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1  | INTRODUC TION

Bladder cancer (BCa) is the most common malignant tumor of the 
urinary system, with the fourth incidence among male malignant tu-
mors.1 In accordance with pathology grading classification, bladder 

cancer can be classified into non- invasive urothelial lesions, includ-
ing urothelial dysplasia and urothelial proliferation of uncertain ma-
lignant potential, as well as infiltrating urothelial carcinoma, with 
divergent differentiations.2

Currently, the accurate clinical diagnosis of BCa mainly depends 
on histopathology, which is performed by pathologists using medical 
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Abstract
Traditional histopathology performed by pathologists by the naked eye is insuffi-
cient for accurate and efficient diagnosis of bladder cancer (BCa). We collected 643 
H&E- stained BCa images from Shanghai General Hospital and The Cancer Genome 
Atlas (TCGA). We constructed and cross- verified automatic diagnosis and prognosis 
models by performing a machine learning algorithm based on pathomics data. Our 
study indicated that high diagnostic efficiency of the machine learning- based diagno-
sis model was observed in patients with BCa, with area under the curve (AUC) values 
of 96.3%, 89.2%, and 94.1% in the training cohort, test cohort, and external valida-
tion cohort, respectively. Our diagnosis model also performed well in distinguishing 
patients with BCa from patients with glandular cystitis, with an AUC value of 93.4% 
in the General cohort. Significant differences were found in overall survival in TCGA 
cohort (hazard ratio (HR) = 2.09, 95% confidence interval (CI): 1.56- 2.81, P < .0001) 
and the General cohort (HR = 5.32, 95% CI: 2.95- 9.59, P < .0001) comparing patients 
with BCa of high risk vs low risk stratified by risk score, which was proved to be an 
independent prognostic factor for BCa. The integration nomogram based on our risk 
score and clinicopathologic characters displayed higher prediction accuracy than cur-
rent tumor stage/grade systems, with AUC values of 77.7%, 83.8%, and 81.3% for  
1- , 3- , and 5- y overall survival prediction of patients with BCa. However, prospective 
studies are still needed for further verifications.
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microscopes and by the naked eye. However, some histopathology 
patterns, such as microcystic urothelial carcinoma and papillary 
urothelial neoplasm of low malignant potential, could exhibit decep-
tive appearances.2 Traditional immunochemistry methods some-
times could still be insufficient for difficult differential diagnosis. 
Therefore, an automatically pathological image aiding system could 
be a convenient and ideal solution.

High- throughput processing of medical images has been widely 
used to explore mineable high- dimensional data for precision medi-
cine.3,4 As a novel technology with highly promising prospects, ma-
chine learning is being gradually used in medical image processing 
for multiple malignant tumors, including breast cancer,5 lung ade-
nocarcinoma,6 neuro- oncology,7 and skin carcinoma.8 However, 
primary use of machine learning technology based on pathology im-
ages has not been fully studied for BCa.

Here, using a machine learning algorithm, we constructed and 
verified automated pathological models for diagnosis and clinical 
prognosis prediction for patients with BCa.

2  | MATERIAL S AND METHODS

2.1 | Patient cohorts

The study included 108 radical or partial cystectomy patients with 
BCa who received treatment at the Shanghai General Hospital from 
January 2009 to December 2016 (General cohort). The criteria for 
selecting these patients were: (a) diagnosed as having primary ma-
lignant bladder tumors with relevant clinicopathologic features: (b) 
being without other tumors diagnosed simultaneously; (c) having ac-
cess to formalin- fixed and paraffin- embedding (FFPE) BCa samples. 
Ethical approval for this study was approved by the Research Ethics 
Committee of Shanghai General Hospital.

Another 406 patients with BCa who met the first 2 inclusion cri-
teria and with access to malignant pathological slice images in The 
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov), were 
also enrolled for this study (TCGA cohort).

