2
þ jŷkj

2 ð3Þ

and characterizes the fluctuations in the parametric curve describing the boundary. Each term

in Pk is invariant to rotation in the imaging plane. The term P0, representing the boundary cen-

troid, is discarded to make the power invariant to translation in the imaging plane. Thus the

total spectral power
PM=2

k¼1
Pk provides a measure of boundary fluctuations that is invariant to

translations and rotations in the imaging plane.

We then normalized the spectral power by the power of the first mode, P1, to make the sum

scale-invariant, introduced a smoothing transformation to correct for pixelation, and intro-

duced a derivative transformation that represents curvature (see S1 Methods). We define the

resulting sum as the weighted spectral power, w,

w �
XM=2

k¼2

ðM=pÞ
2 sin2ðpk=MÞ cos2ðpk=MÞPk=P1: ð4Þ
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We found that this weighted form, compared to unweighted power, provided slightly

improved agreement between organoids ranked qualitatively by visual inspection and quanti-

tatively by spectral power (see S1 File, software repository to generate results without smooth-

ing and weighting filters). More sophisticated smoothers are possible [24], but agreement

between results with M = 256 and M = 128 Fourier components indicates that smoothing with

�x and �y is sufficient. Although sin2(πk/M) cos2(πk/M) = (1/4) sin2(2πk/M), we retain the two-

factor form to make the origin of each term clear. At small k, the weight has the form of a low-

pass Gaussian filter with a weight of k2 (see S1 Methods).

The full data set D is the set of values {wti}, with index t 2 {1, 2, . . ., T} denoting the tumor,

i 2 {1, 2, . . ., Nt} denoting an individual organoid generated from tumor t, and Nt denoting the

number of organoids generated from tumor t. The total number of organoids is denoted N,

N ¼
XT

t¼1

Nt: ð5Þ

Calculations for 823 organoids required 5 to 7 min (MacOS 10.13, 3.1 GHz Intel Core i7, 16

GB memory).

Bootstrapped Bayesian model selection

The invasiveness of an organoid is modeled as a random variable from a particular probability

distribution. Model selection corresponds to identifying the form of a probability distribution

that could have generated the observed data; it also usually involves estimating the values of

parameters required by the distribution. We consider three possible models describing the var-

iation of organoid invasiveness within and between tumors. The null model, M0, assumes an

equal mean, μ0, and variance, s2
0
, for each tumor. The first alternative model, M1, incorporates

an independent mean, μt, for each tumor, but retains a shared within-group variance s2
W . The

second alternative model, M2, incorporates both a tumor-dependent mean, μt, and a tumor-

dependent variance, s2
t .

Bayesian model selection is used to select the most likely model. The posterior probability

of a model M given observed data D depending on parameters Θ is

PrðMjDÞ ¼ PrðDjMÞ PrðMÞ=PrðDÞ ð6Þ

¼

R

Y
PrðDjYÞ PrðYjMÞ PrðMÞ

P
M0PrðM0jDÞ

: ð7Þ

where M0 sums over the models being considered. We use Schwarz’s Bayesian information cri-

terion asymptotic limit for the logarithm of the numerator [25] to define the model score SM,

ln PrðDjMÞ � ln PrðDj ~Y;MÞ � ð1=2Þ
X

y2Y

ln ny � SM; ð8Þ

where ~Y are the maximum likelihood parameters,

~Y ¼ arg max
Y

PrðDjY;MÞ; ð9Þ

θ is one of the parameters, and nθ is the number of observations used to obtain ~y. With a uni-

form prior over models, the posterior probability of each model is

PrðMjDÞ ¼ expðSMÞ=
X

M0
expðSM0 Þ: ð10Þ

Between-tumor and within-tumor heterogeneity in invasive potential

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007464 January 21, 2020 6 / 27

https://doi.org/10.1371/journal.pcbi.1007464


In practice, to avoid numeric underflow, we identify the most likely model ~M ,

~M ¼ arg max
M

SM; ð11Þ

define DSM ¼ SM � S ~M , and then calculate posterior probabilities as

PrðMjDÞ ¼ expðDSMÞ=
X

M0
expðDSM0 Þ: ð12Þ

An important additional consideration for model selection is the scale of the invasiveness

data. Many biological processes involve multiplicative noise, generating a log-normal distribu-

tion (the exponential of a normally distributed random variable) rather than a normal distri-

bution arising from additive noise. Applying a logarithmic transform, as is usually done when

comparing gene or protein expression levels, usually works well to recover normally-distrib-

uted data. This is valuable because statistical models and hypothesis tests often assume nor-

mally distributed data, and in many cases further assume that variance can be modeled as a

single parameter independent of group.

To assess the arithmetic scale and the logarithmic scale via model selection, the data D

are defined as {yti}, with yti� wti for the arithmetic scale and yti� log10 wti for the logarithmic

scale. The probabilities of the observed data for the three models are

M0 : PrðDjm0; s
2
0
Þ ¼

YT

t¼1

YNt

i¼1

ð2ps2

0
Þ
� 1=2exp½� ðyit � m0Þ

2
=2s2

0
�; ð13Þ

M1 : PrðDjfmtg; s
2
WÞ ¼

YT

t¼1

YNt

i¼1

ð2ps2

WÞ
� 1=2exp½� ðyit � mtÞ

2
=2s2

W �; ð14Þ

M2 : PrðDjfmtg; fs
2
t gÞ ¼

YT

t¼1

YNt

i¼1

ð2ps2

t Þ
� 1=2exp½� ðyit � mtÞ

2
=2s2

t �: ð15Þ

The maximum likelihood parameters and the corresponding model scores are readily calcu-

lated (see S1 Methods).

Model selection based on normal distributions can be sensitive to noise in the data, particu-

larly when group sizes are small. Bootstrap replicates were used to increase the robustness of

estimates from small populations [26]. A bootstrap sample was obtained by sampling tumors

uniformly with replacement. This bootstrap sample was then used as the input for model selec-

tion, and the posterior probability of each model was recorded. This procedure was repeated

to generate 10,000 bootstrap replicates, which provided converged estimates.

