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Abstract

There are significant gaps in our understanding of the pathways by which drugs act. This 

incomplete knowledge limits our ability to use mechanistic molecular information rationally to 

repurpose drugs, understand their side effects, and predict their interactions with other drugs. Here 

we present DrugRouter: a novel method for generating drug-specific pathways of action by linking 

target genes, disease genes and pharmacogenes using gene interaction networks. We construct 

pathways for over a hundred drugs, and show that the genes included in our pathways (1) co-occur 

with the query drug in the literature, (2) significantly overlap or are adjacent to known drug-

response pathways, and (3) are adjacent to genes that are hits in genome wide association studies 

assessing drug response. Finally, these computed pathways suggest novel drug repositioning 

opportunities (e.g., statins for follicular thyroid cancer), gene-side effect associations, and gene-

drug interactions. Thus, DrugRouter generates hypotheses about drug actions using systems 

biology data.

Introduction

Pathways form the basis of our understanding of how cellular processes occur, and provide a 

framework for inferring cellular phenotypes. Drug research and development has provided 

powerful medications over the last several decades (1). However, our understanding of the 

therapeutic effects of the drugs, their side effects and drug interactions is still limited by 

incomplete knowledge of the underlying cellular pathways through which drugs act. For 

many applications, including drug discovery, drug repurposing and the definition of 

pharmacogenomic modulators, we need a molecular-level understanding of drug effects and 

this is often either missing or incomplete.

We focus here on inferring the pathways of interacting biological macromolecules that 

modulate drug response. By generating drug-specific pathway hypotheses, we reduce the 

search space and enable researchers to focus their experimental efforts on the most 

promising directions. The primary challenge for building accurate pathways is our 

inadequate understanding of gene interactions, both their location and temporal 
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dependencies. Thus, straightforward network algorithms applied to gene interaction data sets 

yield a very high rate of false positives when they are used to connect drug targets to the 

genes that produce end-phenotypes. Previous methods manage network noise (in the context 

of drug response) by using only curated cellular pathways from public databases (2–4) or by 

constructing pathways using only short paths prevalent in multiple drugs (5). These methods 

tend to ignore cross talk between pathways, or focus only on pathways that are common to 

multiple drugs.

Here, we borrow an analogy from roads and traffic in which gene interactions (protein-

protein, metabolic and transcriptional) are roads and traversing the network is akin to 

finding the quickest route between points of interest. Network interactions that are part of a 

curated biological pathway have higher credibility than other gene interactions, and are 

considered “highways”. The less reliable and un-curated connections are viewed as “side 

roads”. Our method, DrugRouter, adopts a conservative strategy that assembles drug-

specific pathways by which ‘highways’ are used preferentially and ‘side roads’ are used 

only when the highways do not connect the desired starting and ending points. The inputs to 

our method are genes and gene products (henceforth called genes for brevity) of three 

classes related to a particular drug of interest: (1) the drug’s target genes, (2) the drug’s 

pharmacogenes that are known to modulate its mechanism of action (i.e. genes whose 

variation influences drug response), and (3) the genes associated with the drug’s therapeutic 

effect or disease target. DrugRouter selects robust paths that connect these three sets of 

genes to one another; the genes that are visited during this ‘tour’ are then assumed to be 

relevant to the molecular drug response. We focus on the action of drugs 

(pharmacodynamics, PD) and not their metabolism (pharmacokinetics, PK-also an important 

area) by excluding pharmacokinetic genes before applying our algorithms. Figure 1 

illustrates the steps of our method.

We show that the pathways we construct are useful for four applications: (1) elucidating 

drug-specific PD pathways, (2) suggesting alternative indications for a drug (drug 

repositioning), (3) associating genes with drug side effects, and (4) associating genes with 

drug-drug interactions. We validate each of these applications independently.

