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Introduction
Cell signaling relies on a complex network of molecular inter-
actions between ligands, receptors, co-receptors, and associated 
kinases and phosphatases. The dynamics of signaling pathways 
within these networks is the subject of intense study and is sup-
ported by a host of computational tools.1 Correct biochemical 
parameters are essential to the predictive power of the underly-
ing mathematical models, but obtaining in vivo values has been 
a long-standing challenge. Molecular resolution imaging tech-
niques provide a direct window into molecular processes, close 
to in vivo conditions.

Our groups2,3 have been pursuing a modeling approach that 
is in close coordination with molecular scale imaging. One chal-
lenge specific to this strategy is the “resolution gap” between 
molecular scale imaging and other investigative methods,4-6 and 
quantitative understanding of cell-level function.7,8 While some 
of the underlying molecular-scale factors (such as small copy 
numbers and spatial inhomogeneity) are understood to a large 
extent, it is impractical to include this level of detail in signaling 
pathway models, which rely on chemical reaction networks and 
are normally used for well-mixed chemical systems. The rate 
constants and other parameters relevant to cell-level dynamics 
correspond to emergent behaviors that are an indirect reflection 
of molecular level events. Receptor clustering, the tendency of 

receptors to collect in groups ranging from a few up to hun-
dreds of copies, is a molecular-level phenomenon with a signifi-
cant potential impact on cell-level behavior.9 It can alter the 
dynamics of receptor-receptor interactions, with a direct impact 
on signal initiation.

Signal initiation by many types of membrane bound recep-
tors (receptor tyrosine kinase families, including vascular 
endothelial growth factor [VEGF] receptors) involves mutual 
activation of receptors,7,10 which requires close spatial proxim-
ity. This is typically facilitated by receptor-receptor binding 
resulting in dimers. The key element of signaling is that recep-
tor-receptor binding is induced or strongly enhanced by ligand 
binding to receptors. The dynamics of the 3-step signal initia-
tion sequence (ligand binding, receptor oligomerization, and 
mutual activation of receptors) are delicately tuned to elicit the 
correct biological response. Accumulation of receptors in a 
small region increases the likelihood of collisions between 
unbound receptors. The effective on-rate for receptors accu-
mulated in a fraction of the membrane surface area is higher 
than for the same set of receptors distributed evenly across the 
entire membrane.

We previously analyzed the spatial distribution of 
VEGF7,11,12 receptors in this data set.13 The VEGF and its 
receptors (VEGFR) play an important role in regulating new 
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blood vessel growth from extant vessels (angiogenesis), and so 
is a critical factor in tumor development.

The possible impact of clustering on VEGF signaling was 
explored in the work by Chen et al.14 We assumed that the cell 
membrane contains preexisting regions (domains) that have a 
higher affinity to VEGF receptors; the primary effect would be 
the accumulation of receptors in these domains. To quantify 
the impact on signaling, we adapted a chemical reaction net-
work model of VEGF signal initiation7 to a 2-compartment 
system. One of the compartments (or regions) represented the 
high-affinity domains and the other accounted for the rest of 
the cell membrane. The VEGF monomers and dimers were 
allowed to move between the 2 regions, with an enhancement 
factor α ≥1  that corresponded to the ratio of equilibrium con-
centrations of monomer receptors in the 2 regions. Increasing 
the value of the enhancement factor α  while keeping the con-
centration of VEGF fixed led to the increased equilibrium lev-
els of signaling capable complexes (stably bound, liganded 
receptor dimers).

While the origin of the phenomenon is not completely 
understood, the phenomenon of receptor clustering is likely a 
result of the quasi-random movement of receptors in an inho-
mogeneous membrane landscape. In previous work using this 
data set,13 using nearest neighbor distance (NND)-based 
methods, we established that the receptors form clusters and 
that their distribution within clusters is otherwise random. We 
also proposed an improved method for identifying clusters, 
based on Espinoza et al.15 The results were consistent with the 
hypothesis that clusters form in preexisting regions (domains) 
on the cell membrane. During their random movement on the 
membrane, receptors are placed in these domains with a higher 
probability than elsewhere, leading to an “enrichment.” This 
hypothesis is in itself not novel and was used in spatially 
resolved models aimed at specific signaling systems, such as in 
the works by Pryor et al16 and Kerketta et al.17 However, to our 
knowledge, the relation between basic characteristics of attrac-
tive domains and the induced cluster size distributions has not 
been explored.

In this article, we focus on the distribution of cluster sizes. 
Starting from previous results on cluster identification and the 
inferred geometric footprints, we explore whether the cluster 
size distributions can be explained (and thus predicted) by a 
simple probabilistic model based on random placement of 
receptors into 1 or 2 sets of preexisting domains. We first sum-
marize our previous results on cluster identification. We then 
outline the model(s) proposed for cluster size distributions and 
obtain model parameters optimized for the observed cluster 
size distributions. We perform model fits for each image taken 
separately and also for groups of images.

Methods and Models
Experimental data

The data set analyzed here is based on the set of transmission 
electron microscopy (TEM) micrographs studied by Güven 

et  al.13 We briefly summarize the relevant information and 
refer the reader to the work by Güven et al13 for more details. 
We investigate the spatial distribution of VEGF receptors 
extracted from TEM images of VEGF receptors labeled using 
anti-VEGF antibody conjugated with gold nanoparticles. We 
are interested in the clustering of membrane receptors defined 
as the accumulation of receptors in a fraction of the available 
area, as seen in Figures 1D or 2A.