An additional procedure was used to guard against the difficulty of estimating the within-

tumor variance for tumors with small numbers of measured organoids. We performed model

selection again, but this time restricted the tumors to those having at least two organoids. A

new series of 10,000 bootstrap replicates was generated to obtain converged estimates for this

sample. The same procedure was then performed requiring at least 3 organoids, at least 4 orga-

noids, and so on up to at least 10 organoids.

Variance components model

Variance components models describe the distributions of random variables in structured

population where subgroups have shifted means but share a common variance. These models

also provide a framework for hypothesis testing and provide unbiased estimates of variances.

Between-tumor and within-tumor heterogeneity in invasive potential
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In standard usage, populations refer to individuals, and the structure arises from families

within the population. Here, the population refers to individual organoids, and the structure

arises because subsets of organoids correspond to a single tumor. After model selection as

described above, the observation of organoid i from tumor t is denoted yti. The variance com-

ponents model considers nested hypotheses for yti, expressed in terms of hypotheses H0 and

H1 equivalent to models M0 and M1 above:

H0 : yti ¼ m0 þ �ti; �ti � Normð0; s2
0
Þ; ð16Þ

H1 : yti ¼ mt þ �ti; �ti � Normð0; s2
WÞ: ð17Þ

Calculation of unbiased estimates for the null variance ŝ2
0
, the within-tumor variance ŝ2

W , and

the modeled variance ŝ2
M, are standard (see S1 Methods).

The ANOVA test statistic, Q1, is

Q1 ¼ ŝ
2
M=ŝ

2
W : ð18Þ

Under the null hypothesis of equal means, μ1 = μ2 = . . . = μT, Q1 is a random variable following

an F-distribution,

Q1 � FT� 1;N� K : ð19Þ

If the null hypothesis is rejected, an unbiased estimate for the between-tumor heterogeneity is

ŝ2
B, with ŝ2

B þ ŝ
2
W ¼ ŝ

2
0
.

Power analysis

The phenotypes yti permit discovery of associations with biological or experiment factors,

including gene expression levels, genetic variants, or culture conditions. These biological fac-

tors are denoted xti for factor x measured in organoid i from tumor t. The tumor mean μt is

incorporated as a random effect and the associated factor as a fixed effect, leading to a mixed

effect model:

yti ¼ mt þ bxti þ �ti; �ti � Normð0;s2
�
Þ: ð20Þ

Separate tests can be conducted for tumor means, generally denoted �x and �y, and within-

tumor deviations, generally denoted δx and δy:

�yt ¼ mt þ bB�xt þ ��t; ��t � Norm½0;N � 1
t s2

�
�; ð21Þ

dyti ¼ bWdxti þ d�ti; d�ti � Norm½0; ð1 � N � 1
t Þs

2
�
�: ð22Þ

Here we have represented the parameter β from the mixed effects model as two separate

parameters, βB for the between-tumor test and βW for the within-tumor tests.

The relationship between the type I and II error rates, the fraction of variance explained R2
B,

and the population size (number of tumors T) is

Q2
B ¼ ðT � 1ÞR2

B=ð1 � R2
BÞ ¼ ðzI � zIIÞ

2
; ð23Þ

where Q2
B is the non-centrality parameter, zI is the normal quantile corresponding to the

desired false-positive rate, and zII is the normal quantile corresponding to the desired false-

negative rate (see S1 Methods). Similarly, for the within-tumor test,

Q2
W ¼ ðN � T � 1ÞR2

W=ð1 � R2
WÞ ¼ ðzI � zIIÞ

2
: ð24Þ
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The within-tumor test and the between-tumor test are typically controlled at the same signifi-

cance threshold, for example p< 0.05/(number of genes tested). The non-centrality parame-

ters Q2
B and Q2

W are usually different, however, which implies that the quantiles zII and hence

the power are usually different.

Pooled designs

While measuring the invasiveness of each organoid is feasible, performing genomic analysis of

each organoid could be prohibitively expensive. An alternative approach is to pool the most

invasive and least invasive organoids, and then to perform genomic analysis of the pooled

upper and lower tails. We have shown that power is optimized by selecting the upper and

lower 27%, with efficiency equivalent to individual measurements of a population 80% as

large; the selection threshold and efficiency are robust to sibship size, effect size, and allele fre-

quency in the context of genetic studies [27].

Assuming pooled tests with fP representing pooling efficiency, the relationship between

power and variance explained is

Q2
W ¼ fPðN � T � 1ÞR2

W=ð1 � R2
WÞ ¼ ðzI � zIIÞ

2
ð25Þ

for within-tumor tests.

We use these power relationships to calculate the critical effect size required to achieve

specified Type I and Type II error given an experimental design:

R2
B ¼ ½1þ ðs2

W=Nts
2
BÞ�

ðzI � zIIÞ
2
=ðT � 1Þ

1þ ðzI � zIIÞ
2
=ðT � 1Þ

; ð26Þ

R2
W ¼

ðzI � zIIÞ
2
=fPðN � T � 1Þ

1þ ðzI � zIIÞ
2
=fPðN � T � 1Þ

: ð27Þ

Note that although in principle the true values of the regression coefficients βB and βW should

be identical, the true correlations RB and RW may be very different. Between-tumor variation

in both the invasiveness {yti} and the features {xti} often weaken the between-tumor correla-

tion, yielding RB< RW. Furthermore, with 100-1000 organoids generated per tumor, N� T,

giving substantially more power to the within-tumor test.

Correlation with K14 and organoid size

Linear models were used to perform between-tumor and within-tumor tests for correlation of

invasion with protein expression of K14. For these statistical tests, we used tumors with at least

5 organoids, restricting analysis to 47 tumors and 811 organoids. Defining yti as before as the

log10-transformed spectral power for organoid i from tumor t, we defined xti in turn as the

rank-transformed total K14 and mean K14 of each organoid. Tumor means �yt and �xt and

organoid deviations δyti and δxti were calculated. The between-tumor test used a linear model

with an intercept, while the within-tumor test used a linear model without an intercept. We

performed similar tests for rank-transformed organoid area.

For analysis restricted to extreme tails, the organoids with greatest spectral power (upper

tail) and least spectral power (lower tail) corresponding to fraction f for each tumor were iden-

tified by multiplying the number of organoids for that tumor by f and then rounding fractional

numbers up to the closest integer, ensuring at least one organoid in the upper and lower tail.