2.2 | Histopathology samples and 
representative images

All of the 108 FFPE BCa samples were sliced at 5 μm to obtain histo-
logical sections that were further stained with hematoxylin (Sigma- 
Aldrich) and eosin (Sigma- Aldrich). All the H&E- stained slides were 
carefully reviewed by an experienced pathologist who specialized 
in genitourinary pathology. A Leica DM2500 LED fluorescence mi-
croscope was used to determine the region of interest and select 
the most representative image from each sample with regards to nu-
clear pleomorphism, mitosis, carcinoma infiltration, cancer invasion, 
tumor cell differentiation, and pathological grading. These patholog-
ical concerns can be regarded as a typical screenshot of a patholo-
gist following slide diagnosis. Images of 1000 × 1000 pixels for each 

sample were acquired under ×400 magnification. Another 53 nor-
mal bladder FFPE samples and 39 glandular cystitis FFPE samples 
were also obtained from Shanghai General Hospital and processed 
as mentioned above for further analysis. In TCGA cohort, 406 BCa 
and 37 normal bladder tissue H&E slice images were processed di-
rectly by Leica Aperio ImageScope at ×400 magnification to obtain 
representative images as mentioned above. Finally, all of the 643 
representative images were strictly censored by another independ-
ent pathologist for academic rigorousness.

2.3 | Extraction of quantitative image features

We built an image processing pipeline (Document S1) for segmenta-
tion and feature extraction using multiple modules in CellProfiler.9,10 
H&E- stained images were firstly unmixed with 1000 × 1000 pixels 
via the ‘UnmixColors’ module. Afterwards, unmixed images were 
automatically segmented via an ‘IdentifyPrimaryObjects’ module 
and an ‘IdentifySecondaryObjects’ module to identify the cell nu-
clei and cell cytoplasm. Quantitative image features of object shape, 
size, texture, and pixel intensity distribution were further extracted 
via multiple modules, including measure models of ‘Object Intensity 
Distribution’, ‘Object Intensity’, ‘Texture’, and ‘Object Size Shape’. 
After eliminating unnecessary image features, 345 available quan-
titative image features (Document S2) were finally selected for fur-
ther analysis, which were also listed in Table S1.

2.4 | Construction of machine learning- based 
models for patients with BCa

To construct the machine learning- based diagnosis model for patients 
with BCa, H&E- stained slice images of 406 BCa and 37 matched 
normal bladder tissue from TCGA were randomly allocated into 2 
independent groups (ratio of 1 to 1) through computer- generated 
random seed in the R environment, including training cohort and test 
cohort. In addition, 108 BCa images and 53 normal bladder tissue 
images from Shanghai General Hospital were grouped as the exter-
nal validation cohort to verify the validity of the diagnosis model.

Based on 345 available quantitative features of each H&E slice 
image in the training cohort, the glmnet package11 was applied to 
perform least absolute shrinkage and selection operator (LASSO) 
analysis for selecting BCa- related digital factors and calculating their 
weighted coefficients to develop a machine learning- based diagno-
sis model, which was afterwards verified in the test cohort and the 
external validation cohort, respectively.

The machine learning- based diagnostic score was calculated as 
follow:

where Di and Ci represent the selected BCa- related image features 
and the associated weights, respectively.

Diagnostic score =

∑

n

i= 1
(Ci × Di)

https://portal.gdc.cancer.gov
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F I G U R E  1   The workflow of this machine learning- based study
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To construct a clinical prognosis model for patients with BCa, 
we constructed a LASSO- Cox hazard model12 based on digital 
pathological images of 406 patients with BCa in the TCGA cohort 
(training cohort) to identify survival- related image features. We 
further created a machine learning- based risk score to increase 
the flexibility of the prognosis model, which was calculated as 
follows:

where Ri and Ci represent the selected survival- related image features 
and the associated weights, respectively. We next verified our progno-
sis model in the General cohort (test cohort) and constructed an inte-
grated nomogram in accordance with clinicopathologic factors and risk 
score, which was further evaluated by calibration with a bootstrapping 
plot.