TEM images were of PAE-KDR (porcine aortic endothe-
lial) cells that artificially express VEGFR-2 (KDR) receptors. 
Cells were stimulated with VEGF for selected times. Samples 
were prepared and imaged as described previously by Wilson 
et al.5 The micrographs represent snapshots of the position of 
receptors at the moment when the sample was prepared.

Receptor positions were obtained by identifying the cent-
ers of the respective dark spots on the micrographs using 
ImageJ.18 The resulting image coordinates were inserted into 
text files that were the primary source of data for all analyses 
presented here. The images analyzed here are 2650 × 2650 
pixels (px), with a resolution of 1.448 px/nm; the image area is 
a square of side:

a
A
= ≈

= × ≈

265 px 183 nm with area
7 2 1 px 3 35 mimage
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0 0
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Cluster analysis

The spatial distribution of receptors in our micrographs is gener-
ally not random and appears so to a casual observer. A methodi-
cal analysis of the phenomenon should address 3 aspects: assess 
clustering tendency following an established methodology,15,19 
provide a definition (identification) of clusters in the sample, and 
finally, characterize the distribution of receptors in the micro-
graphs in a way that quantifies the phenomenon of clustering. 
Below, we briefly summarize our approach to the first 2 aspects. 
These results were reported previously and we refer the reader to 
the work by Güven et al13 for further details.

Clustering tendency. We tested against the hypothesis of ran-
dom uniform placement of N  points observed in an image in 
an area A (a spatial Poisson process with density λ = N A/ ). 
We computed NND distributions (see Figure 1A to C) and 
Hopkins and Ripley statistics (which all rely on the mutual 
distance between pairs of points) and compared with the cor-
responding distributions expected from random placement.

Cluster identif ication. Our approach13 is a version of hierarchi-
cal distance-based clustering.20 It is a development of Espinoza 
and coworkers15 who first adapted distance-based clustering to 
the analysis of nanogold-labeled membrane proteins.

Hierarchical clustering relies on a single length parameter 
L, which induces a pattern of connections between the points 
of a given set. The number of clusters induced in a given image 
decreases as L  increases. We calculate the number of clusters 
as a function of the length parameter, N LC ( )  for each image. 
This is a decreasing function that equals the number of points 
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when L  is small and approaches 1 for large L. For a set of 
randomly distributed points, N LC ( )  follows a universal curve 
(dashed black line in Figure 1F and G). The short distance por-
tion of N LC ( )  is consistent with having the same number of 
particles distributed randomly and uniformly in a smaller area 
(Figure 1F and G, red dashed line). We aim to approximate the 
transition between the compact distribution and the long dis-
tance behavior (consistent with the random distribution of a 
smaller number of points in the entire image area—compare 
the red staircase and purple dashed line in Figure 1G). We 
found it practical to identify the optimal L  as 2 times the value 
of L  corresponding to the point where the second derivative 
of N LC ( )  is zero.

Domain reconstruction algorithm for cluster footprints. For each 
identified cluster, we constructed a geometric footprint (shape) 
around the member points to provide us with an estimate of 
the area and perimeter for the cluster. The domain reconstruc-
tion algorithm was first described by Pryor et al.16 Points in a 
distance-based cluster with characteristic length L  form a 

Figure 1. Measures of clustering, cluster identification, and footprint construction for one micrograph, based on10. Panel (D) shows the micrograph 

(5-16622, provided by courtesy of the Wilson Lab) overlayed with points identified with labeled VEGF receptors. The distribution of (A) first and (B) second 

NND and the Hopkins statistic (C) indicate the clustering of the points. In plot (C), bars indicate the Hopkins statistic for the set of all points, and the 

staircase (green) is the Hopkins statistic for cluster centroids. Hierarchical distance-based clustering: the optimal distance parameter l  is identified from 

the curvature of the N LC ( )  function. (F, G) The number of induced clusters as a function of l. Cluster footprints (E) are an envelope of circles of radius 

lmin / 2  centered on each point in a cluster. For each cluster, we use the smallest distance parameter lmin  which does not split the cluster (so l lmin <_ ). 

Singletons (clusters of one point) are shown with a contour of diameter l.

connected graph whose edges have length less than or equal to 
L . The algorithm provides a contour that surrounds every 
point in the cluster, together with a disk of radius L / 2  cen-
tered around it. Figure 1E illustrates how the contours were 
determined. Note that typically, clusters in a given image 
remain connected for length parameter values down to some 
L Lmin < ; we used this intrinsic characteristic length to con-
struct the footprint for each cluster.

Model for the origin of clusters

Domain hypothesis. When comparing with cluster size distri-
butions, we assume that each receptor cluster consists of a 
group of receptors localized in a single microdomain. Domains 
of the same type have identical properties. The distribution of 
the observed cluster sizes should then be consistent with plac-
ing a number of receptors randomly into these preexisting 
domains. We allow for up to 2 types of domains, and also for 
free particles, which are placed randomly outside domains, into 
the rest of the cell membrane.
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Domain number, area and density enrichment 
factors estimated from cluster footprints

In a first approximation, we identify the area occupied by the 
clusters of at least 2 particles (receptors) with the putative 
domains. Denote the corresponding footprint area AC

( )2+ , 
number of clusters, NC

( )2+  and particles NP
( )2+ ; the number of 

singleton particles is N N NS P P= − +( )2 .
The empirical estimates for the area fraction 

f A AA C
( ) ( ) /exp

total= +2 , number of domains N ND C
( ) ( )exp = +2 , and 

population fraction f N NP P P
( ) ( ) /exp = +2  can be used to esti-

mate the “attractiveness” or enrichment factor for the domains, 
as the ratio between the density of particles inside domains 
versus in the rest of the observed area:
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Stochastic models; distributions by particle and by domain/
box. Confinement of particles is likely a stochastic process, 
where each of the ND  identical domains (sometimes referred 
to as “boxes”) receives a number of the NP  particles. Some 
domains will be empty, and others will have a single particle. 
Particles in single occupancy domains are indistinguishable 
from free particles.