Results

Drug-pharmacodynamic pathways as perturbed cellular pathways

A key assumption of our method is that drug-related pathways of action are chiefly drawn 

from existing knowledge of biology, and do not represent uncharacterized cellular 

interactions. Existing pathway databases reflect current knowledge of cellular mechanisms 

that are studied for many reasons, including their relevance to basic metabolism and disease 

processes. It is important for us to demonstrate that these databases contain useful and 

relevant knowledge for inferring the mechanism of action of drugs. Indeed, known PD 

pathway display significant overlap with other curated cellular pathways ( supplementary 

material, section 1).
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Building drug-specific PD pathways

We constructed pathways for 113 drugs with at least one known drug target, pharmacogene, 

and disease-associated gene (Methods, sections 1–4, supplementary material, data file S1). 

The pathways display high variability in size (90±75 genes on average). Our pathway 

computations are robust: when we removed individual pharmacogenes or disease-associated 

genes, we found little overall change in the inferred pathways (see Methods, section 4 and 

Figure 2).

We clustered the drugs according to the overlap of the genes in their computed pathways 

(Methods, section 4). Figure 3 displays clusters of minimal size four, spanning 67 drugs. As 

expected, the clusters reflect similar or related therapeutic families. We provide an 

illustration and analysis of a small-sized pathway of tiludronate in the supplementary 

material (section 2 and figure S1).

We demonstrate the validity of our pathways with three observations made on the inferred 

genes of the pathway (genes in the drug-specific pathway, excluding the drug targets, 

pharmacogenes and disease genes): (1) genes in our drug-specific pathway have significant 

co-occurrence in the literature; (2) our drug-specific pathways have significant overlap with 

available gold-standard PD pathways, and (3) our pathways are enriched for genes that are 

hits in drug-based genome-wide association studies (GWAS) of warfarin, paclitaxel and 

gemcitabine. To assess the significance of these measures, we compared the drug-specific 

pathways against a set of randomly constructed control pathways (Methods, section 4).

For the support of literature co-occurrences, we queried PubMed and PubMed Central 

(PMC) for textual co-occurrence of drugs and genes (Methods, section 4). We found that 

inferred genes significantly co-occur with the corresponding drug compared to unrelated 

controlled genes (Wilcoxon rank sum test, 109/113 drugs below FDR of 0.05). The obtained 

p-values were also lower than p-values obtained compared to other pathways (88% of the 

pathways) and to random pathways (Wilcoxon rank sum test, p< e−120), where 87% of the 

individual pathways performed better than random pathways and the remaining fifteen 

pathways were all small (14±10 inferred pathway genes as compared to 75±59 for other 

drug-specific pathways, p<2e−7 - see also Discussion).

As a second verification, comparison to gold standard PD pathway, we focused on 43 drugs 

for which 21 PD pathways are available in PharmGKB. 23 of the drug-specific pathways 

(corresponding to 11 known PD pathways) were enriched for overlapping genes 

(hypergeometric enrichment, false discovery rate (FDR) <0.05). Moreover, when we 

measured the distance of inferred genes in the drug-specific pathways to the known PD 

pathways, the remaining 20 drug-specific networks were significantly closer (in terms of 

network distance) to the known PD pathways than the random control pathways 

(FDR<0.05).

The third evaluation, focused on GWAS for warfarin (6), paclitaxel (7) and gemcitabine (8), 

is described in the supplementary material (section 3). Additionally, we describe 

associations between genes modulating response to doxorubicin in yeast and the 

doxorubicin-specific pathway genes in the supplementary material (section 4).

Gottlieb and Altman Page 3

Clin Pharmacol Ther. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Applying inferred pathways to suggest drug repositioning

We can use the drug-specific pathways to propose new indications for existing drugs. Using 

two independent criteria, we obtained 1,484 pairs of novel drug-disease pairs using the first 

and 1,348 pairs using the second (Methods, section 5). 195 of the pairs satisfied both 

criteria. These predictions associate 113 drugs to 139 diseases (Table S1).