2.5 | Statistical analysis

In this study, a comparison of continuous variability was performed 
using two- tailed Student t test or a one- way analysis of variance. We 
performed Pearson chi- square test or Fisher exact test to analyze cat-
egorical variability. A ROC curve with an area under the curve (AUC) 
value was used to evaluate the specificity and sensitivity of the ma-
chine learning- based model. Kaplan- Meier (KM) curve analysis and 
Cox regression analysis with hazard ratio (HR) and 95% confidence 
interval (CI) were performed to identify the important role of the risk 
score based on machine learning in clinical prognosis of patients with 
BCa. Image capturing and the extraction of image features were per-
formed using CellProfiler software (v.3.1.9, Windows). All of these 
analyses were performed using Statistical Package for Social Sciences 
24.0 software (SPSS Inc) and R v.3.6.2 (Windows); a P- value < .05 was 
regarded as significant (Figure 1).

Machine learning based risk score =

∑

n

i= 1
(Ci × Ri)

F I G U R E  2   Developed and verified 
the machine learning- based diagnosis 
model for BCa. A, Ten- fold cross- validated 
error in LASSO analysis. B, The profile 
of coefficients in the model at varying 
levels of penalization plotted against the 
log (lambda) sequence. C, Representative 
H&E strain and processed images of 
cancer and normal sample from the 
training cohort. D- F, The ROC curves 
of diagnostic score in training cohort, 
test cohort, and validation cohort, 
respectively. AUC, area under the curve; 
BCa, bladder cancer; H&E, hematoxylin- 
eosin staining; LASSO, least absolute 
shrinkage and selection operator; ROC, 
receiver operator characteristics
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3  | RESULTS

3.1 | Baseline clinical characteristics of patients 
with BCa

Baseline characteristics of patients with BCa included in this study 
are shown in Table S2. Our study had high efficiency in the random 
division, which showed no significant difference for basic clinical 
characteristics among training and test cohorts, except for the age 
composition.

3.2 | High diagnostic efficiency of the machine 
learning- based diagnosis model for patients with BCa

By using LASSO analysis with 10- fold cross- validation, we iden-
tified 22 BCa- related image factors by 10- fold cross- validation 
(Figure 2A,B). All of the identified image features and their corre-
sponding coefficients are listed in Table S3. As shown in Figure 2C, 
the automatic segmentation displayed visible differences between 
BCa tissue and normal bladder tissue. In addition, our machine 
learning- based diagnosis model performed well in distinguishing 
BCa samples from normal bladder samples, with AUC values of 

96.3%, 89.2% and 94.1% in the training (Figure 2D), test (Figure 2E), 
and external validation cohorts (Figure 2F), respectively, indicating 
that the diagnostic model had high diagnostic accuracy.

We next verified the diagnosis model in differential diagnosis of 
BCa from glandular cystitis. As shown in Figure 3A, notably differ-
ent identified objects could be found among BCa samples and glan-
dular cystitis samples. The machine learning- based diagnosis model 
displayed high accuracy in distinguishing patients with BCa from 
patients with glandular cystitis, with an AUC value of 93.4% in the 
patient cohort from Shanghai General Hospital. When being com-
pared with non- BCa samples (normal bladder samples and glandular 
cystitis samples), BCa samples could also been accurately diagnosed 
through the machine learning- based diagnosis model, with an AUC 
value of 93.8% (Figure 3C).

3.3 | Important role of machine learning- based risk 
score for clinical prognosis prediction of patients 
with BCa

As shown in Figure 4A,B, 18 survival- related image features of 
BCa samples were identified through LASSO- Cox analysis with 
10- fold cross- validation in TCGA cohort, which are also listed in 

F I G U R E  3   Machine learning- based 
diagnosis model accurately distinguished 
BCa from glandular cystitis. A, 
Representative H&E strain and processed 
images of BCa and glandular cystitis 
sample from General cohort. B and C, 
ROC curves for distinguishing BCa from 
glandular cystitis and non- BCa tissues in 
General cohort, respectively. AUC, area 
under the curve; BCa, bladder cancer; 
H&E, hematoxylin- eosin staining; non- 
BCa, glandular cystitis and normal tissues; 
ROC, receiver operator characteristics
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Table S4. The machine learning- based risk score was afterwards 
analyzed based on the formula presented above. Interestingly, we 
found that the high- risk score showed significant relevance to high 
BCa stage and high BCa grade both in TCGA (Figure 4C) and the 
General cohort (Figure 4E). The overall survival among patients 
with high- risk or low- risk scores showed significant difference in 
TCGA cohort (HR = 2.09, 95% CI: 1.56- 2.81, P < .0001, Figure 4D). 
We next verified the significant association between risk score and 
prognosis of BCa in an independent cohort (Figure 4F). Significant 
difference in overall survival was also found between patients with 
high- risk and low- risk score in the General cohort (HR = 5.32, 95% 
CI: 2.95- 9.59, P < .0001), revealing the important role for machine 
learning- based risk score for clinical prognosis prediction of pa-
tients with BCa.