A statistical model placing the NPD  confined particles into 
ND  boxes will predict the expected number of domains by 

Figure 2. Model for cluster size distributions. (A) Transmission electron micrograph of a cell membrane patch (courtesy of the Wilson Lab). Dark dots 

correspond to receptors labeled with metal beads. Shaded areas (indicating the ability to absorb electrons) are often associated with receptors. (B) The 

original image is overlayed with symbols indicating the coordinates of receptors and contours of cluster “footprints” as identified by our algorithm. We 

hypothesize that receptors preferentially localize in a small area similar to these darker shaded regions, presumably due to their specific physical 

properties. (C) A simple model subdivides the cell membrane into colored “high-affinity” boxes corresponding to attractive domains and uncolored 

“low-affinity” boxes of the same size. Particles are placed randomly in these 2 types of boxes, and we identify the particles gathered together in a box as a 

“cluster.” (D) The small physical footprint of the observed clusters is consistent with a typical diameter of ≈20 to 60 nm; the probability of multiple particles 

placing randomly into a patch of area 1/1000 to 1/6000 of the total image area is very small. We instead defined models with one (E) or possibly 2 types of 

attractive domain (F), while also allowing for free particles which appear as singletons.

occupancy k  based on the total number of domains ND  and 
confined particles NPD , as n N kk

Dbox boxPMF( ) ( )= ⋅  based on 
the per-box probability mass function (PMF). In addition to 
the occupancy k , this will depend on the number of domains 
ND  and the total number of confined particles, NPD , and 
possibly additional model parameters. The corresponding per-
particle PMF provides the distribution of particles by clusters 
of occupancy k ; the 2 PMFs are related by the expected num-
ber of particles by domain of occupancy k , n k nk k

particle box
( ) ( )= ⋅ .

 PMF PMFparticle boxk k N
N

k ND

PD

k
PD( ) = ⋅

⋅ =( ) , , , ,1 2   (2)

In particular, the number of empty domains is 
n n NDempty box boxPMF= = ⋅( ) ( )0 0  (no simple relation to the par-
ticle PMF) and the number of domains with a single particle is 
the same as the number of confined particles in single occu-
pancy domains, n nsingles box= ( )1 .

The relation to experimentally observable quantities, num-
ber of single particles (confined or not), and number of clusters 
of size 2 or larger and the number or particles in them is

 N N N NS P PD D= − + ⋅ ( )PMFbox
1  (3)

Model with one type of domain. The core idea is that a number 
NP  of particles are placed randomly into identical ND  
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domains (sometimes referred to as “boxes”). From the perspec-
tive of one domain, each particle may fall into the domain with 
a probability p Nbino D=1/ . The probability that the domain 
receives exactly k  particles is binomial PMF with NP  draw-
ings and success probability pbino :

 
P p p N

k N k
k N p

k bino
k

bino
N k P

P

P bino

Pbox

binopdf

( ) −
= −( )

−( )
= (

1
!

! !
; , ))

 (4)

As we only have access to clusters, which we identify with non-
empty domains, it is practical to look at the distribution of par-
ticles by “cluster size,” i.e., the number of total particles in a 
domain. The probability that one specific particle falls into a 
box with k −1  other particles is the same as the PMF for boxes 
that contain exactly k −1  of the other NP −1  particles. Our 
main observable is the number of particles by box size n k

particle
( ) .

P k N pk P bino
particle binopdf( ) = − −( )1 1; ,

 n N k N pk
P P binoparticle binopdf( ) = ⋅ − −( )1 1; ,  (5)

One type of domain plus singletons. A plausible explanation for 
the accumulation of receptors in domains is a mechanism char-
acterized by an “enrichment factor” α  that results in a propor-
tionally higher average particle density inside domains 
compared with the rest of the membrane area. The particles in 
a portion of the membrane of area Atotal  will be divided among 
domains and the rest of the image. Denote the aggregate area 
of all domains A = aND D , where a  is the average area of one 
domain, and the rest by A = A ADfree total − . The number of par-
ticles in each sector will be
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Singletons (particles that are in “clusters” of size 1) are 
experimentally indistinguishable from free particles outside 
domains. The observed number of singles is then 
N N nS P= +, ,free C singles :

 N N f
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The number of particles by cluster size for clusters of 2 or 
more remains as in the previous case:

n N k N
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kk PD PD
D

particle binopdf( ) = ⋅ − −








 ≥1 1

1
2; , ,  (8)