We evaluated our repositioning predictions by computing enrichment of the predictions in 

(1) current clinical trials in phases I–III and (2) off-label uses extracted from electronic 

health records (Methods, section 5). Between 15% and 27% of the experimental (i.e. not yet 

approved) drug and disease associations being tested in clinical trials satisfy the first and 

second criteria, respectively (hypergeometric test, p<2e−7 and p< 2e−36, respectively). 

Similarly, between 19%–21% of off-label drug uses, extracted from electronic health 

records (9) satisfy one of the two criteria (hypergeometric test, p<5e−4 and p<0.02, 

respectively). Last, our predictions were enriched in a ‘silver-standard’ set of drug-disease 

associations (p<0.02 and p<0.05 for the two criteria, respectively) (Methods, section 5). 

Notably, our predictions were also enriched with the phenotype-driven repositioning 

prediction set published in (10) (p<0.04 and p<2e−7, respectively).

Another evaluation of our repositioning focused on repositioning of cancer drugs to other 

cancer types. We downloaded bioassays from Pubchem (11) for 34 cancer drugs and 

mapped the bioassays to 30 cancer diseases (supplementary methods, section 2). 

Aggregating the number of active and inactive bioassays across all studies and excluding 

inconclusive treatments resulted in 361 drug-disease pairs, where the drug was exclusively 

active or inactive. We found that only the second criteria received significant results 

(hypergeometric test, p<0.05. odds-ratio=1.57).

Among the predicted drug repurposing opportunities, we highlight five that were predicted 

using both criteria. First, conjugated estrogens and verapamil are predicted to affect type 2 

diabetes mellitus. Indeed, conjugated estrogens improve glycemic control in postmenopausal 

women with type 2 diabetes (12) and short-term verapamil decreases fasting plasma glucose 

and glucose turn-over in non-insulin dependent diabetics, possibly by inhibition of 

gluconeogenesis (13). Second, thalidomide may be useful against Alzheimer’s disease (AD), 

in part through effect on the AD-associated genes - amyloid precursor protein (APP) and 

amyloid beta A4 precursor protein-binding family B member 2. Indeed, a recent study 

showed that long-term treatment of thalidomide may treat a mouse model of Alzheimer’s 

disease through inhibition of beta-site APP cleaving enzyme 1 (14). Third, NSAIDs, 

including aspirin and the withdrawn drug rofecoxib, may have a role in colon cancer. 

Indeed, the former was reported to reduce the risk of colon cancer (15) while the latter is 

chemo-preventive in a mouse model of colon cancer (16). The last two examples show 

evidence of a drug-disease association, but the type of association (treatment or causal) is 

less evident at this time: (1) valproic acid may be associated with acute leukemia. Indeed a 

study reported this association with proposed mechanism of inhibition of histone deacetylase 

(17), while a case report for three patients claimed that valproic acid causes leukemia 

through the same mechanism (18) and (2) statins on our list (Simvastatin, Lovastatin, 

Pravastatin, Atorvastatin and Fluvastatin) are associated with follicular thyroid cancer. 

While studies reported that lovastatin induces apoptosis in a different thyroid cancer - 
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human anaplastic thyroid carcinoma cells (19, 20), a single case study reported development 

of thyroid follicular adenoma on simvastatin therapy (21) and another study reported the 

development of thyroid neoplasms at high dosages in rats (22). A nine-year follow-up 

reported inconsistent findings, where increased risk of thyroid cancer in men after 5 years of 

statin use was not supported by the 2-year lag results or by the findings in women (23).

Several drugs predicted to interact with diseases may not treat them, but instead cause them 

or increase their severity. Aspirin (acetylsalicylic acid) induces asthma (24) and calcium or 

paclitaxel may increase the risk of myocardial infarction (25, 26). These predictions, while 

not leading to new repositioning may be, however, useful in exposing the potential 

molecular mechanisms underlying these disorders.