For example, with a pooling fraction of 0.1, tumors with 5 through 10 organoids would have 1

organoid in the upper tail and 1 in the lower tail, and tumors with 11 through 20 organoids

Between-tumor and within-tumor heterogeneity in invasive potential
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would have 2 in each tail. A 50% pooling fraction corresponds to analysis of all organoids; for

an odd number of organoids in this case, the median organoid was assigned to the lower pool.

Linear models were then re-calculated for this subset of organoids as an extreme-tails version

of the within-tumor test. These models included an intercept term. A pooled test was then per-

formed by calculating tumor-by-tumor mean values of δxti for organoids within the upper and

lower tails. These were entered into a paired t-test for the paired upper and lower pool means

for each tumor. Note that because a paired test was performed, results with pooled values of xti

rather than δxti would give identical results.

Results

Invasiveness heterogeneity

Tissue samples from breast cancer tumors were acquired from the Cooperative Human Tissue

Network. Organoids were generated from 52 specimens, each from a different individual.

Organoids were cultured in a three-dimensional collagen I matrix that, in previous work, has

been shown to promote invasion [22], with each gel containing organoids from a single

tumor. Organoids were imaged at day 6 using differential interference contrast (DIC) micros-

copy to identify organoid boundaries in the imaging plane. Boundaries were segmented manu-

ally using IMAGEJ (Fig 1).

The number of boundary points from manual segmentation was variable (Fig 2A). For use

with Fourier transforms, the boundary points were interpolated to 256 points with equal con-

tour length between adjacent points. Interpolated boundary points were used to calculate the

organoid area and effective diameter, defined as 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=p

p
. The organoid sizes were also vari-

able (Fig 2B). The x and y coordinates were then Fourier transformed to yield spectral power

over the entire bandwidth. Mode 0, corresponding to the boundary centroid, was set to 0, and

the remaining modes were normalized by the power of mode 1, corresponding to normalizing

the size to a unit circle. Filters corresponding to a spatial domain average, removing pixelation

and jitter artifacts, and to a spatial domain derivative, corresponding to enhancing the detec-

tion of changes in curvature, were applied in the spectral domain. The resulting weighted

and filtered power was summed for modes with magnitude 2 and higher to yield the spectral

power, denoted wti for organoid i from tumor t (Eq 4).

This process is illustrated for 3 of the 43 organoids generated from tumor sample 10 (Fig 1).

These three organoids qualitatively appear to be highly invasive, moderately invasive, and

weakly invasive. The boundary of each organoid is depicted showing the linear interpolation

points. The density of interpolation is clearly sufficient to capture the details of the boundary,

even for highly invasive organoids, and results were robust to halving the number of interpola-

tion points from 256 to 128 (see S1 File). Power spectra are plotted using the same y-axis scale

to highlight the increase of spectral power with visually observed invasiveness. The area under

the spectrum, termed the spectral power, is the single quantitative measure used here to char-

acterize invasion. This continuous measure avoids the need for arbitrary binning with subjec-

tive criteria. It instead permits a reproducible assessment that could be automated for high-

throughput characterization.

The individual spectral components provide invasive behavior fingerprints. Lower-order

components generally reflect overall lengthening of an organoid along one or more axes, and

higher-order components arise from more convoluted boundaries. While spectral components

are not considered individually here, they could be used to cluster similar invasive patterns

that may correspond to distinct invasion mechanisms.

Organoids for all 52 tumor samples were characterized using this spectral method, with a

resulting ordering that generally agrees with visual impressions of invasiveness (Fig 3). Each

Between-tumor and within-tumor heterogeneity in invasive potential
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column corresponds to organoids generated from a single tumor. Within each column, orga-

noids are stacked from less invasive to more invasive. Tumors are ordered left to right by the

median organoid invasiveness. The number of organoids per tumor varies due to experimental

constraints, not due to any inherent difficulty in generating or characterizing organoids from

specific tumors. Invasiveness is heterogeneous both between tumors and within tumors.

Between-tumor heterogeneity is apparent along the horizontal axis, and within-tumor hetero-

geneity is similarly apparent along the vertical axis.

These data indicate that tumors differ systematically in their ability to generate invasive

organoids. Similarly, organoids generated from different cells within a tumor show different

Fig 1. Defining a quantitative phenotype for invasion. The method used to define a quantitative phenotype for invasion is outlined for an organoid that is highly

invasive (panels A, B, C), moderately invasive (panels D,E,F), and weakly invasive (panels G,H,I). These three organoids were selected from the 43 organoids

generated from tumor 10, illustrating heterogeneity within a single tumor sample. Differential interference contrast (DIC) microscopy was used for image

acquisition, with a scale of approximately 0.5 μm per pixel and a field of view of approximately 530×710 μm (panels A,D,G). Boundaries were segmented manually

from DIC images and interpolated to 256 equally spaced points, sufficiently dense to track even the most invasive boundaries (panels B,E,H). A discrete Fourier

transform was then applied separately to the x and y components of the discrete points, and the magnitudes of the corresponding Fourier amplitudes were squared

and added to obtain the raw spectral power. Fourier mode 0, which represents the centroid of the boundary, was set to 0. The remaining modes were normalized

by the power of Fourier mode 1 to provide scale invariance. Filters were applied to smooth effects from discrete pixel size and to emphasize the contributions of

higher frequency modes, yielding a smoothed and weighted power spectrum for each organoid (panels C,F,I). The sum of the area under the spectrum, termed the

spectral power, provides a single quantitative measure of invasiveness.

https://doi.org/10.1371/journal.pcbi.1007464.g001
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abilities to invade. Finally, the spectral power method is robust even for highly invasive

organoids whose boundaries are partially truncated by the field of view, for example the top

boundaries of the two most invasive organoids from Tumor 49 (Fig 3, 14th from the left). The

spectral power nevertheless properly characterizes these organoids as invasive.

