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Replacing conventional battery electrolyte additives
with dioxolone derivatives for high-energy-density
lithium-ion batteries

Sewon Park!, Seo Yeong Jeong?, Tae Kyung Lee!3, Min Woo Park!, Hyeong Yong Lim', Jaekyung Sung’,
Jaephil Cho', Sang Kyu Kwak® "™ Sung You Hong® 2* & Nam-Soon Choi@® '™

Solid electrolyte interphases generated using electrolyte additives are key for anode-
electrolyte interactions and for enhancing the lithium-ion battery lifespan. Classical solid
electrolyte interphase additives, such as vinylene carbonate and fluoroethylene carbonate,
have limited potential for simultaneously achieving a long lifespan and fast chargeability in
high-energy-density lithium-ion batteries (LIBs). Here we report a next-generation synthetic
additive approach that allows to form a highly stable electrode-electrolyte interface archi-
tecture from fluorinated and silylated electrolyte additives; it endures the lithiation-induced
volume expansion of Si-embedded anodes and provides ion channels for facile Li-ion
transport while protecting the Ni-rich LiNiggCo0g1Mng0, cathodes. The retrosynthetically
designed solid electrolyte interphase-forming additives, 5-methyl-4-((trifluoromethoxy)
methyl)-1,3-dioxol-2-one and 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one, pro-
vide spatial flexibility to the vinylene carbonate-derived solid electrolyte interphase via
polymeric propagation with the vinyl group of vinylene carbonate. The interface architecture
from the synthesized vinylene carbonate-type additive enables high-energy-density LIBs with
81.5% capacity retention after 400 cycles at 1C and fast charging capability (1.9% capacity
fading after 100 cycles at 3 C).
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ithium-ion batteries (LIBs) have been unrivaled energy

sources for portable devices, such as laptops and smart-

phones, over the last three decades. The materials technol-
ogy and the manufacturing processes for LIBs have advanced
considerably, which have vastly improved their capacities and
rendered them capable of powering electric vehicles (EVs)!=.
Securing high-energy-density LIBs with a long lifespan and fast
charging performance is vital for realizing their ubiquitous use as
superior power sources for electric vehicles. Among the materials
developed for EV-adoptable high-energy-density LIBs, Si, and Ni-
rich layered oxides have been prime choices for electrode material
construction, owing to their high-energy storage capabilities®~10,
However, Si-based anodes and Ni-rich cathodes suffer from
structural instabilities induced by anisotropic volume changes
and interface deterioration. Unlike graphite, the lithiation of Si
provokes the generation of Li-Si alloys, which cause a colossal
volume expansion (>300%) and fatal mechanical fractures of the
Si particles!®!1. Therefore, the solid electrolyte interphases (SEIs)
at Si anodes degrade severely. This degradation induces the
exposure of the Si surface, which leads to the continuous elec-
trolyte decomposition-induced thickening of the SEI and eventual
electrolyte depletion, thus rendering the battery unusable!2.

Electrolyte additives have been extensively employed for
extending the cycle life of LIBs while preventing electrolyte
decomposition at the electrodes!3-17. So far, reductive compounds
possessing fluorine-donating moiety or vinyl group!8-2! have been
exploited as SEI-forming additives for Si-based anodes. Fluor-
oethylene carbonate (FEC) has been commonly employed owing
to its unique feature establishing a mechanically stable LiF-
containing SEI, that can maintain the interfacial stability of Si-
based anodes!!22-24 However, undesired defluorination of FEC
by Lewis acidic PF5 in LiPF4-containing electrolytes, resulting in
the generation of corrosive HF?> and gaseous species such as
CO,%627, causes severe deterioration of storage performance of
LIBs at high-temperature conditions. The use of FEC-containing
electrolytes may require combination with complementary addi-
tives to ensure the desired action of FEC in LIBs. In particular, 1,3-
dioxol-2-one, also known as vinylene carbonate (VC), has been
commonly applied to form the SEI on the anode?0-21:28-32,
However, VC-derived SEIs comprising rigid poly(VC) species
cannot bear the volumetric stress raised by the lithiation of Si32-34,
Further, the structurally dense VC-derived SEIs act as resistive
interfacial layers that hinder the fast charging performance of
batteries and cause Li plating on the anode, which creates safety
concerns®>36. More critically, the molecular-level synthetic design
of functional VC derivatives has been challenging due to the
destruction of the cyclic 1,3-dioxol-2-one nucleus associated with
its labile electrophilic carbon center.

Silicon-centered, phosphorus-centered, or boron-centered
compounds undergo electrochemical oxidation at Ni-rich cath-
odes prior to electrolyte decomposition, and contribute to the
creation of a stable cathode-electrolyte interface (CEI). Therefore,
they have been adopted to mitigate the interfacial damages of Ni-
rich cathodes during cycling3’-3°. Further, the amelioration of
electrochemical reversibility of Ni-rich cathodes has been
accomplished using scavengers with basic electron-donating
moieties, such as phosphite, amine, amino silane, and silyl
ether. This is because the scavengers capture HF, which leaches
out transition metal cations from the cathode and leads to the
compositional change and structural damage of the SEI/CEI,
which should be stably maintained to ensure the cycling stability
of the electrodes®0.

