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The reasons for the ethnic disparities in the prevalence of systemic lupus erythematosus (SLE) and the relative high frequency of SLE
risk alleles in the population are not fully understood. Population genetic factors such as natural selection alter allele frequencies
over generations and may help explain the persistence of such common risk variants in the population and the differential risk of
SLE. In order to better understand the genetic basis of SLE that might be due to natural selection, a total of 74 genomic regions
with compelling evidence for association with SLE were tested for evidence of recent positive selection in the HapMap and HGDP
populations, using population differentiation, allele frequency, and haplotype-based tests. Consistent signs of positive selection
across different studies and statistical methods were observed at several SLE-associated loci, including PTPN22, TNFSF4, TET3-
DGUOK, TNIP1, UHRF1BP1, BLK, and ITGAM genes. This study is the first to evaluate and report that several SLE-associated
regions show signs of positive natural selection.These results provide corroborating evidence in support of recent positive selection
as onemechanism underlying the elevated population frequency of SLE risk loci and supports future research that integrates signals
of natural selection to help identify functional SLE risk alleles.

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease whose prevalence, incidence, and disease severity are
known to vary among ethnic groups. Increased prevalence
has been reported among African-Americans, Asians, His-
panics, and Native Americans (reviewed elsewhere [1, 2]).
The reasons for the ethnic disparities remain elusive. Accord-
ing to the “hygiene hypothesis” first proposed by Strachan
two decades ago [3], the increased disease prevalence of
autoimmune and allergic diseases in industrialized countries
may be due to modern society’s limited pathogen exposure.
The Hygiene Hypothesis posits that humans have adapted
to infectious exposures that were the norm in the past and
that exposure was protective against autoimmune disease.
Over many generations environmental pressure may have
favored alleles that allow humans to respond to immune
system challenges differently but resulted in an increased

risk of autoimmune diseases. This could be a mechanism
explaining the number of SLE risk alleles that are common
in the population.

Human genome variation at the population level is
shaped by four evolutionary processes: mutation, migration,
random genetic drift, and natural selection. Natural selection
is the process by which a trait, in the context of the organism’s
environment, becomes either more or less common in a
population as a function of the effect of the inherited trait on
the differential reproductive success. This ability to survive
and reproduce and contribute to the gene pool of the next
generation is known as fitness. Natural selection drives adap-
tation, the evolutionary process whereby over generations the
members of a population become better suited to survive
and reproduce in that environment. While negative selection
decreases the prevalence of traits that diminish individuals’
fitness, positive selection increases the prevalence of adaptive
traits. Left untreated, SLE would have a reproductive fitness
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cost, defined as the ability to raise offspring that successfully
reproduce.Thus, some evolutionary process must sustain the
relative high frequency of SLE risk alleles seen in current
populations around the world. We hypothesize that since the
human genome is shaped by adaptation to environmental
pressures at the population level, one plausible reason for
the higher frequency of disease-risk alleles may be the direct
effect of population-specific positive natural selection.

There is compelling evidence that natural selection is
acting on a significant fraction of all genes (∼3%) [4–7] and as
much as 10% of the human genome [8]. Multiple studies have
identified genes involved in immune-related functions to be
under selection [8–10], including theHLA [11–14] (associated
with all autoimmune diseases), BTLA [10] (associated with
rheumatoid arthritis), ITPR3 [10] (SLE, type 1 diabetes,
Grave’s disease), PTPN22 [10] (rheumatoid arthritis, Crohn’s
disease, type 1 diabetes, vitiligo), ITGAX [10] (SLE), and BLK
[10] (SLE, rheumatoid arthritis, Kawasaki disease). Finally,
we have recently provided evidence that variants within the
APOL1 gene known to be under selective pressure in some
African populations predispose to end-stage kidney disease
in SLE [15]. Given the increasing evidence of selection at loci
associated with human autoimmune diseases, identification
of alleles under selectionmay provide further insight into SLE
susceptibility and help understand the natural history of SLE
predisposition.