Further univariate and multivariate Cox regression analyses 
revealed that our machine learning- based risk score could act as 
an independent predictor of survival for patients in the TCGA 
cohort with BCa (Figure 5A), which was also verified in patients 
from the General cohort with BCa (Figure 5B). Furthermore, 
significantly higher risk scores were found in patients with BCa 
with high tumor stages (stage III/IV) (Figure 5C,D). Patients with 
BCa with high tumor grade were also found to have a higher 
risk score when compared with patients with low grade tumors 
(Figure 5E,F).

3.4 | Integration nomogram improves the current 
survival prediction accuracy for patients with BCa

Current survival prediction for patients with BCa was based on 
predictable clinical and pathological factors such as clinical tumor 
stages, pathological tumor grades, and patient ages. To improve 
current survival prediction accuracy for patients with BCa, an inte-
gration nomogram was established based on synthesizing machine 
learning- based risk score and predictable clinical and pathological 
factors (Figure 6A). Based on the calibration plot, there was great 
agreement with practical observations such as 1- , 3- , and 5- y overall 
survival predictions based on our integration nomogram (Figure 6B). 
ROC curves for 1- , 3- , and 5- y overall survival predictions revealed 
that higher prediction accuracy was found in the integration nomo-
gram when compared with clinicopathologic factors (Figure 6C- E). 
Incremental values of survival prediction accuracy via integration 
nomograms was also observed in the General cohort (Figure 6F- H), 
indicating the stable predictive efficacy of the integration nomogram 
for patients with BCa.

4  | DISCUSSION

Thanks to the rapid development of machine learning algorithms 
and sophisticated image analysis methods, it appears that high- 
throughput ’omics, including radiomics, and pathomics, have been 
gradually used in precision medicine for automatic diagnosis and 
prognosis prediction.13- 15 Deep convolutional neural networks 
could achieve accuracies of 100% and 92% for distinguishing multi-
ple cancer samples and sub- types.16 For malignant bladder tumors, 
radiomics- based nomograms could act as a preoperative prediction 
of lymph node metastasis in bladder carcinoma.17 MRI- based radi-
omics nomograms have also been reported to have potential utility 
for prognosis prediction of patients with BCa.18

However, due to the indirectness between cancer tissues and 
radiation images, radiomics might miss important information con-
tained in tumor cells and extracellular matrix. Pathomics digitalizes 
cancer tissues directly through slide scanning,19 which might extract 
histological features to a greater extent.

In this study, we constructed and verified a machine learning- 
based diagnosis model for patients with BCa based on pathological 
H&E- stained images of BCa from 2 independent patient cohorts. 
Our automated diagnostic model could identify BCa when com-
pared with normal bladder tissues with satisfactory AUC values from 
89.2% to 96.3%, Furthermore, our diagnosis model could also per-
form differential diagnosis between BCa and glandular cystitis, with 
an AUC value of 93.4 in the General cohort.

BCa can be classified into non- muscle invasive bladder cancer 
(NMIBC) and muscle invasive bladder cancer (MIBC) based on the 
clinical TNM stages. NMIBC patients showed a decent 5- y overall 
survival of more than 99%.20 However, despite TNM classifications, 
morphological patterns could also be associated with the prognosis 
of patients with BCa. Some poorly differentiated tumors uniformly 
have extremely poor prognosis regardless of the TNM staging.2 
Furthermore, BCa at the T2 and T3 stages could be difficult to di-
agnose on biopsy and transurethral resection samples due to the 
limitation by the microscope.2 Therefore, there is great urgency to 
develop an effective prognostic prediction method for patients with 
BCa that is independent of current TNM classification systems.