Herein, we demonstrate the design and synthesis of functional
VC derivatives bearing —OCF; and trimethylsilyloxy (—OTMS)
moieties (Fig. 1) and report their application in LIBs comprising a
high-capacity Si-embedded anode and a LiNipgCop;Mng;0,

(NCM811) cathode. A molecularly optimized SEI structure
resolves the traditional drawbacks associated with VC-derived
SEIs, such as rigidity, which hampers their reversible deformation
upon Si volume expansion/contraction. The dimethylvinylene
carbonate (DMVC)-bearing —OCF; group can act as an effective
radical precursor through one-electron reduction, allowing suc-
cessive propagation steps, and the —OTMS moiety can effectively
scavenge detrimental HF, provoking the destruction of the SEI/
CEL Our study revealed that the combination of VC, DMVC-
OCF;, and DMVC-OTMS offers a stable and deformable SEI on
the Si-C anodes and maintains the interfacial stability of
NCMB811 cathodes through HF scavenging. Further, we show that
the structural regulation of SEI and the improved stability of CEI
with the use of DMV C-OCEF;, DMVC-OTMS, and VC enable fast
charging of NCM811/Si-C full cells, which is vital for use in EVs.

Results

Retrosynthetic design of DMVC-OCF; and DMVC-OTMS.
Our retrosynthetic design of the additives based on the DMVC
scaffold centers around the use of the —OCF; group as a fluorine
source to generate LiF and the utilization of the —OTMS group as
an HF scavenger. DMVC-OH as a synthetic platform was pre-
pared in 72% isolated yield in three steps, namely, radical bro-
mination, formate ester generation, and hydrolysis (Fig. 1la; see
also the Supplementary Methods and Supplementary Fig. 1)41.
The synthetic route involving the formation of the readily
hydrolysable formate ester intermediate was selected owing to the
higher yield than under direct hydrolysis conditions (Supple-
mentary Table 2 and Supplementary Fig. 2). DMVC-OCEF; was
then prepared by the silver-mediated O-trifluoromethylation of
DMVC-OH to circumvent the instability issue associated with the
use of the nucleophilic CF;0~ reagent (Fig. 1a)4243. DMVC-
OTMS was prepared by the O-silylation of DMVC-OH using
chlorotrimethylsilane (TMSCI) and imidazole (Supplementary
Table 1). Compared with the 'H NMR chemical shifts of DMVC-
OH, the 'H NMR peaks of DMVC-OCF; were observed in the
more deshielded region due to the reduced electron density from
the trifluoromethyl moiety (Supplementary Fig. 3). The 'H NMR
spectrum of DMVC-OTMS clearly indicated a strong singlet peak
at 0.17 ppm assigned to the trimethylsilane group. The char-
acteristic quartet signal of the CF; moiety of DMVC-OCF; in the
I3C NMR spectrum was observed along with carbonyl, vinyl,
methyl, and methylene carbons. In addition, DMVC-OTMS
provided the characteristic 13C peaks, including those for Si
(CH;);. The SEI is constructed on the Si-C anode via reductive
copolymerization of DMVC-OCF;, DMVC-OTMS, and VC
during lithiation (Fig. 1b, c). Conversion of COF, with nucleo-
philic substances generated by the reductive decomposition of
DMV C-OCF; may furnish the corresponding carbon dioxide or
organic carbonate derivatives*4-46 (Supplementary Fig. 4). A
possible mechanism for the improvement of the interfacial sta-
bility of Si-C anodes and the LiNiygCopy;Mn,;0, (NCM811)
cathodes by DMVC-OCF;, DMVC-OTMS, and VC is depicted in
Fig. 2.

Confirmation of the copolymerization of VC derivatives. The
lowest unoccupied molecular orbital (LUMO) energy levels of
DMVC-OCF; and DMVC-OTMS were lower than those of EC,
VC, and fluoroethylene carbonate (FEC) (Fig. 3a and Supple-
mentary Fig. 5), implying that DMVC-OCF; and DMVC-OTMS
have a greater tendency for reduction at the anode than EC, VC,
and FEC. Experimentally, the dQ/dV graphs of the Li/Si-C
half-cell confirmed that DMVC-OCF; and DMVC-OTMS
had a higher reduction voltage than EC and VC, indicating
that DMVC-OCF; and DMVC-OTMS modulated the interface
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Fig. 1 Synthesis of functional VC derivatives and transformation of additives to form SEI on the Si-C anode. a Synthesis of DMVC-OTMS and DMVC-
OCFs. b Electrochemical transformations of DMVC derivatives. SET single electron transfer, NBS N-bromosuccinimide, AIBN azobisisobutyronitrile, 1,2-
DCE 1,2-dichloroethane, TEA trimethylamine, MeCN acetonitrile; EtOAc ethyl acetate. € Design of a deformable and stable SEI using VC, DMVC-OCF3 and

DMVC-OTMS on the Si-C anode.