Inferred pathways suggest novel associations between genes, side effects and drug 
interactions

In a similar manner to the drug repositioning, the existence of a gene associated with a side 

effect (SE) on a drug pathway may indicate that the drug induces the side effect. Using a 

literature curated list of gene-side effect associations, 26% of the predicted side effects are 

known drug side effects (hypergeometric test, p<3e−15) (supplementary material, section 6).

As the set of known genes associated to side effects are currently limited, our drug-specific 

pathways can suggest novel associations between genes and potential side effects. We 

computed the enrichment of genes within their pathways for 764 SEs associated with the 

113 drugs, accounting for similar drugs. We obtained a final list of 135 gene-SE 

associations, spanning 33 genes and 50 SEs (supplementary material, section 6, Table S3 

and Figure S2). Finally, our drug-specific pathways can associate genes and PD drug 

interactions. We found fifteen genes enriched for co-occurrence in drug-specific pathways 

of severely interacting drugs (supplementary material, section 7, Table S4 and Figure S3).

We evaluated our gene-SE predictions by querying PubMed and PMC for associations 

between 28 SEs from our prediction set and the genes in our network and our gene-DDI 

predictions by querying PubMed and PMC for the co-mentioning of the genes with all 

possible drug combinations. Nineteen SEs (out of 28) were significantly co-mentioned with 

the predicted associated genes and ten (out of fifteen) genes had more frequent co-

mentioning with severely interacting drug pairs than with non-interacting drug pairs (FDR 

<0.05 for both). We provide detailed analysis and highlight examples in the supplementary 

material, section 6 and 7.

Discussion

In this paper, we introduce a novel method for inferring drug-specific pathways. We connect 

known drug associated genes (drug targets, pharmacogenes and genes associated with 

diseases treated by the drug) over protein, metabolic and transcriptional interaction networks 

while preferring high confidence interactions participating in curated cellular processes. In 

that sense, our method is conservative and unlikely to propose radically new pathways 

unless the high-throughput evidence is very strong. Upon evaluation of our constructed 
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pathways, we were able to suggest novel drug repositioning, associate genes with side 

effects and suggest potential causes for drug-drug interactions.

In order to reduce the inherent noise in biological networks, our algorithm searches for the 

most confident paths, using preferentially high confidence “highways” and maintaining only 

highly traversed paths. Our conservative approach emphasizes precision to control for false 

positives. However, we might miss additional genes that reside either on less traversed 

pathways or on “side roads” with these requirements. This property may have caused the 

genes on fifteen small pathways to have fewer co-mentioning with the drug than the genes in 

the random pathways. In addition, most protein-protein interactions lack directionality as 

well as sign (activation/inhibition). Incorporating of such additional information into the 

model would enhance the pathway construction task.

Not all the drug-specific pathways were enriched in curated PD pathways, but were 

significantly closer to those curated PD pathways on the interaction network. The human 

curation requirements enforced by PharmGKB curators lead to a very high specificity of 

these curated pathways, but low sensitivity, potentially missing several lower evidence parts.

We assumed that discovery of new disease genes or drug target genes along a pathway 

propose a new drug repositioning opportunity. We disregarded, however, some factors that 

may prevent such an opportunity from materializing such as the actual role of those disease 

or drug target genes in the treatment (e.g. activation vs. inhibition) as well as the expression 

of those genes in a given tissue. Indeed some of our repositioning suggestions were found to 

induce or elevate the disease risk.

As noted by several authors (27, 28), drug discovery is fast moving from the single gene 

research paradigm to the systems biology analysis paradigm. DrugRouter represents a 

general-purpose tool to harness pathway information for multiple uses.