Two types of domain plus singletons. Some of the distributions 
observed in the image set are not well fit in a model that had 
one type of domain. We could have multiple types of domains, 
resulting from different physical mechanisms. For 2 types of 
domain, we assume that a fraction fS  of all particles (so f NS P  
“free” particles) are outside domains and (always) appear as sin-
gles outside clusters. The remaining particles are split among 2 
types of domains with lower and higher affinity, labeled L  and 
H ; denote by f  the proportion of particles in the high-affin-
ity domains. The particles in each type of domain N ,NPH PL  are 
distributed consistent with a binomial distribution with success 
probability pH  and pL , respectively; N ,NDL DH  represent the 
number of each type of domains (in the image):
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The number of singles is the sum of the free particles and 
the single particle domains of both types:

N f N N p N pS S P PH H
N

PL L
NPH PL= + −( ) + −( )− −

1 1
1 1 (10)

The number of particles in domains with exactly k  parti-
cles ( )k ≥ 2  work out to

 n N k N p
N k N

k
PH PH H

PL PL

particle binopdf
binopdf

( ) = ⋅ − −( )
+ ⋅ − −

1 1

1

; ,
; 11, pL( )

 (11)

Model f itting

For a given image and a model type, we seek the model param-
eters that predict the cluster size distribution most closely. We 
compare the observed number of particles NP

k( )  in clusters of 
size k =1 2, ,  to the corresponding expectation predicted by 
the model with the respective parameters, n k

particle
( ) . For larger 

cluster sizes, especially in images with a moderate number of 
particles, the model prediction may result in a significant prob-
ability for having one or a handful of large clusters. Thus, the 
expected number of particles in each specific cluster size 
between 10 and 20 might be on the order of 3, corresponding 
to 40 to 50 particles total in three to four clusters of size some-
where between 10 and 20. To account for this aspect, compare 
the number of particles in groups of cluster sizes as follows:

s� � � � � �{ } = ( ) ( ) ( ) ≥{ }=1 6
1 2 3 5 6 10 11 20 21, , , , ,   (12)

We construct a normalized square distance

∆image
j exp model( ) ( ) ( )( ) = −( )∑

� �

�
� �f p

N
q q

P
, 1 2
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particle
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∈

( ) ( )

∈

( )≡ ≡∑ ∑,  (13)

where j  refers to a specific image and 




f p,  represent the 
model parameters (population fractions and success probabili-
ties) used to compute the expected numbers of particles 
n k
particle
( )  in clusters of each size. The above is different from 

the usual χ2 test in that the squared differences are not indi-
vidually normalized to the expectations. Our measure can be 
interpreted as a “mean” relative square distance where the rela-
tive differences O E E q q q

     

−( ) = −( )( ) ( ) ( )2 2
/ /exp model model  

are each weighted with the relative fraction

p q
NP



=
( )model

The expectation and variance of a Poisson integer random  
variable p k e kk( ) = −Γ Γ / !  are equal to k k= −( ) =Γ

2
γ , 

therefore the standard deviation is σ = k 1 2/ . If this were the 
case for the particle numbers by cluster size, the expectation 
of deviation from the model ( )( ) ( )q q

 

exp model− 2  would be 
equal to q



( )model , and therefore, we should expect 
( ) / ( )( ) ( ) ( )q q q
  

exp model model− =2 1 . However, a significant 
number of images have big relative differences between the 
number of particles in each size group, and we used the sim-
ple sum of squares normalized to the total number of parti-
cles. The measure used here should be on the order of 1 for 
a good model fit.

Individual and group f it. We used a Markov chain Monte 
Carlo (MCMC) approach to identify best-fit model parame-
ters for each image. The actual computation is our implemen-
tation of the Metropolis-Hastings algorithm21 seeking to 
minimize the distance image

( )j  over possible values of the 
parameter set 





f p, . We performed individual fits for every 
image, using the 1-domain and 2-domain models (with sin-
gles). Group fits for multiple images were performed in a simi-
lar manner, but the optimization was aimed at minimizing the 
sum of square distances evaluated for each image in the group.

Results
The dataset discussed here was derived from 81 high-resolu-
tion (2500×) micrographs (TEM images) of nanogold-labeled 
VEGF receptors on PAE-KDR cells. Labeled receptors appear 
as points (dark spots), whose coordinates are extracted for this 
analysis. Details on sample preparation and imaging technique 
are provided in section “Methods and Models.” Results on 
NND distributions and cluster identification were discussed in 
the work by Güven et al13 and are the starting point for the 
cluster size distribution analysis we are interested in here.

Clustering

Quantifying clustering tendency. One striking feature of the 
spatial distribution pattern of receptors is their tendency to 

accumulate in small groups or clusters. Analysis using standard 
measures, such as NND distributions and Ripley and Hopkins 
statistics revealed a compelling difference between the observed 
distributions and random placement.13 The points and their 
assignment to clusters are overlayed on the micrograph in Fig-
ure 1D. The NND distributions in Figure 1A and B and the 
Hopkins statistic (Figure 1C) are compared with the theoreti-
cal distribution expected from random placement. The situa-
tion illustrated in Figure 1A and B for one micrograph is 
typical. We computed these measures for the entire dataset and 
found that the bulk of the experimental distributions fell well 
below the expected distance, but closely approximated the the-
oretical curve corresponding to random placement of the same 
number of points in a smaller area.

The NND-based analysis was first discussed in the work by 
Güven et al.13 Plots similar to those in Figure 1 for the entire 
data set are provided as supplemental data in the accompany-
ing Github repository.

Cluster identif ication. We identify clusters of points using a 
version of distance-based hierarchical clustering. Clusters in a 
set of points are induced by a parameter L , so that any 2 points 
whose mutual distance is below L  are assigned to the same 
cluster. As the parameter increases from zero to the diameter of 
the image, the induced number of clusters N LC ( )  decreases 
from N particle  to 1.