structure of the Si-C anode (Supplementary Fig. 6). Furthermore,
we could predict that the decomposition of DMVC-OCEF; into the
DMVC radical and the OCF; anion by one-electron reduction
occurred favorably (Fig. 3b) because the LUMO energy level of
the OCF; radical was much lower than those of the DMVC
radical and the decomposed DMVC-OCF; by C=C bond clea-
vage (Supplementary Fig. 7). The first lithiation of Li/Si-C half-
cell also exhibits a reduction peak at 1.0V vs. Li/Lit, which
implies a one-electron reduction of DMVC-OCF; to produce the
DMVC radical and OCF; anion (Supplementary Fig. 8a and c).
The second peak (see Supplementary Fig. 8a) can be attributed to
the reduction of the OCF; anion to form LiF because the LiF peak
intensity was drastically increased after lithiation to 0.45V
(Supplementary Fig. 8a, b). Likewise, DMVC-OTMS showed a
preference toward decomposition into DMVC radicals and
OTMS anions rather than C=C bond cleavage (Supplementary
Fig. 9). Among the species resulting from the decomposition of
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DMVC-OCF;, the OCF; anion could form LiF by interaction
with Lit ions. Note that in the presence of the LiT ion, the
activation energy and the heat of reaction decreased dramatically,
facilitating LiF and OCF, formation (Fig. 3c). Because OCF, has a
lower LUMO energy level than those of DMVC-OCEF;, the OCF;
anion, and LiF (Supplementary Fig. 10), OCF, was more likely to
accept an electron to form the OCF, anion (Fig. 3c). Promisingly,
the C-centered DMVC radicals formed by the one-electron
reductions of DMVC-OCF; and DMVC-OTMS underwent
polymerization with the VC framework by attacking the olefinic
carbon of the VC vinyl group, resulting in the formation of the
SEI Remarkably, our calculation results showed that the attack of
the DMVC radical on VC was thermodynamically more favorable
(Fig. 3d) than its reaction with DMVC-OCF; or DMVC-OTMS
(Supplementary Fig. 11). The competitive decarboxylation route
to release CO, was possible by the decomposition of the DMVC
radical (Supplementary Figs. 12-14); however, the reaction of the
3
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Fig. 2 Unique features of DMVC-OCF3;, DMVC-OTMS, and VC for building stable interfacial layers. Incorporation of DMVC-OCF3 and DMVC-OTMS in
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providing space for Li-ion transport in the SEI.

DMVC radical with VC was the more dominant reaction because
of its exothermicity and the low activation energy barrier com-
pared to that for CO, generation (Supplementary Fig. 15). After
the reaction of the DMVC radical with VC, the sequential reac-
tions with DMVC-OCF;, DMVC-OTMS, and VC were also
exothermic while generating successive C-centered radicals
(Fig. 3d). To probe the possibility of propagation reactions with
various combinations of VC, DMVC-OCF;, and DMVC-OTMS,
we studied additional reactions with VC, DMVC-OCF;, or
DMVC-OTMS and found that most cases were thermo-
dynamically favorable (Supplementary Fig. 16). Consequently, the
reaction events with VC, DMVC-OCF;, and DMVC-OTMS
molecules were expected to propagate the creation of the poly-
meric SEI on the Si-C anode (Fig. 1b). To this end, we theore-
tically predicted that the DMVC radical and the OCF; anion from
the reduction of DMVC-OCF; and DMVC-OTMS play a pro-
minent role in the construction of the VC + DMVC-OCF; +
DMVC-OTMS-derived SEI. A decrease in the C=C peak at 1650
cm~! and an increase in the C=0 peak at 1775 cm~! via the
copolymerization of VC, DMVC-OCF;, and DMVC-OTMS were
revealed through attenuated total reflectance Fourier transform
infrared spectroscopy studies on the SEI (Supplementary Fig. 17).
Furthermore, the C-F peak at 1180 cm~! appeared by the
reductive decomposition of the OCF; anion.

Electrochemical performance of NCM811/Si-C full cells. The
combination of VC, DMVC-OCF;, and DMVC-OTMS enabled a
high discharge capacity of 1953 mAh g=! compared with
additive-free electrolyte (179.0 mAh g~1) during precycling
(Supplementary Fig. 18). The initial Coulombic efficiency values
of the full cells with VC + DMVC-OCF; + DMVC-OTMS were
similar to those of the VC-containing and FEC-containing cells,
indicating that VC + DMVC-OCF; + DMVC-OTMS forms sui-
table interfacial layers on both electrodes in full cells. The dQ/dV
graphs of the full cells showed that VC+ DMVC-OCF; +
DMVC-OTMS contributed to SEI formation on the Si-C anode
at 2.55V, which is a lower potential than that for the VC