Statistical model selection

Bayesian model selection was used to guide the choice of scale, arithmetic versus logarithmic

for the invasion spectral power, and the choice of statistical model describing within-tumor

and between-tumor heterogeneity. Invasion heterogeneity has qualitatively different appear-

ance on an arithmetic versus logarithmic scale (Fig 4). On an arithmetic scale, distributions of

invasiveness for each tumor are asymmetric, with the median usually closer to the first quartile

and a larger upper tail (Fig 4A). In contrast, the distributions on a logarithmic scale are much

more symmetric about the median (Fig 4B). A second difference is the dependence of the

interquartile range on the median value. On an arithmetic scale, as the median invasiveness

increases, the range increases as well. On a logarithmic scale, however, the interquartile

range appears more constant. The logarithmic scale provides a phenotype that is closer to the

assumptions of normal statistics because it has less skew, less heteroscedasticity, and permits

negative values.

We used Bayesian statistics to provide a quantitative analysis of suitability of the arithmetic

versus logarithmic scale for statistical modeling. For each scale, we considered three generative

models for invasiveness within and between tumors, giving each model an equal prior of 1/3

(Eqs 13–15). Model 0, the null model, assumes equal mean and variance for each tumor.

Model 1, the first alternative, introduces a different mean invasiveness for each tumor, but

retains a shared variance across all tumors. Model 2, the second alternative, also permits

different means, and further adds additional parameters to permit a separate variance for each

tumor. Model 1 is a good description for traits that result from the combined effect of many

Fig 2. Organoid data distributions. (A) Distribution of the number of manual segmentation boundary points per organoid. (B) Distribution of organoid effective

diameter, defined as 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=p

p
.

https://doi.org/10.1371/journal.pcbi.1007464.g002
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genetic factors, each with a small contribution; by the Central Limit Theorem, this can lead to

equal variance for different groups. Model 1 has the additional benefits of being the standard

model for most work in statistical genetics and in permitting pooled estimates of variance,

which are more robust than group-specific estimates. We then used maximum likelihood

Fig 3. Invasiveness is heterogeneous between and within tumors. Organoid boundaries are shown for 823 organoids generated from 52 breast tumors and imaged

after six days of growth in 3D culture. Each column corresponds to organoids from a single tumor, denoted by an identifier underneath the column. Organoid

boundaries were converted to a quantitative spectral power phenotype, represented by a false color map from blue (non-invasive) to red (highly invasive). For each

tumor, organoids are stacked from less invasive to more invasive as characterized by the spectral power. Tumors are then arranged from left to right based on the

median organoid invasiveness. Differences in numbers of organoids per tumor are from constraints on experimental capacity rather than biological differences

between tumors. Heterogeneity is observed on both the horizontal axis (between-tumor variation) and the vertical axis (within-tumor variation).

https://doi.org/10.1371/journal.pcbi.1007464.g003
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parameter estimates together with Schwarz’s Bayesian information criterion [25] to calculate

the posterior probability of each model (Eq 12).

For invasion on an arithmetic scale, Model 2 is selected, with less than 1 × 10−50 probability

assigned to Model 0 or Model 1. The assignment of all probability to Model 2 is a quantitative

reflection of the qualitative observations of distribution skew and increasing variance with

increasing median invasiveness (Fig 4A).

In contrast, for the logarithmic scale, Model 1 and Model 2 both have appreciable probabil-

ity, indicating the suitability of statistical models that assume equal variance for organoid inva-

siveness within each tumor (Fig 5). To ensure that posterior probabilities for the logarithmic

scale were robust to a variable number of organoids per tumor, we performed calculations that

required up to 10 organoids per tumor. Of the 52 tumors, 30 met this requirement. We also

performed calculations using all 52 tumors, and all thresholds in between (Fig 5).

Fig 4. Distribution of quantitative invasion phenotypes. Each boxplot represents the distribution of invasion scores for organoids

generated from a single tumor, with tumors ordered from left to right by median organoid invasiveness. The boxplot for each tumor

indicates the median value (red bar), lower and upper quartile values (box extent), and outliers as individual points. (A) Distributions

generated using invasion on an arithmetic scale are asymmetric, with the median closer to the first quartile and a larger upper tail. The

interquartile range increases substantially with the median invasiveness. (B) Distributions generated using invasion on a logarithmic scale

are more symmetric, with the median approximately halfway between the first and third quartile. The interquartile range increases less with

the median.

https://doi.org/10.1371/journal.pcbi.1007464.g004
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Fig 5. Bootstrapped Bayesian model selection. (A) Bootstrap replicates were used to increase robustness to limited

number of tumors and organoids per tumor. Bootstraps were conducted for all 52 tumors and then, with increasing

stringency, for tumors generating at least 2 through 10 organoids, with 30 tumors meeting the final requirement (solid

line). The average number of organoids per tumor increased from 15.8 to 22.9 for these replicates (dashed line). (B)

Three generative models were considered for between-tumor and within-tumor variation in logarithmic-scale

organoid invasiveness: Model 0 assumes a single mean and variance shared by all tumors; Model 1 assumes a shared

variance, but assigns each tumor its own mean; Model 2 assigns each tumor its own mean and variance. Converged

estimates were obtained from 10,000 bootstrap replicates for thresholds of 1 organoid per tumor up to 10 organoids

per tumor. For these thresholds, the posterior probability is 55-65% for Model 1 (green bars), with the remaining

probability assigned to Model 2 (blue bars). Model 0 (red bars) had vanishing probability, not visible on this scale.

https://doi.org/10.1371/journal.pcbi.1007464.g005
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We further increased the robustness of estimates for the logarithmic scale by using 10,000

bootstrap replicates. These calculations suggest a posterior probability of 55-65% for Model 1,

the remaining probability assigned to Model 2, and vanishing probability for Model 0 (Fig 5B).

The posterior probabilities vary for different values of the organoid-per-tumor threshold. This

variation reflects statistical noise inherent in a small data set. It is an interesting open question

whether a larger data set would definitively select the simpler Model 1 or the more complex

Model 2. Systematic differences between tumors, for example differences in overall mutation

rates, could lead to variation in the scale of within-tumor heterogeneity. Nevertheless, for the

data at hand, our analysis indicates that a standard shared-variance model, Model 1, is ade-

quate to describe the variation of log-scale invasiveness as a quantitative trait.

We conclude from this analysis that the log-transformed spectral power is compatible with

a normal mixture model, in which each tumor has an individual mean and all tumors share

a single variance. This model is the standard statistical framework for analyzing quantitative

traits in population genetics and is described by conventional parametric statistics. The spec-

tral measure on its original arithmetic scale is less suitable because of skew and heteroscedasti-

city. The log-transform in this context is similar to log-transforms used for gene expression

and other quantitative characters that are better described by log-normal distributions than by

normal distributions, possibly reflecting multiplicative rather than additive noise.