The key element is identifying an optimal length parameter 
L*  for the points found in one image. We rely on the features 
of the observed N LC ( )  curve (Figures 1F and G) and its com-
parison with the random uniform placement of the same num-
ber of particles. The observed curve exhibits 2 distinct sections. 
Similar to the NND distribution, N LC ( )  for small L  values 
is consistent with the random placement of NP  particles in an 
area ′ <A Aimage ; for larger values of L , the curve is consistent 
with random uniform placement of a smaller number of points 
′ <N NP P  in the total image area Aimage .
This can be understood as the separation between 2 length 

scales, the typical distance between neighboring points within 
a cluster λ1  vs the typical distance between clusters λ2. When 
the separation is complete, λ λ1 2< , and, L∈  λ λ1 2,  will iden-
tify the same clusters and curve will exhibit a plateau. This pro-
vides a guiding principle to identify L*  from experimentally 
derived cluster scaling functions, as the value of L  correspond-
ing to the maximum upward curvature (second inflection 
point) of the N LC ( )  curve (illustrated in Figure 1F and G). 
We applied the cluster identification procedure to the entire 
dataset. The characteristic length (Figure 3) does not exhibit a 
correlation with the number of particles in an image or with 
the size of the resulting clusters. We will discuss the cluster size 
distributions in the details below. The results of cluster identi-
fication are also provided in the Github repository.

Clusters as domains. All of our results so far, and current under-
standing of the biochemistry and dynamics of receptor 

∆
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movement on the cell membrane, point toward a hypothesis of 
clustering induced by the features of the membrane landscape. 
We use the term “domain” to refer to specific regions on the 
membrane that have an increased affinity for receptors. We 
assume that receptors can move in and out of these regions, but 
on average, the domains are “enriched” and have a consistently 
higher density of receptors than the rest of the membrane.

While we cannot reliably identify the underlying physical 
regions directly from the micrographs, we identify domains 
with observed clusters that have at least 2 particles.  
We assigned a geometric shape to each cluster, using a  
procedure12,13 that relates closely to distance-based clustering. 
This allows us to calculate the areas for each domain/cluster 
we identify.

We used the geometric measurements of cluster footprints 
to estimate an enrichment factor, defined as the ratio of the 
density corresponding to the particles in clusters of size 2 and 
higher over the average density of particles (Figure 4) in the 
entire image equation (1). The values range more than 2 orders 
of magnitude from 30 to 3000, with typical values concen-
trated between 100 and 1000. There is only a slight trend of 
increased enrichment with higher average cluster sizes and a 
larger fraction of particles in clusters.

Cluster size distributions

We would like to characterize the distribution of cluster sizes 
using a small number of parameters that could be used to com-
pare the distributions between images with different particle 
numbers. In the same time, we explore the extent to which 
clustering could be explained, at least in part, by our preexisting 
domain hypothesis.

We devised a type of model that treats the accumulation of 
receptors (particles) in preexisting attractive microdomains as a 
random process, similar to placing items in identical “boxes.” 
We explored models with 1 and 2 types of domain, which are 
identified with observed clusters; in addition, both models 

allow for a fraction of free particles, which are identified with 
singletons (particles that are not part of a cluster). We refer to 
the free particles, and the domains (possibly 2 different types) 
as sectors. Model parameters are: fractions of the particles that 
fall into each sector f N N f N NS free P PH PD= =( / ),[ ( )]/ , 
and a binomial probability parameter for each type of 
domain, p pH L[ ], . See section “Methods and Models” for 
more details.

Individual f it of cluster size distributions. We focus on the dis-
tribution of the number of particles by cluster size. Cluster 
sizes are identified with the number of particles in a domain. A 
model provides the expectation of the number of particles in 
clusters of size k, nparticle

( )k .
As clusters may be relatively large, sizes are grouped into 6 

ranges:
{ } { , ,( ),( ),( ), }s� � �= = … … … ≥1 6 1 2 3 5 6 10 11 20 21  and we 

use the aggregate number of particles q


 in each size range. 
For each image, we performed an MCMC fit (Metropolis-
Hastings) aimed at minimizing the square distance 

image
( )j  for 

each image j =1 2, ,

∆image
exp modelj

P
f p

N
q q( ) ( ) ( )( ) = −( )∑

� �

�
� �, 1 2

 q N q
k s

P
k el

k s
particle
k

 

 

exp mod,( )

∈

( ) ( )

∈

( )≡ ≡∑ ∑ n  (14)

Here we report the estimated characteristics of the domains 
based on the results of model fitting. In general, a model is 
defined by a set of population fractions that determine the 
number of particles in each sector, free particles and particles in 
each type of domain. If there is only one type of domain, the 
NP  total particles are divided into f NS P  free particles and 
N f NPD S P= −( )1  particles in domains. With 2-domain types, 

∆

Figure 3. The characteristic length parameter l  does not exhibit a clear 

dependence on the number of particles per image or on the average size 

of clusters.
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average cluster size in each image, and the fraction of particles (in each 

image) that is in clusters of size 2 or higher. Circles correspond to 

individual images, and their size is proportional to the number of 

particles. Color changes by the cluster size.
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we have N f NPH PD=  particles in high-affinity domains and 
N f NPL PD= −( )1  particles in low-affinity domains. The free 
particles are assumed to be all singles (not part of clusters).