2. Methods

A list of genetic regions with compelling evidence of asso-
ciation with SLE was compiled from the literature. This list
includes results that met genome-wide significance in any
genome-wide association study (GWAS) or transethnic study
of SLE and common or rare variants that are considered
established SLE-predisposing loci from candidate gene and
other studies.The list of regions was based on the literature as
of August 2013 and comprises 89 genes in 74 genomic regions.

This list was built upon all the SLE-associated regions
described in recent reviews [16–19], which include common
and rare variants from candidate gene studies with com-
pelling evidence of association with SLE. We included all
reported risk variants for SLE using data from the National
Human Genome Research Institute’s Catalog of Published
GWAS (http://www.genome.gov/gwastudies) accessed on
August 30th, 2013 [20]. Finally, we searched PubMed (http://
www.ncbi.nlm.nih.gov/pubmed) for all large-scale transeth-
nic or multiracial studies in SLE and catalogued all variants
with a reported meta-analysis 𝑃 value < 5 × 10−7. The refer-
ences for these more recent studies are included in Table 1.
Given the paucity of studies conducted in some minority
populations, and in order to avoid differential bias due
to the number of reported associations in different ethnic
groups, we chose to include all variation regardless of the
population(s) where they were reported and ignore the
information about the population(s) where they have been
reported to date.

Assuming no other influencing factors, the advantageous
alleles at a locus under positive selective pressure will tend

Table 1: Genetic regions with compelling evidence for association
with SLE.

Gene(s) region Chr Pos (Mb)
C1q [21] 1 22.96

IL12RB2 [22] 1 67.55

PTPN22 [22–25] 1 114.16

FCGR2A, FCGR3A [26, 27] 1 159.74

TNFSF4 [22, 28–33] 1 171.42

NMNAT2 [22, 24, 32] 1 181.48

NCF2 [22] 1 181.79

APOBEC4 [28] 1 181.88

CFH [34] 1 194.89

CFHR1, CFHR4 [34] 1 196.79

CRP [35] 1 199.72

IL10 [22] 1 205.01

LYST [22] 1 233.89

RASGRP3 [28, 32] 2 33.51

TET3, DGUOK [28] 2 74.21

IFIH1 [22, 36] 2 162.83

STAT4 [22–24, 32, 37–41] 2 191.60

PDCD1 [42] 2 242.44

SCN10A [28] 3 38.71

TREX1 [43] 3 48.48

DNASE1L3 [44] 3 58.15

PXK [22–24] 3 58.29
TMEM39A [45] 3 120.63
CD80 [28] 3 120.73
AFF1 [46] 4 88.15
BANK1 [23, 28, 47] 4 102.93
LEF1 [46] 4 109.19
IL21 [48] 4 123.75
PPP2CA [49] 5 133.53
TNIP1 [22, 28, 32] 5 150.39
PTTG1 [22, 32] 5 159.78
C4 [50] 6 32.09
HLA-DRB1 [24, 39, 51–53] 6 32.59
ITPR3 [54] 6 33.70
UHRF1BP1 [22, 28] 6 34.87
BACH2 [28] 6 90.69
ATG5, PRDM1 [22–24, 28] 6 106.53
TNFAIP3 [22, 28, 32, 38, 55] 6 138.23
ICA1 [22, 24] 7 8.12
JAZF1 [22] 7 27.84
IKZF1 [28, 32] 7 50.31
IRF5, TNPO3 [22, 24, 28, 39, 40, 56, 57] 7 128.37
XKR6 [24] 8 10.79
BLK [22–24, 28, 39, 40] 8 11.39
LYN [24] 8 56.95
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Table 1: Continued.