Methods

1. Data sets

Gene interaction network—Protein-protein interactions (PPIs) were assembled from the 

union of BioGrid ver. 3.1.94 (29), DIP (Aug 2012) (30), HPRD release 9 (31), IntAct (Oct 

2012) (32), MINT (Oct 2012) (33), MIPS (34) and HIPPIE ver. 1.4 (35). Curated PPIs were 

extracted from KEGG (May 2012) (36) human signaling pathways. Metabolic interactions 

between enzymes were extracted from KEGG (36) human metabolic pathways. Protein-

Gene (transcriptional) interactions were retrieved from the ChEA database (37). The 

network includes more than 223,000 interactions.

Pathways—Pathways were imported from the Pathway Interaction Database (38) which 

includes the NCI-Nature human curated pathways and selected pathways from Reactome 

(39) and BioCarta (40) (1331 Pathways). Pharmacodynamic pathways were downloaded 

from PharmGKB (41) (41 pathways).
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Drug-specific genes—Drug targets were downloaded from DrugBank (42). Drug 

sensitivity variants were retrieved from PharmGKB (41) (data file S2).

Drug-disease genes—Genes associated with drug indications were assembled by 

mapping disease-associated genes retrieved from OMIM (Apr 2013) (43) to drug indications 

retrieved from (44). On average, 18.5±18.3 disease genes were assigned to a drug (data file 

S2)

Drug side effects and drug interactions—Drug-side effect associations were 

downloaded from the SIDER2 database (45). DDIs were retrieved from DrugBank (42) and 

the drugs.com website (46) as described in (10).

2. Building the network of highways and side roads

We constructed a network by integrating three types of interactions: (1) PPIs, (2) Metabolic, 

where enzymes are connected via a mutual metabolite, and (3) transcriptional, where a 

transcription factor is connected to a transcribed gene. Each network interaction was tagged 

as ‘highway’ if it is a (1) a PPI appearing in a KEGG signaling pathway, (2) a PPI where the 

two interacting genes appear in the same curated cellular pathway, or (3) a curated metabolic 

interaction from KEGG metabolic pathways. The remaining interactions were tagged as 

‘side roads’. Transcriptional interactions and ‘highway’ interactions from KEGG are 

directed and the rest are undirected (data file S2).

3. The DrugRouter algorithm

DrugRouter constructs pathways in two consecutive stages: (1) A construction stage and (2) 

A pruning stage.

The first, construction, stage connects pairs of start and destination points (e.g. a drug target 

as a starting point and a pharmacogenes as the destination point). We included five different 

start-destination pair types: (1) Drug targets to pharmacogenes, (2) drug targets to disease 

genes, (3) pharmacogenes to pharmacogenes, (4) pharmacogenes to disease genes, and (5) 

disease genes to disease genes.

For each pair type, we connect all the start and destination pairs by applying three steps:

1. Locate all the nearest highway entry points (“on-ramps”), i.e minimal number of 

side-roads between the start point and the highway entry point. If the distance to the 

nearest “on - ramp” is farther than one standard deviation above the mean network 

path length (more than three interactions in our network), that start point is 

excluded from the analysis.

2. Locate all the highway exist points (‘off-ramps’) nearest to the destination point in 

a similar manner to step 1.

3. Find the shortest paths between the ‘on-ramps’ and ‘off-ramps’. If none of the ‘off-

ramps’ is reachable from the ‘on-ramps’, we allow the use of side roads by 

weighing each side road as high as 10 highway interactions. We include all 

equidistant shortest paths.
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Since the effect of a pharmacogene on the drug action is less likely to stem from 

transcriptional regulation of the pharmacogene, we ignored transcriptional regulation of the 

pharmacogene when it was a destination point. The effect of this decision was negligible in 

line with the robustness of the pathways (Methods section 4 and Figure 2). The result of the 

construction stage is the union of all the start-destination routes.