Within-tumor variance can be larger than between-tumor variance

The previous results indicate that the standard framework for analyzing genetic and phenotypic

variation in a structured population, a variance components model, is appropriate for analysis

of variation of invasion for organoids generated from tumors. Each tumor is analogous to a

family in a population-based study, and each organoid is analogous to a sibling within the fam-

ily. For organoid i generated from tumor t, the log-scale invasiveness score yti is modeled as a

tumor mean μt plus a deviation �ti, with mt � Normðm0; s
2
BÞ and �ti � Normð0;s2

WÞ. The total

variance for an organoid, denoted s2
0
, is the sum of the between-tumor variance, s2

B, and the

within-tumor variance, s2
W .

This structure is essentially identical to the structure of an ANOVA model testing the

hypothesis that all μt values are identical; under the null hypothesis, the test statistic follows

an FT−1, N−K distribution for T tumors and K total organoids. Applying this test to the full

organoid data (52 tumors and 823 organoids corresponding to F51,771, we find ANOVA test

statistic F = 7.21 and p-value 8.8 × 10−39. The strong significance of this hypothesis test is the

frequentist equivalent of the Bayesian model selection assigning vanishing probability to the

null model.

The ANOVA model provides an estimate of the variance components from the between-

tumor heterogeneity, s2
B, and the within-tumor heterogeneity, s2

W , to the overall variance, s2
0
.

The variance components model estimates that between-tumor heterogeneity is responsible

for 28% of the total variance, and within-tumor heterogeneity is responsible for 72% of the

total (Table 1). Thus, within-tumor invasion heterogeneity is 2.6× larger than between-tumor

heterogeneity. It may be surprising that in these data, the within-tumor heterogeneity is larger

than between-tumor heterogeneity. Nevertheless, large within-tumor heterogeneity is consis-

tent with similar observations for heterogeneity within tumor specimens. Our prior experi-

mental observations have shown that invasion is led by specialized cancer cells with a gene

expression pattern termed “basal”, and that the abundance of basal-type cells within a tumor

can range from 1–30% of cancer cells [10]. Inhomogeneous distributions of basal-type cells

within a tumor could lead to organoids with different basal cell fractions and consequently

different invasiveness. We also note that clinical considerations restrict tissue acquisition to
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relatively large tumors, usually larger than 1 cm in at least one dimension with a definitive clin-

ical diagnosis from diagnostic biopsy, and greater variation may be present in the entire clini-

cal population including smaller tumors.

Expected power

In population genetics, heterogeneity within families often provides a powerful substrate for

identifying genetic or genomic factors that drive phenotypes. Within-tumor heterogeneity is

problematic in the clinical setting, as region-specific and cell-specific differences in resistance

to chemotherapeutics makes it more challenging to eliminate the entire tumor with a given

drug regimen [4]. However, in the context of an association study, heterogeneity can be

exploited to identify the molecular determinants of the quantitative trait. By removing

between-tumor sources of variation, within-tumor tests can increase the power to detect

genetic, genomic, and epigenomic factors that drive invasion and, more generally, metastasis.

Power analysis to identify the critical number of tumors and organoids to detect a biologically

relevant effect is essential to assess the prospect of using organoids as part of a human popula-

tion study.

We envision statistical tests that model the dependence of the invasiveness, denoted y, on

biological factors considered one at a time, denoted x. These factors may represent expression

levels of particular transcripts, germ-line or somatic genetic variants, epigenomic states, or

other collective measures. Simplifying to a single organoid per tumor (formally equivalent to

multiple organoids measured, but all giving identical results and thus not adding information),

the statistical model for the invasiveness yt of tumor t with biological factor xt is

yt � Norm½m0; bðxt � x0Þ�; ð28Þ

where μ0 is the population-level mean invasiveness and x0 is the population-level biological

factor. The null hypothesis β = 0 and alternative hypothesis β 6¼ 0. The fraction of variance

explained by x under the alternative hypothesis is

R2 � b
2
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðyÞVarðxÞ

p
: ð29Þ

The corresponding test statistic is

Q2 � b̂2=s2
b
; ð30Þ

where b̂ is the maximum likelihood estimate of β and s2
b

is its estimated variance. Under the

null hypothesis, Q2 � w2
1
, a χ2 random variable with 1 degree of freedom. Under the alterna-

tive, Q2 follows a non-central χ2 distribution with non-centrality parameter (T − 1)R2/(1 − R2)

for T total tumors observed.

A compact equation connects the test statistic Q2, the effect size R2, the two-tailed type I

error �I with quantile zI defined byF(zI) = 1 − �I/2 for cumulative normal distribution F, and

Table 1. Variance components of invasion.

Component Value Fraction of toal

s2
0

(total) 0.2344 1.000

s2
B (between-tumor) 0.0652 0.278

s2
W (within-tumor) 0.7218 0.722

Variance components were calculated on a log10 scale from 823 organoids generated from 52 tumors.

https://doi.org/10.1371/journal.pcbi.1007464.t001
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quantile zII defined through the type II error �II as F(zII) = �II (Eqs 23 and 24):

Q2 ¼ ðT � 1ÞR2=ð1 � R2Þ ¼ ðzI � zIIÞ
2
: ð31Þ

For genome-wide significance with 20,000 gene-based tests, �I = 0.05/20, 000, and zI = 4.708.

For a typical 80% requested power, �II = 0.2, and zII = −0.842. Under these assumptions, the

population required to detect effect size R2 is T� 30.8(1 − R2)/R2.

In a simple model for a phenotype that depends on G genes with each gene contributing

equally, for example, the R2 for an individual gene would be 1/G. Mendelian disease genes

often have R2 in the range 0.05 to 0.1, with mutant alleles in 10–20 different genes leading to

the same syndrome through phenocopy. Variants identified from genome-wide association

studies (GWAS) have R2� 0.01, or even smaller in large meta-analyses. Thus, factors that

explain even 1% of the variation in tumor invasion could have high biological relevance in

identifying pathways and potential targets. Corresponding population sizes required are

280 tumors required to detect a Mendelian-like association with R2 = 0.1 and�3000 tumors

required to detect a GWAS-like association with R2 = 0.01.