reduction potential of 2.90 V (Fig. 4a). Importantly, galvanostatic
intermittent titration technique (GITT) experiments confirmed
that the NCM811/Si-C full cell with VC+ DMVC-OCF; +
DMVC-OTMS exhibits reduced IR drop by less resistive inter-
facial layers compared with full cells with VC or FEC, allowing
facile ion migration at high charge C-rates (Fig. 4b). Further, the
impedance result of NCM811/Si-C full cell after 400 cycles
revealed that VC + DMVC-OCF; + DMVC-OTMS made the SEI
less resistive, leading to facile Li-ion transport (Supplementary
Fig. 19). The cycle test of NCM811/Si-C full cells at 25 and 45 °C
displayed distinct outcomes in their cycling performance (Fig. 4c
and Supplementary Figs. 20 and 21). The NCM811/Si-C full cells
without the additive showed severe capacity fading and low
Coulombic efficiency over 400 cycles at 25°C (Fig. 4c). The
commonly used FEC for Si-embedded anodes had a better
capacity retention (71.9%, Fig. 4d) than the VC (51.0%, Fig. 4e
and Supplementary Fig. 22¢). Although the use of DMVC-OCEF;,
which can cross-couple to the VC framework via electrochemical
copolymerization, improved the cycling stability of NCM811/
Si-C full cells, the VC + DMVC-OCF; did not surpass the FEC
ability. Notably, the VC+ DMVC-OCF;+ DMVC-OTMS
attained stable cycling with an improved capacity retention
(81.5%) after 400 cycles (Fig. 4c, f and Supplementary Fig. 22e).
To determine the oxidation stability of DMVC-OCF; and
DMVC-OTMS, the leakage current of Li/NCM811 half-cells was
monitored at a constant charging voltage of 4.35V vs. Li/Li* for
3 h. Compared to FEC and VC, VC+ DMVC-OCF; + DMVC-
OTMS showed reduced leakage current, which indicates higher
oxidation stability of the electrolyte. This result suggests that the
presence of the C=C vinyl group of DMVC-OCF; and DMVC-
OTMS does not negatively affect the performance of the NCM811
cathode at high potentials (Supplementary Fig. 23). Further, VC
+ DMVC-OCF; + DMVC-OTMS led to better cycling stability of
full cells containing Si-C anodes with a higher Si content of 7 wt
% than those of FEC and VC-added electrolytes (Supplementary
Fig. 24). This result is enough to support the desirable effects of
VC + DMVC-OCF; + DMVC-OTMS in LIBs compared with
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previously reported results (Supplementary Table 3). In addition,
NCM811/Si-C full cells with VC+ DMVC-OCF; + DMVC-
OTMS showed stable cyclability during 1000 cycles with 80%
depth of discharge (Supplementary Fig. 25) and the improved
capacity retention after 200 cycles at a C/5 rate (Supplementary
Fig. 26). The NCM622/Si-C full cells and even NCM622/graphite
full cells showed a better cycle performance with VC + DMVC-
OCF; + DMVC-OTMS than the cells with FEC or VC, which
demonstrates the broad applicability of the developed materials to
other electrode systems (Supplementary Fig. 27). The proposed
electrolyte system underwent undesired decomposition at the Li
metal in half-cell configuration because of the stronger adsorption
and high reactivity of DMVC-OCF; and DMVC-OTMS toward
the Li metal (Supplementary Figs. 28-33). Therefore, high-quality
SEI by VC 4+ DMVC-OCF; + DMVC-OTMS was not formed on
the Si-C anode in Li/Si-C half-cell, and the cathode-electrolyte
interface was not maintained stably in the Li/NCMS811 half-cell

because of parasitic reactions between the DMVC-OCF; and Li
metal (Supplementary Figs. 34-37). The open circuit voltage
(OCV) of the fully charged NCM811/Si-C full cell with FEC
decreased considerably compared with that in case of VC and VC
+ DMVC-OCF; + DMVC-OTMS, and its capacity retention was
significantly reduced to 60.7% after storing for 30 days at 60 °C
(Supplementary Fig. 38). This result suggests that FEC-derived
SEI and residual FEC, which is not consumed before storage
experiment, are thermally unstable and do not restrain the self-
discharge of a full cell. This is because of the undesirable
defluorination of FEC, which produces HF and acid compounds
that promote transition metal ion dissolution from the cathode?’
The dissolved transition metal ions are then deposited on the
anode surface by taking the electrons from the charged anode,
and the electron loss of anode inevitably causes a reduction in the
OCV and the capacity of charged full cells during storage at
elevated temperatures.
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Fig. 4 Electrochemical performance of synthesized functional additives and
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fast charging capability. a dQ/dV graph of NCM811/Si-C full cells. (No

additive: 1.15 M LiPFg in EC/EMC (3/7, v/v)) b Charge GITT profiles and IR drop of NCM811/Si-C full cells. € Cycle performance of NCM811/Si-C full cells
at 1C and 25 °C. d-f Voltage profiles of NCM811/Si-C full cells at a 1C rate and 25 °C with FEC containing electrolyte (d), VC containing electrolyte (e),
and VC + DMVC-OCF; + DMVC-OTMS containing electrolyte (f) at the 1st, 300th, 350th, and 400th cycles. g Charge rate capability of NCM811/Si-C
full cells at a 1C discharge rate. h Fast charging (1C and 3 C) cycle performance of NCM811/Si-C full cells at a 1C discharge rate at 25 °C. i XRD patterns

and photographs of Si-C anodes charged (lithiated) at a 5 C rate.