In this study, by performing machine learning algorithms, we 
constructed and verified a machine learning- based risk score for 
clinical prognosis prediction of patients with BCa that could act as 
an independent predictor of survival for patients with BCa. Patients 
with high- risk score and low- risk score presented significant over-
all survival differences among both TCGA and the General cohorts. 
Additionally, our integration nomogram demonstrated excellent 

F I G U R E  4   Developed and verified the machine learning- based risk score for patients with BCa. A, Ten- fold cross- validated error in 
LASSO analysis. B, The profile of coefficients in the model at varying levels of penalization plotted against the log (lambda) sequence. C and 
E, Heatmaps demonstrated the distribution of the selected 18 image factors and the risk score by LASSO analysis in training cohort (TCGA 
cohort) and validation cohort (General cohort), respectively. D and F, Kaplan- Meier survival analysis of overall survival stratified by risk score 
for patients with BCa from training cohort (TCGA cohort) and validation cohort (General cohort), respectively. The cut- off value of high- risk 
and low- risk score was defined as the median score of respective cohorts. Feature name of each selected factor was shown in Table S4. BCa, 
bladder cancer; LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer Genome Atlas
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performance in patients with BCa survival prediction. Considering 
the AUCs, overall survival in 1- , 3- , and 5- y was 77.7%, 83.8% and 
81.3%, respectively; our nomogram revealed its great potential in 
decision- making for various- stage patients with BCa.

Several limitations could also be found in our study. First, less ac-
curacy of our machine learning- based diagnosis model could also be 
found when comparing with traditional diagnostics by pathologists. 
Second, the cut- off value of our machine learning- based risk score 
was defined as the median values in different cohorts, resulting in 
different ranges of high- risk score between patients from TCGA co-
hort and the General cohort. Third, our study was retrospective and 
our machine learning- based BCa diagnostic model needed further 

verifications from prospective clinical trials designed in accordance 
with SPIRIT- AI21 and CONSORT- AI.22 However, we innovatively ap-
plied pathological image segmentation into clinical practice through 
our automatic image processing pipeline, and constructed a machine 
learning- based diagnostic model from a pathomics signature that 
was easy to understand and use by clinicians without sophisticated 
computational knowledge. In addition, we presented a novel prog-
nostic indictor for patients with BCa based on a pathomics signature, 
which differed from conventional clinicopathologic factors.

In conclusion, we constructed and verified machine learning- 
based pathomics models with functions of automatic BCa diagnosis 
and survival prediction. Synthesized using conventional clinical and 

F I G U R E  5   Machine learning- based 
risk score acted as an independent risk 
factor in overall survival prediction for 
patients with BCa. A and B, Univariate and 
multivariate Cox regression analyses of 
risk score and clinicopathologic features 
for overall survival of patients with BCa 
in TCGA cohort and General cohort, 
respectively. C and D, Significantly higher 
risk score was found in patients with BCa 
with high tumor stages in TCGA cohort 
and General cohort, respectively. E and F, 
patients with BCa with high tumor grade 
were found to have higher risk score. BCa, 
bladder cancer; ML, machine learning; 
TCGA, The Cancer Genome Atlas
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F I G U R E  6   Prognostic accuracy of machine learning- based risk score integrated with clinicopathologic factors. A, Nomogram based on 
risk score and clinicopathologic factors for OS prediction of patients with BCa. B, Evolution of the prognostic nomogram model for 1- , 3- , 
and 5- y OS prediction. C- E, ROC curves of 1- , 3- , and 5- y OS prediction for the prognostic nomogram model in TCGA cohort. F- H, ROC 
curves of 1- , 3- , and 5- y OS prediction for the prognostic nomogram model in General cohort. AUC, area under the curve; BCa, bladder 
cancer; OS, overall survival; ROC, receiver operator characteristics; TCGA, The Cancer Genome Atlas
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pathological factors, the machine learning- based risk score was sug-
gested to be an excellent survival predictor for patients with BCa. 
Nevertheless, prospective studies with large patient cohorts are still 
needed for further verifications of our pathomics models.
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