These population sizes can be vastly reduced, however, by exploiting the within-tumor

heterogeneity, ignored in the above analysis. Each observation of tumor invasiveness yti is

separated into the population mean μ0, the tumor-based mean �yt, and the deviation δyti for

organoid i generated from tumor t. Similarly, biological factors xti are separated into the pop-

ulation mean y0, the tumor mean �x, and the deviation δxti. In the framework of a variance

components model, these lead to between-tumor and within-tumor tests that are statistically

independent:

�yt � Norm½m0; bBð�xt � x0Þ� ð32Þ

dyti � Normðmt; bWdxtiÞ: ð33Þ

The null hypothesis for the between-tumor test is βB = 0, with two-tailed alternative βB 6¼ 0;

similarly, the null for the within-tumor test is βW = 0, with alternative βW 6¼ 0. Equations

similar to Eq 31 can be derived for the between-tumor test, Eq 23, and the within-tumor test,

Eq 24. In a typical scenario in which 100’s to 1000’s of organoids are generated per tumor,

the within-tumor test can have excellent power. For a GWAS-type association with R2 =

0.01, the number of observations required remains 3000. These may be obtained from 100’s

of organoids generated per tumor from only 10’s of tumors, rather than 1000’s of tumors

required for a between-tumor test.

These power relationships assume that individual measurement of invasiveness y and bio-

logical factor x are available for each of N total organoids. This assumption is reasonable for

invasiveness characterized through semi-automated microscopy, but may be impractically

expensive for genomics characterization. An experimental design that vastly reduces cost

while maintaining power in this scenario is extreme tails pooling [28], motivated and validated

by extreme tails analysis in human genetics [29, 30]. Pooling increases the savings, even after

accounting for technical sources of variation [27, 28, 31, 32].

In a pooled RNA-Seq study, the most invasive organoids would be pooled to generate a sin-

gle RNA-Seq library, and similarly the least invasive organoids would be pooled to generate

a second library. The number of RNA-Seq libraries for a within-tumor test would then be

reduced from the number of organoids to twice the number of tumors, a 100–1000× reduction

in effort. A general conclusion for an additive model is that pooling the upper 27% and the

lower 27% optimizes the power and has 80% efficiency, defined as having equivalent power to

an individual-level test conducted on 80% of the original population [27, 28].
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A pooling design slightly modifies the power relationships, primarily by increasing the

number of organoids required by 10–20% relative to a design in which each organoid is indi-

vidually characterized genomically (Eqs 26 and 27). This analysis indicates that studies of

10’s to 100’s of tumors could have excellent power to detect biological factors that are drivers

or effectors of invasion (Fig 6). These figures illustrate the critical R2 values required to detect

an effect at 80% power, assuming 20,000 gene-based tests with a corresponding two-tailed p-

value of 2.5 × 10−6. For between-tumor tests (Fig 6A), the ratio of within-tumor to between-

tumor variance is set to the observed value of 2.6. For within-tumor tests (Fig 6B), pooling is

assumed to reduce efficiency to 80%. Contour values for the critical effect size use a common

color scale.

While Fig 6A for between-tumor tests is has only slight color variation, Fig 6B for within-

tumor tests uses the entire color scale. The limited region of the color scale observed for

between-tumor tests is because they can only detect very strong effects, R2
B � 0:1. The power,

even after 200 tumors, permits only the observation of Mendelian-like driver or effector genes.

In contrast, the power for within-tumor tests is far greater, with the ability to detect effects

similar to those observed in GWAS, R2
W � 10� 3 and below for 200 tumors. This improvement

comes from exploiting the heterogeneity of organoids generated from a single tumor. Due to

this heterogeneity, each organoid is similar to an independent observation, yielding a 100× to

1000× increase in the number of effective samples.

The contour lines for between-tumor tests are vertical (Fig 6A), whereas the the contour

lines for within-tumor tests are at a 45˚ angle (Fig 6B). Between-tumor tests have vertical con-

tours because 10–20 organoids are sufficient to define tumor-based means, and additional

organoids provide little new information. In contrast, for the within-tumor test, additional

organoids continue to improve power. Moving vertically therefore results in crossing contour

lines corresponding to the ability to observe smaller and smaller effects. The number of obser-

vations for within-tumor tests is approximately the number of tumors times the number

of organoids per tumor; on a contour plot with logarithmic scale, this corresponds to the

observed 45˚ angle for contour lines. Thus, rather than recruiting more individuals to a study,

generating many organoids from individual samples may be a more efficient route to increased

study power.

Fig 6. Power of a pooling-based design. The critical effect size defined as variance explained, R2, is shown for (A) between-tumor tests and

(B) within-tumor tests. Calculations assume 20,000 two-tailed gene-based tests with genome-wide significance level 2.5 × 10−6 and 80% power.

For between-tumor tests, the ratio of within-tumor to between-tumor variance is set to the observed value of 2.6. For within-tumor tests,

pooling is assumed to reduce efficiency to 80%. Color bars indicate contour levels; between-tumor tests are limited to much larger effects and

use only the upper region of the scale.

https://doi.org/10.1371/journal.pcbi.1007464.g006
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Associations with Keratin 14

Motivated by the predicted power of a population-based test, we used this approach to test

the association of invasion with protein expression of Keratin 14 (K14). We chose protein

characterization rather than RNA-Seq because these samples were not consented for geno-

mics, and we chose K14 because of strong evidence linking K14 with laboratory analysis for

tumor invasion in mouse and human [10] and clinical outcomes for breast cancer survival

[12].

We therefore quantified K14 by immunofluorescence using epifluorescence microscopy,

with pixel values mapped from 0 (no expression) to 1 (saturation), for the same series of orga-

noids imaged by DIC for invasion. Boundaries identified from DIC images were superimposed

on the K14 images, and pixel intensities within each organoid boundary were gathered (Fig 7,

the same organoids depicted in Fig 1)). The expression level for each organoid was quantified

in two ways: summing over all pixels and then dividing by the total number of pixels in the

image (“Total K14”) or by just the number of pixels inside the organoid boundary (“Mean

K14”). The K14 distributions were right-skewed, with most organoids expressing low levels of

K14 (Fig 8A and 8B). For robust analysis, total and mean K14 values were rank-normalized to

obtain a uniform distribution.