Enhanced fast charging capability. To explore the suitability of
the VC + DMVC-OCF; + DMVC-OTMS-derived SEI for facil-
itating Li-ion transport, we evaluated the cycling performance of
NCMS811/Si-C full cells at high charging rates (Fig. 4g). The VC
+ DMVC-OCF; + DMVC-OTMS resulted in superior discharge
capacity at 5C compared to that of cells containing VC alone.
The X-ray diffraction (XRD) patterns of the Si-C anodes charged
in the VC + DMVC-OCF; + DMVC-OTMS-containing electro-
lyte at 5C exhibited a more pronounced peak of LiCs and a
uniform gold color (Fig. 4i). This is attributed to the more ioni-
cally conductive SEI compared to the VC-promoted SEI, which
showed a severely localized gold-colored Si-C anode with Li
plating. Notably, the fast charging capability displayed at 3 C was

6

improved dramatically with the use of VC+ DMVC-OCEF; +
DMVC-OTMS, and its capacity fading (1.9%) was negligible
compared to that of VC (34.7%) (Fig. 4h). This result confirms
that the synergistic combination of VC, DMVC-OCF;, and
DMVC-OTMS not only tolerates the volumetric stress of the
Si-C anode, but also yields highly ion-conductive interfacial
layers on both electrodes of the full cells.

Conservation of the mechanical properties of SEI. Comparative
transmission electron microscopy (TEM) studies of the Si-C
anodes with VC after precycling revealed that the Si nanolayer of
the Si-C anode undergoes irreversible expansion (Fig. 5a, b).
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Fig. 5 TEM characterization of the Si nanolayers of Si-C anodes after precycling of NCM811/Si-C full cells and Young's modulus of the Si nanolayers
of Si-C anodes during cycling. a-c TEM images and EDS mapping results (pink: silicon, green: carbon, and blue: oxygen) of a Si nanolayer of pristine Si-C
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Furthermore, the electrolyte decomposition byproducts contain-
ing carbon and oxygen permeated into the Si nanolayer of Si-C
anodes with VC (Fig. 5d, e). By using VC, the Si nanolayer
underwent an irreversible volumetric expansion and did not
return to its original morphology after delithiation (Fig. 5b). In
sharp contrast, the combined formulation of VC, DMVC-OCEF;,
and DMVC-OTMS resulted in a Si nanolayer with well-
maintained morphology after precycling (Fig. 5¢). The line
energy dispersive spectroscopy (EDS) spectra showed reduced
penetration of the electrolyte decomposition byproducts into the
Si nanolayer (Fig. 5f), because the VC + DMVC-OCF; + DMVC-
OTMS-derived SEI maintained a stable structure with appro-
priate coverage to hinder severe damage to the anode surface.
To elucidate the roles of the SEI in the morphological stability
of the Si nanolayer of the Si-C anode, nanoindentation by atomic
force microscopy was performed*’~4° (Supplementary Fig. 39).
The slope of the force curves from Si-C anodes cycled with VC

showed a continued increase during cycling (Supplementary
Fig. 40a, b). The Youngs modulus of the Si-C anode
(Supplementary Fig. 39b), was 1.15MPa before cycling and
increased to 6.0 MPa after 20 cycles with VC (Fig. 5g). On
contrary, the Young’s modulus of the Si-C anode cycled with VC
+ DMVC-OCF; + DMVC-OTMS was significantly lower than
that for the anode cycled with VC alone. A lower Young’s
modulus indicates higher elasticity®!; thus, the Si-C anode cycled
with VC + DMVC-OCF; + DMVC-OTMS retains a more elastic
SEI than the Si-C anode cycled with VC, which experienced
penetration by the electrolyte decomposition byproducts. This
elastic SEI is beneficial for enduring the volumetric stress;
thereby, mechanical fracturing and the electrical isolation of Si
are effectively mitigated.

The chemical structure of the VC + DMVC-OCF; + DMVC-
OTMS-derived SEI was revealed via X-ray photoelectron spectro-
scopy (XPS) measurements. The peak intensity attributed to C-O,
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Fig. 6 XPS spectra of Si-C anodes and NCM811 cathodes after precycling. a C 1s, O 1s, and F 1s spectra for Si-C anodes after precycling of NCM811/Si-C
full cells with VC + DMVC-OCF5; + DMVC-OTMS and VC. b, O 1s, F 1s, and P 2p spectra for NCM8T11 cathodes obtained from NCM811/Si-C full cells after

precycling in VC + DMVC-OCF3 + DMVC-OTMS and VC.