In the second, pruning, stage, we applied a conservative approach in which we retained only 

higher confidence interactions that are traversed by tours from more than one of the five 

start-destination pair types (e.g. tours that connect a drug target and a pharmacogene and a 

tour that connects a pharmacogene to a disease gene). If following this pruning, a 

pharmacogene or disease gene becomes disconnected, we also retain all the shortest routes, 

discovered in the construction stage, that connect the drug targets to that pharmacogene or 

disease gene.

4. Building drug-specific PD pathways

Some of the drugs in our set of 113 belong to the same drug family. However, no two drugs 

shared the exact set of inputs (drug targets, pharmacogenes and disease genes). Specifically, 

more than 90% of the drugs share less than 80% identity in their associated gene set and 

more than 90% of the drugs have a non-redundant chemical structure with Tanimoto 

coefficient lower than 0.7.

In order to simulate construction of de-novo pathways, when building pathways for drugs 

that have a gold-standard curated PD pathway, we converted the highways that are specific 

to that PD pathway to side roads.

In order to test the robustness of the drug-specific pathways, we systematically constructed 

the drug-specific pathway after removal of each of the pharmacogenes or disease genes. We 

observed high robustness in terms of inferred genes or inferred interactions. The Jaccard 

scores (47) between the sets of genes or interactions in the drug-specific pathways and the 

leave-one-out pathways, (computed as the size of the intersections between the two sets 

divided by the size of the union of the two sets), was 0.87±0.08 and 0.85±0.08, respectively. 

As anticipated, the greater the number of drug-associated pharmacogenes and disease genes, 

the more robust is the drug-specific pathway to their removal (Figure 2).

We performed bi-clustering of the drugs by computing the relative overlap of the genes in 

the inferred pathways of each pair of drugs (Jaccard score), using a modification of the 

spectral co-clustering algorithm of (48), whereby each bi-cluster is further clustered by 

single-linkage hierarchical clustering.

For evaluation purposes, we constructed 200 random pathways per drug by connecting the 

known drug targets with the same number of randomly picked genes from the interaction 

network as the set of known pharmacogenes and disease genes. We controlled for the 

randomly selected genes in three ways: (1) random shuffling of the known pharmacogenes 

and disease genes (100 pathways), (2) maintaining the same network degree distribution as 

the network degree distribution of the true pharmacogenes and disease genes of that drug 

(50 random pathways) and (3) maintaining the same distribution of network distances 
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between the random pharmacogenes and disease genes as the network distances between the 

true ones (50 random pathways). We required the shuffled and randomly picked genes to be 

distant by at least the mean network path (more than two edges) from the true 

pharmacogenes and disease genes. The performance difference between each type of 

random pathways was negligible (1% difference in the number of significant drugs in 

PubMed test and no difference in the enrichment against curated PD pathways).

For the first support of literature co-occurrences, we queried PubMed abstracts and PubMed 

central whole articles using the PubMed E-Utilities interface for all pairwise combinations 

of one of the 113 drugs (using generic names) and one of the 19,176 genes in the gene 

network (official gene symbols). We manually excluded 63 ambiguous gene names (e.g. a 

known English word such as ‘rest’ or ‘tag’ or a prevalent abbreviation such as ‘ORF’ or 

‘PDF’). Our statistics included rank sum comparison of the number of literature co-

occurrences of the drug and the drug-specific inferred genes to (1) co-occurrences of all 

other genes (p-values for all the drugs below FDR of 0.05), (2) un-associated genes involved 

in the curated cellular pathways (109/113 drugs below FDR of 0.05), (3) all inferred genes 

from other pathways, or (4) the inferred genes from the random pathways constructed for 

that drug. The rank-sum p-values were lower than p-values obtained upon shuffling of gene 

assignments to drug-specific pathways.

For drug-specific pathways which were not enriched with the gold standard PD pathways, 

we measured the average distance between the PD pathway and the drug-specific pathway 

over the network (ignoring the distinction between highways and side-roads), compared to 

the distance between the PD pathway and the random pathways. As expected, switching 

roles between highways and side-roads resulted in only four enriched known PD pathway.