Analyses were conducted according to the strategy outlined above: between-tumor tests for

the tumor means estimated from the individual organoids, similar to a standard analysis of the

tumor bulk, and within-tumor tests for invasiveness and K14 values corrected for the tumor

mean. The within-tumor tests were conducted using three separate methods to explore the

power of pooling. First, we performed a standard regression test that used each organoid as a

single observation. Next, we restricted attention to the organoids in the tails of the distribution,

and again performed a standard regression test using this subset of organoids. The tail fraction

f ranged from symmetric tails of 5%, the most and least invasive 5% of organoids (fractional

values rounded to the next integer) for each tumor, up to 50% corresponding to the entire data

set, to investigate sensitivity to this parameter. Finally, we performed pooled tests by calculat-

ing the average value of either total K14 or mean K14 within each tail, then using the upper

and lower pools in a paired-sample t-test with one set of paired observations for each tumor.

This stepwise approach permits an understanding of loss of power from a reduced data set (all

observations to extreme tails) versus loss of power from pooling the individual measurements

into a single average value (extreme tails to pooled tests). Analyses were restricted to the 47

tumors generating at least 5 organoids, corresponding to 811 total organoids.

Between-tumor tests of total K14 versus invasion show a positive correlation, but are not

significant, even at the single-test level (p = 0.14, Fig 9A). In contrast, within-tumor tests of

total K14 were highly significant (p = 2 × 10−45, Fig 9B). Tests of organoids in the extreme

tails retained high power, with p< 10−10 even for tail fractions as low as 5% (Fig 9C). Pooling

reduced the power, but nevertheless retained sufficient power for p< 2.5 × 10−6, the typical

threshold for a 0.05 family-wise error rate (FWER) when correcting for tests of 20,000 human

genes or proteins.

Thus, the pooling approach described here should have power to detected a similarly sized

effect from RNA-Seq data generated from pooled highly invasive versus non-invasive orga-

noids. The statistical significance is weakly sensitive to pooling fraction, with similar results

for pooling fractions from 20% to 50%. These results are in accord with theory developed for

pooled analysis in the context of genome-wide association studies [27, 28, 32]. Two factors

contribute to the lack of power of the between-tumor test relative to the within-tumor test.

First, the number of observations is far smaller, the number of tumors that generated at least

5 organoids (47) versus the corresponding number of organoids (811). Second, variation in
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Fig 7. Defining a quantitative phenotype for invasion. The DIC images (panels A,C,E) were paired with K14 epifluorescence images obtained at

identical resolution (panels B,D,F). Dots indicate boundaries from the DIC images interpolated to 256 equally spaced points and superimposed on both

the DIC and K14 images.

https://doi.org/10.1371/journal.pcbi.1007464.g007
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tumor-to-tumor baseline levels of invasiveness and K14 lead to an observed effect that is

smaller for the between-tumor test, R2 = 0.05, than for the within-tumor test, R2 = 0.22.

We performed a similar series of tests for mean K14, correcting for possible confounding with

tumor size (Fig 10). The within-tumor test remains highly significant (p = 1.0 × 10−13, Fig 10A),

although less significant than the test of total K14. Tests of organoids in the extreme tails retain

high power (Fig 10B). Pooled tests have sufficient power for this smaller effect for significance at

Fig 8. Organoid data distributions. (A) Histogram of total Keratin 14 (K14) expression per organoid, calculated as the sum of the K14 intensity on a [0, 1] scale

for pixels within the organoid divided by the total number of image pixels. (B) Histogram of mean K14 expression, calculated as the sum of the K14 intensity

divided by the area of the organoid in pixels. The organoid size is less than the image size, and therefore the mean K14 is greater than the total K14. Both the total

and mean were rank-normalized to generate uniform distributions for robust statistical analysis.

https://doi.org/10.1371/journal.pcbi.1007464.g008

Fig 9. Association of invasiveness with total Keratin 14 protein expression. (A) Between-tumor tests of tumor means (points) do not yield

significance for a linear model (dashed line). (B) The within-tumor test shows a highly significant association (p = 2.3 × 10−45) for a linear model

(dashed line) between invasiveness and total Keratin 14 protein expression for individual organoids corrected for their tumor-specific baselines.

Organoids in the extreme tails are shown for symmetric tails of 10% through 50%, with organoids in the 10% tail also belonging to larger tails

and so on. The dashed regression line uses all the observations (50% tails). (C) Tests performed using organoids restricted to extreme tails are

also highly significant (solid line). Pooled tests of mean values for organoids in the upper vs. lower tail, performed as a paired-sample t-test for

each tumor, retain sufficient power for a gene-based test at 0.05 family-wise error rate, p< 2.5 × 10−6 when correcting for 20,000 genes or

proteins tested, compatible for use with RNA-Seq (dashed line).

https://doi.org/10.1371/journal.pcbi.1007464.g009
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the single-test level, p = 0.02 to 0.05 for a two-sided test with most pooling fractions, but not suffi-

cient power for application to unbiased discovery from RNA-Seq. Between-tumor tests are not

significant (p = 0.5), again highlighting the greater power of within-tumor tests.

Given the stronger association with total K14 than mean K14, we next investigated associa-

tions with organoid area, rank-transformed to a uniform distribution to permit robust analy-

sis. The between-tumor test was significant at a single-test level (Fig 11A, p = 0.008). The

within-tumor tests were highly significant (Fig 11B, p = 9.8 × 10−52), and extreme tail and

pooled tests were also significant for genome-wide or proteome-wide tests (Fig 11C,

p< 1 × 10−10 for many pooling fractions).