C=0, and C-C species for the VC + DMVC-OCF; + DMVC-
OTMS-derived SEI was similar to the VC-derived SEI because of
the similarity of their frameworks (C 1s XPS in Fig. 6a). The CF,
peak, which might be formed by the reduction of the OCF; anion,
appeared at 292 eV in the case of VC + DMVC-OCF; + DMVC-
OTMS (Supplementary Table 4). A noticeable feature of the Si-C
anode with VC + DMVC-OCEF; + DMVC-OTMS is that the peak
intensity associated with the C=O and metal-O decreased
drastically (O 1s XPS in Fig. 6a and Supplementary Table 5).
This result implies that DMVC-OCF; and DMVC-OTMS modify
the structure of the VC-derived SEI Notably, the LiF peak
intensity substantially increased at the SEI on the Si-C anodes
precycled in VC + DMVC-OCF; + DMVC-OTMS (Supplemen-
tary Table 6). This is attributable to the decomposition of OCF;~
generated by the reduction of DMVC-OCF;. The metal-O peak at
529.5eV increased noticeably (Supplementary Table 7), likely
because a thinner CEI is formed on the cathode surface with VC
+ DMVC-OCF; + DMVC-OTMS. The peaks corresponding to
LiF and the P-F moiety in the CEI were of remarkably lower
intensity in VC + DMVC-OCF; + DMVC-OTMS than those in
VC (Fig. 6b and Supplementary Table 8). The XPS analysis of the
cathodes after precycling clearly indicates that the LiPFg
decomposition and the LiF formation at the cathode are

suppressed by VC+ DMVC-OCF; + DMVC-OTMS (Fig. 6b
and Supplementary Table 9).

The Si-C anode cycled with the VC had severely cracked
particles, indicating the loss of their electrical connection
(Fig. 7a, b). The exposure of the active surface of the Si-C
anode particles leads to continuous electrolyte decomposition,
causing thickening of the SEI to block Li-ion transfer and
electron movement between the Si-C anode particles. The
feature on the Si-C anode with VC + DMVC-OCF; + DMVC-
OTMS was strikingly different. The morphology of the Si-C
anode particles was intact without any clear signs of mechanical
fracture (Fig. 7¢). This finding reveals that VC + DMVC-OCF;
+ DMVC-OTMS forms a multifunctional SEI that accommo-
dates the strain raised by repeated lithiation and delithiation of
the Si-C anode, and effectually protects the Si-C anode against
HF attack and transition metal deposition. The Si-C anode with
VC showed an enormous volume expansion of approximately
176% after 400 cycles (Fig. 7d-f). Importantly, VC + DMVC-
OCF; + DMVC-OTMS effectively alleviated the increase in the
thickness of Si-C anodes compared to that with VC alone
(Fig. 7f). The EDS mapping images in TEM of Si-C anodes after
400 cycles demonstrated the severe volume expansion of Si with
VC (Fig. 7h and Supplementary Fig. 42e). The C and O EDS
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Fig. 7 SEM and TEM characterization of Si-C anodes after 400 cycles of NCM811/Si-C full cells at 25 °C. a-f Surface morphologies of a pristine Si-C
anode (a) and Si-C anodes obtained from NCM811/Si-C full cells cycled during 400 cycles at 25 °C with VC (b) or VC + DMVC-OCFsz + DMVC-OTMS
(e), cross-sectional views of the pristine Si-C anode (d) and Si-C anodes from NCM811/Si-C full cells cycled during 400 cycles at 25 °C with VC (e) or VC
+ DMVC-OCF3 + DMVC-OTMS (f). g-i EDS mapping in TEM of the pristine Si-C anode (g) and Si-C anodes after 400 cycles with VC (h) or VC +

DMVC-OCF; +DMVC-OTMS (.

mapping images of Si-C anodes precycled with VC showed that
the electrolyte decomposition byproducts permeate into the Si
nanolayer (Supplementary Fig. 41c, d). In contrast, the Si
nanolayer of Si-C anodes with VC + DMVC-OCF; + DMVC-
OTMS stably maintained its original layered structure without
irreparable damage (Fig. 7g, i and Supplementary Fig. 42f).
Additionally, the SEI fabricated using VC + DMVC-OCF; +
DMVC-OTMS was thinner than the VC-derived SEI (Supple-
mentary Fig. 41a, e).

Corrosive HF causes the undesired elution of transition metal
cations from the cathode and the irreversible deposition of
leached transition metal cations on the anode surface>2>3.
Moreover, HF severely damages the CEI and SEI structures that
must be maintained throughout the charge-discharge cycles to
protect the anodes and cathodes®*. To elucidate the vital role of
DMVC-OTMS in HF scavenging, 1 wt% water was introduced
to the additive-free and DMVC-OTMS-containing electrolytes,
and the solutions were kept in storage for 1 day at 25 °C. The
I9F NMR spectra of the additive-free electrolyte with 1% water
shows peaks near —193.9 and —85.1 ppm that could be
assigned to HF and PO,F,”, respectively (Supplementary
Fig. 43a). Additionally, PO3;F2~, which was formed by the
subsequent conversion of PO,F,~, was detected in the 3!P
NMR spectrum (Supplementary Fig. 43c). As expected, the
DMVC-OTMS-containing electrolyte with 1% water did not
show the characteristic resonance of HF at —193.9 ppm
(Supplementary Fig. 43b) and those for PO,F,~ and PO;F2—
(Supplementary Fig. 43d). This result provides strong evidence
that DMVC-OTMS effectively scavenges HF and prevents the

sequential hydrolysis of LiPFs to HPO,F, and H,PO;F
(Supplementary Fig. 43e).