Consider one type of domain (there might be 1- or 2-domain 
types in the model). If a total number of particles NPD  are 
placed into ND  domains, the probability of one specific 
domain receiving exactly k  particles is given by a binomial 
distribution

 binopdf binok N p
N
k pP bino
PD k; ,( ) =











( )  (15)

The binomial probability pbino  is simply the inverse of the 
number of available domains ND. We define an overall success 
probability per domain psucc  as the probability that one particle 
placed in the image will fall into one specific domain of this 
type. The binomial probabilities for each domain type and the 
corresponding particle fractions are our model parameters.

The relative attractiveness of the domains α is similar to the 
enrichment factor relevant to signaling dynamics. We define it 
as the ratio between the overall success probability for a domain 
type and what that same probability would be based only on 
the area corresponding to one domain
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Here pgeom  can be defined as the probability of geometric 
measurements of cluster footprints to estimate an enrichment 
factor.

Figure 5. Square distances (equation (14)) from fitting each image to a model with one, respectively, 2-domain types (left). Circle sizes are proportional to the 

number of particles; shading represents the ratio of the fitted square distances obtained with 1-domain respectively 2-domain models. Some of the images 

are well fit by one domain (C), others are significantly better fit with 2-domain types (A or B). The histograms labeled A, B, C indicate the distribution of the 

number of points by cluster size for the respective images. Bars on the left represent observed counts, bars on the right are for the closest model fits. Only 

the 1-domain model fit is shown for image C; for images A and B, the top bar plots are with 1-domain type and the bottom ones with 2-domain types.

We performed individual fits for each image, to models with 
1-domain type and models with 2 different types of domains. 
In the latter case, we refer to the 2-domain types as lower and 
higher affinity, or type L, respectively H .

The resulting minimal square distances for each image are 
compared in Figure 5 and indicate that while some images are 
well fit by the 1-domain model (C), a large fraction of the 
images are better (A) (or significantly better—B) fit with the 
2-domain model. The circles in Figure 5 (left) are shaded 
according to the ratio of the fitted square distance obtained 
with 1-domain, respectively, 2-domain types. The predicted 
distribution of particles by domain/cluster size is compared 
with the observed distribution for the 3 sample images. Similar 
plots are provided for all the images in the Github repository.

The relative attractiveness α  (equation (16)) and equiva-
lent average number of domains per image derived by model 
fitting are shown in Figure 6. For images well fit with a single 
domain type (left panel), the number of domains ND  per 
image ranges from 2 to 100 and the relative attractiveness 
ranges between 10 and 400. The parameters for 2-domain fits 
are shown in the center and right panels. The number of both 
high- and low-affinity domains ranges from 10 to 30 with a 
relative attractiveness of 10 to 800, respectively 1 to 100.

Fitting groups of images to a single model. The estimated model 
parameters vary over a wide range. This reflects the variability 
of the input data (images) but is partially due to the fact that 
our distance function does not always provide a sharp optimum 
for the model parameters, so multiple parameters sets could 
provide comparably good fits for the same image.
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We can leverage this property by searching for parameters 
sets that are optimized simultaneously for a set of images. 
Briefly, we perform the same MCMC fitting process, but 
aimed at minimizing the sum of square distances for a subset 
  of the images,

 ∆ ∆group image images
m

j

j
m

m

N( )

∈

( )= ⊂ …{ }∑


, ,1 2  (17)

Given a set of images, the fitting process is identical to that 
of individual fitting, but using the group distance (equation 
(17)). Attempts to fit the entire set of images to a single model 
failed to achieve reasonably low distances. This led us to adopt 
a group approach where the set of 81 images was partitioned 
into groups (or clusters—not to be confused with clusters of 
receptors). The complete fitting process is similar to k -means 
clustering, in that we begin with a given partition of the image 
set into k groups and perform repeated parameter optimization 
passes, followed by reassignment of images to the closest group 
(centroid).

In Figure 7 and Table 1, we present results with k = 6  
groups of images fitted with models with 2-domain types and 
parameters. The scatter plots show the overall success probabil-
ities p H

succ
( ) , p L

succ
( ) , and expected number of domains per image 

N NDH DL,  for the 2-domain types. The relation to the pri-
mary model parameters f f p pS H L, , ,  is as follows:

p f f p f f p

N
p

N
p

S p S L

DH
H

DL
L

Hsucc H succ L, ,, ,

, .

= −( ) = −( ) −( )
= =

1 1 1
1 1   (18)

The initial partition was obtained by actual k -means clus-
tering applied to feature vectors that contain various character-
istics of the images.

Figures 8 to 10 illustrate the results of group fits to one 
image from each group. The bar plots compare the actual 
number of particles by cluster size with individual model fits 
and group fits. Similar plots are available for all images in our 
data set.

Discussion
Receptor clustering, the accumulation of membrane-bound 
receptors in groups ranging from 2 to 3 to hundreds of copies, 
is commonly observed for multiple receptor types. This type of 
clustering is not the result of a known receptor-receptor bind-
ing mechanism and is likely the result of the interaction of 
receptors with features of the cell membrane. A possibly related 
phenomenon is co-confinement of receptors, observed in sin-
gle-particle tracking. One plausible explanation is the presence 
of small regions that have a higher affinity to the receptors, so 
that while receptors can move in and out of these domains, 
their random movement is biased in a way that results in a 
higher probability of placement inside the domain.