5. Applying inferred pathways to suggest drug repositioning

We considered two potential criteria for applying the drug-specific pathways for drug 

repositioning. A drug repositioning opportunity for drug A is found when: (1) a known 

target of a drug A appears along the path connecting the known target and disease gene of 

drug B (drug A may treat the disease that drug B treats); or (2) a known disease gene 

appears in the pathway computed for drug A (drug A may treat this newly implicated 

disease) (Figure 4).

For verification of our drug repositioning predictions, we downloaded phases I–III clinical 

trial up to June 28th, 2013 from the clinicaltrials.gov website. Drug names were matched to 

DrugBank generic, synonymous and brand names. Condition names were converted to 

OMIM disease names using the MetaMap tool (49) and filtering operations described in 

(44). When a drug-disease pair appears in more than one phase, we chose the highest phase. 

Overall, we obtained 410 unique drug-disease pairs that involve both drugs and diseases in 

our prediction set.

Off-label drug indications, as well as approved indications that do not appear in our strict 

gold standard were obtained from electronic health records from Stanford Hospital.
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We found additional support comparing to a ‘silver-standard’ set of drug-disease 

associations. As described in (10), the authors constructed drug-disease associations from 

four independent sources. Two of the sources, based on extraction from textual indications, 

were noisier and required additional evidence to be included in the gold standard. However, 

they used the remaining set of single-evidence associations as a ‘silver standard’ for 

verification purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

What is the current knowledge on the topic?

Although the targets of many drugs are known, as are the key genes that modulate drug 

response, we generally have incomplete knowledge of the molecular pathways by which 

drugs act.

What question this study addressed?

This study interrogates the pharmacodynamic drug mode of action. It further explores the 

applicability of this knowledge for applications such as drug repositioning and 

associating genes with side effects and with drug interactions.

What this study adds to our knowledge?

This study generates testable hypotheses about pharmacodynamic pathways of drugs. 

Using these pathways, we suggest alternative indications (drug repositioning), and 

associate proteins with drug side effects and with drug-drug interactions.

How this might change clinical pharmacology and therapeutics?

The pathways and gene associations produced in this study provide leads for new drug 

targets that may drive drug development. Pathway genes may also be candidates for 

novel pharmacogenes (genes modulating of drug response). Finally, we suggest 

alternative therapeutic indications for approved drugs.
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Figure 1. 
Illustration of the DrugRouter method. Method input, including drug targets, pharmacogenes 

and disease genes and the network constructed of highways and side-roads (A), building the 

raw pathway, connecting drug targets, pharmacogenes and disease genes (B) and pruning 

the raw pathway by keeping only paths traversed by more than one color (C).
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Figure 2. 
Robustness of inferred pathways to removal of pharmacogenes and disease-genes. The mean 

and standard deviation of the Jaccard score between the genes in the inferred pathway and in 

the leave-one-out pathway (intersection size divided by union size) as a function of the total 

number of pharmacogenes and disease genes per drug.
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Figure 3. 
Clustering of drugs based on drug-specific pathway similarity. The x-axis and y-axis show 

the same 67 clustered drugs (same ordering for both axes). Colors correspond to the relative 

overlap of the constructed pathways for each drug pair (Jaccard score). The number in 

parenthesis beside the drug names correspond to the cluster number. Labels on the left are 

“rough guides” based on the plurality of drugs in that cluster, but acknowledge that some 

drugs may be in unusual clusters and this represents interesting hypotheses about their 

pathway connections that may deserve follow-up.
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Figure 4. 
Illustration of the drug repositioning prediction scheme. A repositioning of drug A is 

suggested if: (1) a drug target of an drug A is found along the path between the drug target 

and disease genes of drug B, or (2) a disease gene unrelated to drug A is found within the 

pathway of drug A.
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