The impact of additives on the extent of transition metal
deposition on the cycled Si-C anodes was examined using
inductively coupled plasma-optical emission spectroscopy (Sup-
plementary Table 10). After 400 cycles, the Si-C anode cycled
with VC + DMVC-OCF; + DMVC-OTMS showed a further
reduction in the amount of Ni deposited on the surface (37.7
ppm), which was lower than the 55.2 ppm of Ni deposited on the
Si-C anode cycled with VC 4+ DMVC-OCEF;, thus revealing the
suppression of the transition metal dissolution effect of DMVC-
OTMS via HF scavenging.

In conclusion, we demonstrated that the creation of a stable
and spatially deformable SEI on a high-capacity Si-C anode
could tolerate the inevitable volume changes induced by the
lithiation of Si and could enable a long lifespan and fast
chargeability of high-energy-density lithium-ion batteries.
DMVC-OCEF; prepared by silver-mediated O-trifluoromethyla-
tion of DMVC-OH initiated the facile construction of the
flexible and robust SEI on the Si-C anode while producing LiF
as a mechanical enhancer of the SEI Notably, HF, which
severely damages the CEI and SEI layers, was effectively
scavenged by the OTMS group in DMVC-OTMS; thereby, the
structural integrity of the CEI and SEI layers was preserved.
This work presents a breakthrough in the development of
electrolyte additives for high-energy-density Li-ion batteries.
We expect that our systematic approach for rational molecular
design and DFT-aided mechanism development offers a
promising way to discover next-generation additives.
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Methods

Synthesis of 5-methyl-4-((trifluoromethoxy)methyl)-1,3-dioxol-2-one
(DMVC-OCF3). 2-Fluoropyridine (388 mg, 4.0 mmol, 2.0 equiv) and TMSCF;
(569 mg, 4.0 mmol, 2.0 equiv) were added to a mixture of AgOTf (1.03 g, 4.0 mmol,
2.0 equiv), Selectfluor (1.06 g, 3.0 mmol, 1.5 equiv), KF (350 mg, 6.0 mmol, 3.0
equiv), and DMVC-OH (260 mg, 2 mmol, 1.0 equiv) in ethyl acetate (10 mL) under
an inert Ar atmosphere. The reaction mixture was stirred at 50 °C for 12 h. The
reaction mixture was filtered, concentrated, and purified by flash column chro-
matography over silica gel (5:1, ethyl acetate/n-hexane) to afford a yellow oil-like
title compound (178.3 mg, 0.9 mmol, 45%). 'H NMR (400 MHz, CDCl;) & 4.73 (s,
2H), 2.18 (s, 3H); 13C NMR (101 MHz, CDCl;) § 151.6, 140.9, 131.8, 121.4 (q, ] =
257.7 Hz), 56.8 (q, ] = 4.1 Hz), 9.3; 19F NMR (377 MHz, CDCl;) § —60.85 (s).
HRMS (ESI+) m/z calculated for CgHgF30, ([M+H]T) 199.0213, found 199.0214.

Synthesis of 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one
(DMVC-OTMS). TMSCI (261 mg, 2.4 mmol, 1.2 equiv) was added to a mixture of
imidazole (340 mg, 5 mmol, 2.5 equiv) and DMVC-OH (260 mg, 2.0 mmol, 1.0
equiv) in argon-purged dichloromethane (10 mL) at 0 °C. The reaction mixture was
stirred at room temperature for 12 h and then diluted with brine. The product was
extracted with dichloromethane. The combined organic layers were dried over
Na,SO, and concentrated in vacuo to afford the title compound as an orange liquid
(352 mg, 1.74 mmol, 87%). 'H NMR (400 MHz, CDCl;) § 4.37 (s, 2H), 2.12 (s, 3H),
0.17 (s, 9H); 13C NMR (101 MHz, CDCly) 8 153.2, 137.6, 137.4, 54.0, 9.9, 0.0;
HRMS (ESI+) m/z calculated for CgH,50,4Si ((M+H]*) 203.0734, found 203.0731.