The implications of the presence of high-affinity or recep-
tor-enriched domains on the dynamics of signaling are signifi-
cant. In pathways where signal initiation relies on ligand-induced 
oligomerization of receptors, enrichment results in a higher 
rate of dimerization and more effective signaling. This is the 
case for VEGF signaling, which relies on the formation of 
receptor dimers stabilized by the bivalent VEGF ligand.

Using algorithms to identify receptor clusters and to assign 
a footprint area to the clusters, we aim to develop a methodol-
ogy to quantify the phenomenon of receptor clustering and to 
investigate the hypothesis of underlying high-affinity domains. 
The main goal of the work reported here is to construct and 
parameterize a simple model that can explain the observed 
cluster size distributions using a small set of general parameters 
pertaining to the underlying domains. The data set used here, 
kindly provided by the Wilson Lab (University of New Mexico) 
consists of TEM micrographs of nanogold-labeled VEGFR-2 
receptors on PAE-KDR cells that artificially express these 
receptors. Receptors are identified as small dark spots; their 
coordinates were extracted and used to compile a list of points 
for each image.

In previous work analyzing this data set,13 we used hierar-
chic distance-based clustering to identify clusters, supported by 
NND-based measures to identify the optimal length scale and 
establish clustering tendency. We found that the distributions 
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Table 1. Fitted model (mod.) parameters after we performed k-means clustering for the unknown model parameters for each data set.

GR. fS (%) pSucc, H (%) pSucc, l (%) NDH NDl

MOD. OBS. MOD. OBS. MOD. OBS. MOD. OBS. MOD. OBS.

1 2.91 6.04 5.15 6.64 1.80 1.42 8.23 16.47 30.47 1210.8

2 6.60 6.71 1.80 3.26 0.44 0.47 12.31 12.43 162.60 155.4

3 5.68 4.82 52.55 19.20 4.49 2.51 1.21 6.13 6.83 14.6

4 15.74 13.67 14.13 13.09 1.91 3.00 3.17 3.44 20.63 263.8

5 9.73 8.95 25.80 21.28 1.73 3.16 2.90 4.17 9.02 139.1

6 14.21 8.93 5.04 4.47 1.25 0.93 5.48 17.95 46.53 841.91

Here, we chose 6 groups. The results for the observed (obs.) biological data are for the cluster centroids.

Figure 7. Summary of group fitting results. Parameters for the 2-domain model ( , , , )f f p pS H L  were optimized for groups of images (see text for details). 

Stars represent group centroids and circles represent individual images; symbols are colored to reflect group assignments. The overall success 

probability psucc H, , psucc L,  for domains of type H  in panel A, respectively l , are compared with each other in panel B and plotted against the number of 

domains of the respective type in C and D.

of points within clusters were consistent with uniform random 
placement at a higher density. This observation is consistent 
with the hypothesis of underlying high-affinity domains.

Our goal here is to take the domain hypothesis further by 
attempting to quantify the properties of the underlying domain 
structure and devise a simple model to predict/reproduce the 
observed distribution of particles in clusters. The main idea is 
that, if the observed clusters are the result of random placement 
of particles into a set of preexisting domains, then the observed 

distribution of cluster sizes should be determined by the indi-
vidual size (area), density (of domains in the cell membrane), 
and enrichment factor of these domains.

Small cluster footprints point to high enrichment 
factors

First, we used the method developed by Pryor et al16 to con-
struct footprints associated with individual clusters. In a first 
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Figure 8. Example of individual and group fits for groups 1 and 2. Micrographs provided by the courtesy of the Wilson Lab. Colored points indicate 

receptors; contours identify clusters and their footprint. Bar plots show the number of particles by cluster size, comparing the actual values and the model 

predictions using the best-fit parameters. The individual fits are always closer but the group fits are also reasonable.

approximation, one may identify clusters of size 2 or larger 
with the presumed domains. A measure of the accumulation of 
receptors is the number of clustered receptors as a fraction of 
the total compared with the area occupied by clusters as a frac-
tion of the total area of an image (Figure 4), that is, the relative 
density of receptors in clusters versus overall. The resulting 
enrichment factors are typically between 100 1000… . 
Individual domains range from 1

2500
1
160

…  of the entire 

image area (equivalent to 1
50

1
12 5

…
.

 of the diameter).

Importantly, the enrichment factor is consistently high 
across the data set, including many images with a large average 
cluster size. This indicates that the enrichment effect is not 
primarily due to dimers (which would appear as clusters of 2 
points, with a small footprint).

In summary, a model for the emergence of clusters should 
explain why more than 50% of the observed particles tend to 
collect in a small fraction of the total area, with densities of 1 
to 3 orders of magnitude higher than the average, in individual 
clusters numbering from 2 to 200 particles. The small physical 
size (typically 0.025% of the image area) of individual clusters 
precludes an explanation based on “accidental” proximity.

Domain-based models for cluster size distributions

We developed simple models to explain the observed cluster 
sizes, based on the random placement of particles into the area 
of interest (corresponding to one image) in the presence of a set 
of domains; each particle places either in one of the domains or 
in the rest of the area. For a given drawing (placing all the par-
ticles), the particles in one domain correspond to an observed 
cluster of the corresponding size; particles outside domains are 
identified with singletons (or clusters of size 1). For a given 
image with N p  particles, we compare the expected distribu-
tions of particles into clusters of different sizes with the 
observed distribution.