Discussion

Population-based studies have been highly effective in revealing the genetic architecture of

complex disease through genome-wide association studies (GWAS). Similar studies of somatic

Fig 10. Association of invasiveness with mean organoid Keratin 14 protein expression. (A) Between-tumor tests of tumor means (points) do

not yield significance for a linear model (dashed line). (B) The within-tumor test shows a highly significant association (1.0 × 10−13) for a linear

model (dashed line) between invasiveness and mean Keratin 14 protein expression for individual organoids corrected for their tumor-specific

baselines. Organoids in the extreme tails are shown for symmetric tails of 10% through 50%, with organoids in the 10% tail also belonging to

larger tails and so on. The dashed regression line uses all the observations (50% tails). (C) Tests performed using organoids restricted to extreme

tails are also highly significant (solid line). Pooled tests of mean values for organoids in the upper vs. lower tail, performed as a paired-sample t-
test for each tumor, retain sufficient power for validation of individual findings (p< 0.05) but would not have sufficient power if corrected for

multiple testing with gene-based (RNA-Seq) or proteome-wide tests.

https://doi.org/10.1371/journal.pcbi.1007464.g010

Fig 11. Association of invasiveness with organoid area. (A) Between-tumor tests between organoid size and invasiveness remain significant.

(p = 0.008). (B) The within-tumor test shows a highly significant association (9.8 × 10−52) for a linear model (dashed blue line) between

invasiveness and rank-transformed organoid area. Organoids are colored according to extreme tail membership. (C) Tests performed using

organoids restricted to extreme tails are also highly significant (solid line), as are pooled tests for association of area with invasiveness.

https://doi.org/10.1371/journal.pcbi.1007464.g011
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aberrations in cancer, whether genetic mutations or epigenetic or gene expression drivers,

have not had the cohort sizes to permit similarly powered studies. Most tumor studies enroll

fewer than 1000 individuals, whereas many GWAS have populations over 100,000. Our insight

is that tumor heterogeneity, probed by organoids, permits 100’s to 1000’s of independent mea-

surements from a single tumor, with tumors and organoids analogous to families and sibships

in a population genetics study. Furthermore, similar to efficient genetic study designs using

the most extreme or discordant siblings, we can increase efficiency be restricting analysis to

organoids in the extreme tails of a phenotype distribution, or even single measurements of

pooled tails. We have developed this approach successfully by validating the association of Ker-

atin 14 with a quantitative phenotype for organoid invasion.

To permit quantitative analysis, we also have developed a new spectral-based phenotype for

assessing the invasiveness of organoids generated from human breast tumors. This phenotype,

when measured on a logarithmic scale, is ideal for quantitative trait analysis. Bayesian model

selection indicates that a mixed effects model describes the data well: while each tumor has its

own mean invasiveness, tumors share a common variance describing within-tumor heteroge-

neity. A variance components model finds that the within-tumor variance is approximately

2.6× larger than the between-tumor heterogeneity. The implication of this finding is that mea-

surements of bulk tumor capture only a small fraction of the information inherent in heteroge-

neous tumor tissue. The ability to probe heterogeneity is the motivating factor for single-cell

DNA and RNA sequencing. Here, we demonstrate that organoids are also able to probe this

heterogeneity.

The organoid phenotype analyzed here is a surrogate for an initial step of metastasis, which

in addition to invasion by individual cells or collectives also includes dissemination, re-seed-

ing, and outgrowth. Organoids can provide invasion-related quantitative phenotypes as a step

towards more comprehensive analysis of the genetic and genomic determinants of metastasis.

In patients, tumor invasion can be assessed from two-dimensional sections by various methods

as part of clinical prognosis [33]. Serial sections may be required to distinguish groups of cells

that break off or bud from from the main organoid body from organoid extensions that enter

and leave a single imaging plane [33, 34]. In this study, we have not observed images where

organoid extensions may be mistaken for buds. Furthermore, such artifacts would be very

unlikely to affect any conclusions: mistaking appendages for buds would result in an underes-

timate of invasion, but the organoids in question would already be ranked among the most

invasive.

Molecular characterization of invasive versus non-invasive organoids could identify biolog-

ical factors that are drivers and effectors of metastasis. These could provide new hypotheses for

therapeutic targets and for predictive biomarkers. Again using the proven success of GWAS

as a model, we analyze the power of between-tumor and within-tumor tests, analogous to

between-family and within-family tests in population genetics. We find that between-tumor

tests have limited power; even after 200 tumors have been analyzed, power is limited to detect

effects similar to Mendelian genes in hereditary disorders. Within-tumor tests have excellent

power, however, potentially equivalent to well-powered GWAS that can identify genes and

variants that contribute as little as 1% to 0.1% to population-level variation. These results pro-

vide a possible explanation for the challenges in converting bulk tumor genomics data to thera-

peutically usefully knowledge: only the very largest effects have been detected because much of

the information inherent in individual cells and sub-regions has been lost.

In addition to gene expression markers, direct observation of protein levels can be informa-

tive. Keratin 14 was quantified here using immunofluorescence. In previous work, we have

used genetic engineering of fusion proteins for live imaging of fluorescent tags [7, 10, 11].

Direct tagging is most suited for work with genetically engineered mouse model systems. For
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human tumor tissue, antibody arrays may provide increased capabilities for proteomic profil-

ing [35].

To validate the power of within-tumor tests, extreme tails analysis, and pooled tests, we

demonstrated highly significant associations between increased expression and increased inva-

siveness, p = 2.3 × 10−45 for total Keratin 14 and p = 1.0 × 10−13 for Keratin 14 normalized to

the imaged cross-sectional area. Tests restricted to organoids in the extreme tails retained high

power and strong significance. Thus, generating 100’s of organoids per tumor and restricting

analysis to the most invasive 5 to 10, selected either visually or by segmentation followed by

automated analysis of the tumor boundary, could lead to new discoveries. Even greater experi-

mental savings come with a pooled design, for example collecting the most extreme organoids

from each tumor to generate a single RNA-Seq library for each tail. Pooled tests would have

power to detect association for molecular features with effect sizes similar to total Keratin 14,

even after correcting for multiple testing of 20,000 genes.

We conclude that organoid-based studies, enrolling on the scale of 100 participants with

breast cancer and generating 100-1000 organoids per tumor, will have the ability to discover

clinically relevant driver and effector genes for basic molecular drivers of phenotypes relevant

for breast cancer. This population genetics framework is directly applicable to analyzing the

molecular determinants in different cancer types and in future studies designed to correlate

organoid phenotypes with clinical outcomes. Our approach could also be generalized to later

stages of metastasis through development and validation of additional quantitative traits that

capture biological variation in the capacity of cancer cells to, for example, disseminate or seed

distant organs.
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