Electrolyte and electrode preparation. The baseline electrolyte was 1.15 M LiPFy
in ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (3:7 vol%). Then, 5
wt% fluoroethylene carbonate (FEC), 1.5 wt% VC or 0.5 wt% vinylene carbonate
(VC) 4 0.5 wt% DMVC-OCF; + 0.5 wt% DMVC-OTMS were added into the
baseline electrolyte for evaluation. To minimize the water content, CaH, was
incorporated to the electrolytes and stirred for 30 min, followed by filtration. VC,
FEC, and electrolyte solvents were purchased from Soulbrain Co., Ltd. (South
Korea). The Ni-rich cathode was fabricated by spreading a slurry composed of 92.5
wt% LiNipgCoo 1 Mng ;O, (Single crystalline NCM811, SMLAB (South Korea)), 3.5
wt% conducting agent (2 wt% carbon black (Super C65, Imerys Graphite & Car-
bon) + 1.5 wt% graphite (SFG6L, Imerys Graphite & Carbon)), and 4 wt% binding
material (poly(vinylidene fluoride), Solef6020, Solvay) in 1-methyl-2-pyrrolidinone
(Sigma-Aldrich) on Al foil (15 pm). The cathode prepared drying the slurry at 120 °
C for 30 min was pressed by a roll press machine!”. The areal capacity and loading
level of the cathode with the thickness of 44 um were 2.7 mA h cm~2 and 13.5 mg
cm™2, respectively. The Si-C anode was composed of 37.4 wt% Si nanolayer-
embedded graphite (SNG with 7 wt% Si, S] Advanced Materials), 58.6 wt% graphite
(LA1, Shanshan (China)), 1 wt% carbon black (Super C65, Imerys Graphite &
Carbon), and 3 wt% binding material (2 wt% styrene-butadiene rubber (BM-400B,
Zeon) + 1 wt% carboxymethyl cellulose (MAC350H, Nippon Paper Group)) in
distilled water and coated onto a Cu foil (10 um). The SNG was fabricated using a
chemical vapor deposition (CVD) process according to literature®. The specific
capacity and content of Si of the Si-C anode based on the SNG/graphite composite
were 435.7 mAh g~! and 3 wt%, respectively. The anode was also pressed by a roll
press machine. The anode with the thickness of 55 pm had a areal capacity of 3.2
mA h cm~2 and mass loading of 7.5 mg cm~2. The EDS mapping spectra of the
pristine Si-C anodes showed the presence of a Si nanolayer with a thickness of
approximately 20 nm coated on the graphite to form the Si-C anode (Fig. 5a, d).
To eliminate water, the electrodes were dried at 110 °C for 10 h under vacuum
before use in cell fabrication. A 20 um thick and 38% porosity polyethylene
membrane (SK Innovation Co., Ltd.) was adopted as a separator.

Electrochemical measurements. Two thousand and thirty-two round-type full
cells were fabricated in an argon-filled glove box, and an N/P ratio of 1.3 was
determined using Eq. 1.
(Discharge capacity of anode) x (Mass of anode) _
(Discharge capacity of cathode) x (Mass of cathode)—(rreversible capacity of anode) x (Massof anode)

(420.5mAh/g) x (7.5 mg/cm®) —13
(201.4mAh/g) x (13.5mg/cm”) —(40.9mAh/g) x (7.5mg/cm’) —

)
The amount of electrolyte per capacity was 27.7 mg mAh~L. The full cells
composed of the Ni-rich cathode and Si-C anode were galvanostatically cycled
in a voltage range between 4.3 V and 2.5V at 25°C (WBCS3000, WonATech).
Precycling for the formation of the SEI and CEI was performed at C/5 once. The
cells were charged up to 4.3 V at C/5 followed by a constant voltage (CV) phase
with a C/20 current cutoff; then, they were discharged to 2.5 V at 25 °C. Standard
cycles with C/5 and C/2 for one time each were performed between 4.3 and 2.5V
at 25 °C before subsequent cycling. A C/20 current cutoff was applied to finish
the CV condition of the charge process. The GITT experiment was performed
after two standard cycles (C/5 rate and C/2 rate once each). The cells were
charged up to 4.3V at C/5 for 5 min and then were left to rest for 30 min to
attain equilibrium voltage. A cycle test was performed without a CV condition at
1C at both 25 and 45°C (1 C = 2.7 mA cm~2). The charge rate capability

evaluation of full cells was conducted at a fixed discharge rate of 1 C and various
charge C-rates (1, 2, 3, and 5C).

Characterization. The cycled electrodes for analysis of the surface chemistry,
mechanical properties, and morphology were obtained from the full cells dis-
assembled in a glove box. The residual electrolyte from the retrieved electrodes was
removed using dimethyl carbonate (DMC) solvent. The SEI structure on the Si-C
anode was identified via XPS (Scientific K-Alpha system, Thermo Scientific) with
Al Ka radiation (hv = 1486.6 eV). All XPS spectra were energy calibrated by the
hydrocarbon peak at 284.8 eV. To verify the scavenging effect of DMVC-OTMS on
HF, 19F nuclear magnetic resonance spectroscopy (400 MHz FT-NMR (Bruker),
AVANCE III HD) was performed. DI water (1 wt%) was incorporated to the
baseline electrolyte and to the electrolyte with 1 wt% DMVC-OTMS followed by
storage at 25 °C for 24 h. The stored electrolytes were analyzed by NMR using
tetrahydrofuran-dg solvent. The mechanical analysis was examined by the AFM
nanoindentation method (details are described in the Supplementary information,
MultiMode V, Veeco). Morphological and structural changes of the anodes were
confirmed using field emission scanning electron microscopy (FE-SEM, JSM-
6700F, JEOL) with high-resolution transmission electron microscopy (HR-TEM,
JEM-2100F, JEOL).

Computational details: density functional theory (DFT) calculations. In this
study, we investigated the LUMO energy levels, reaction mechanisms, and
adsorption energies using DFT calculations. All DFT calculations were carried out
using the DMol® program®®%7 under an implicit environment by using the
conductor-like screening model (COSMO) method>® with a dielectric constant of
13.287 (3:7 mixture of EC (95.3)*® and EMC (2.9)% at 25 °C through the mixing
rule®?). The detailed information is described in the Supplementary information.
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