We considered models with 1 or 2 types of domains. One 
type of domain is characterized by the total number of domains 
ND  (of this type in the entire image) and the expected fraction 
of particles that place in this type of domain. We then compute 
the expected number of particles outside domains (identified as 
singletons), and the expected number of particles in domains 
that contain 1, 2, etc, particles.

These expectations are then compared with the actual num-
ber of particles in clusters of the corresponding sizes. As the 
number of larger clusters was typically small, we used the total 



12 Bioinformatics and Biology Insights 

number of particles in clusters within ranges of sizes: 1, 2, 3-5, 
6-10, 11-20, and higher than 20. We performed fits by mini-
mizing the (square) difference between the actual and expected 
number of particles per cluster size interval.

Some of the images could be very closely matched by a 
model with only one type of domain, but a significant subset 
could not. We were able to fit closely to the remaining cluster 
size distributions after extending of the model to 2-domain 
types, each with their number of domains and assigned fraction 
of particles. The parameters inferred from individual model fits 
(with 1- or with 2-domain types) are distributed over wide 
ranges. To identify narrower parameter values, we attempted to 
identify groups of images with similar features, and then tried 
to fit all images in a group with a single set of parameters. We 
provided detailed results where the 81 images were partitioned 
into 6 groups. We briefly comment on these results below.

Individual model f its of cluster size distributions

We performed individual fits for each image, using models with 
1-domain type and models with 2 different types of domains. 
The fitting procedure aimed to minimize the minimal square 

distance (equation (13)) for each image, over the model param-
eters, using a MCMC algorithm. The resulting minimal square 
distances for each image with a 1- and 2-domain model are 
compared in Figure 5. While some images are well fit by the 
1-domain model, a large fraction of the images are better (or 
significantly better) fit with the 2-domain model. The model-
predicted distribution of particles by domain/cluster size is 
compared with the observed distribution for the 3 sample 
images. The sample image 5-16636 (labeled B) is a good illus-
tration of how a model with one type of domain can fail. The 
distribution of moderate size clusters (with 3-20 particles) can 
be reasonably well reproduced with one type of attractive 
domain; however, the fact that more than 70 particles are in 
domains >20 while there are none in domains between 11 and 
20 is exceedingly unlikely in a single binomial distribution.

Fitting groups of images to a single model. The estimated model 
parameters vary over a wide range. This reflects the variability 
of the input data (images) but is partially due to the fact that 
our distance function does not always provide a sharp optimum 
for the model parameters, so multiple parameters sets could 
provide comparably good fits for the same image.

Figure 9. Example of individual and group fits for groups 3 and 4. Micrographs provided by the courtesy of the Wilson Lab. Colored points indicate 

receptors; contours identify clusters and their footprint. Bar plots show the number of particles by cluster size, comparing the actual values and the model 

predictions using the best-fit parameters. The individual fits are always closer but the group fits are also reasonable.
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We leveraged this property by searching for parameters sets 
that are optimized simultaneously for a set of images. Briefly, 
we performed the previous MCMC fitting procedure, but 
using the same model/parameter set for all images in a group 
(which may be the entire data set or part of it). The procedure 
is otherwise identical to the single image fit. We seek to mini-
mize the sum of all square distances (equation (14)), or the 
group distance.

Attempts to fit the entire set of images to a single model 
failed to achieve reasonably low distances. This led us to 
adopt a group approach where the set of 81 images was parti-
tioned into groups. The process of identifying the groups was 
similar to k -means clustering, in that we began with a given 
partition of the image set into k  groups and performed 
repeated parameter optimization passes, followed by re-
assignment of images to the closest group (centroid). The ini-
tial partition was obtained by actual k -means clustering 
applied to feature vectors that contain various characteristics 
of the images.

The results of the group fitting process are illustrated in 
Figure 7 and the resulting parameter sets (the number of 
domains of each type and the corresponding individual success 
probabilities, equation (16)) are given in Table 1. For each of 

the 6 groups, a representative image and the corresponding fit 
bar plots are shown in Figures 8 to 10.

Conclusions
We summarize our results as follows. Nearest-neighbor dis-
tance–based measures indicate that the observed clustering of 
VEGF receptors is significant. The receptors accumulate in the 
small regions of diameter from 50 to 200 nm containing from 
2 to 3 up to a 100 receptors. We hypothesize that the observed 
clusters are the result of preferential random placement of 
receptors (enrichment) in preexisting areas of the membrane. 
We estimate the enrichment factor typically in the range of 100 
to 1000.

To validate our hypothesis of domain-induced clustering, 
we devised a simple model to predict the distribution of cluster 
sizes. The key element is that particles are first partitioned 
among 2 or 3 sectors: free (not in a domain) and confined in 
domains of up to 2 types. Free particles correspond to single-
tons. Confined particles are distributed randomly among the 
domains of the respective type, thus one given domain will 
receive a number of particles given by a binomial distribution. 
We were able to fit all images with the 2-domain-type model, 
but only some of them with 1-domain type. The resulting 

Figure 10. Example of individual and group fits for groups 5 and 6. Micrographs provided by the courtesy of the Wilson Lab. Colored points indicate 

receptors; contours identify clusters and their footprint. Bar plots show the number of particles by cluster size, comparing the actual values and the model 

predictions using the best-fit parameters. The individual fits are always closer but the group fits are also reasonable.
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individually fitted parameters are distributed over a wide range 
of values. We were able to fit groups of images with one set of 
parameters (per group).
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