Gene(s) region Chr Pos (Mb)
ARMC3 [22] 10 23.26
LRRC18, WDFY4 [28, 32, 33] 10 49.89
ARID5B, RTKN2 [28] 10 63.94
SLC29A3 [28] 10 72.75
PHRF1, IRF7 [22–24] 11 0.58
CD44, PDHX [28, 58] 11 34.94
DDX6 [22, 32] 11 118.13
ETS1 [28, 32, 33] 11 127.83
CREBL2, GPR19, CDKN1B [28] 12 12.66
DRAM1 [28] 12 102.27
SLC15A4 [28, 32] 12 127.84
ELF1 [28] 13 40.40
C2 [59] 14 20.75
CSK [60] 15 72.86
DNASE1 [61] 16 3.64
CLEC16A [28] 16 11.04
PRKCB [62] 16 23.75
SEZ6L2 [28] 16 29.79
ITGAM, ITGAX [23, 24, 28, 63] 16 31.18
IRF8 [22, 45] 16 84.49
IKZF3, ZPBP2 [45] 17 37.91
CD226 [22, 57, 64] 18 65.68
TYK2 [22, 57] 19 10.32
ICAM1, ICAM4, ICAM5 [65] 19 10.40
ACP5 [66] 19 11.55
DDA1 [28] 19 17.28
UBE2L3 [22–24, 28] 22 20.25
SCUBE1 [24] 22 41.93
IRAK1, MECP2 [22, 23, 67, 68] X 152.93
The reference list for each gene region does not intent to be exhaustive;
instead, only the first and/or strongest associations reported to date are
mentioned. A comprehensive list of all the studies that report each region
have been recently reviewed elsewhere [16–18]. Chr: chromosome; Pos:
position (in Mega basepairs) according to Human Genome Build hg18.

to stochastically increase in prevalence over generations.This
can lead to allele frequency differences between populations,
which can be detected using statistics that compare the
genetic variability within and between populations [69]. It
can also lead to the haplotype carrying the advantageous
allele to remain longer than genetic distance predicts around
alleles of equal frequency, which can be measured using
haplotype-based statistics [7]. The evidence of selection in
each SLE-associated region was analyzed using both pop-
ulation differentiation, allele frequency spectrum, and hap-
lotype-based statistics in the HapMap II and HGDP pop-
ulations as implemented in the Haplotter (http://haplotter.
uchicago.edu/) [7] and the HumanGenomeDiversity Project
(HGDP) Selection Browsers (http://hgdp.uchicago.edu/cgi-
bin/gbrowse/HGDP/) [70], respectively.

Haplotter displays the results of a scan for positive selec-
tion in the human genome using the International HapMap
Project data (http://haplotter.uchicago.edu/) [7]. These data
consist of ∼800,000 polymorphic SNPs in three distinct pop-
ulation samples of unrelated individuals: 89 Japanese andHan
Chinese individuals from Tokyo and Beijing, respectively,
denoted as East Asian (ASN), 60 individuals of northern
and western European origin (CEU), and 60 Yoruba (YRI)
from Ibadan, Nigeria. It shows results on the autosomes
only. Results from several selection statistics are displayed,
including (1) the fixation index (𝐹ST), (2) the Tajima’s 𝐷,
and (3) the integrated haplotype score (iHS). In situations
where selection is restricted to certain populations or geo-
graphical locations, the allele frequencies at the locus that is
undergoing selectionmay vary significantly betweendifferent
populations. The fixation index 𝐹ST provides a metric of the
magnitude of global allele frequency differentiation between
populations at a locus [69, 71]. 𝐹ST is directly related to
the variance in allele frequency among populations and,
conversely, to the degree of resemblance among individuals
within populations. If 𝐹ST is small, it means that the allele
frequencies within each population are similar; if it is large,
it means that the allele frequencies are different [72]. The
Tajima’s𝐷 is based on the frequencies of the polymorphisms
segregating in a locus [73]. As described [7], positive selection
results in an excess of high frequency derived alleles com-
pared to neutral expectations when the selected allele has
swept to high frequencies. Positive selection also results in
an excess of low frequency polymorphisms, especially when
the selected allele is close to fixation or right after fixation.
This skewing of SNP frequencies in different directions can
be detected by Tajima’s 𝐷, which is based on the frequencies
of SNPs segregating in the region of interest [73]. Signals of
selective sweeps will result in high negative𝐷. The integrated
haplotype score (iHS) uses the lengths of the haplotypes
surrounding each core SNP to identify SNPs for which alleles
have rapidly risen in frequency [7, 74]. It is based on linkage
disequilibrium (LD) surrounding a positively selected allele
compared with background, providing evidence of recent
positive selection at a locus [7]. An iHS score> 2.0 reflects the
fact that haplotypes on the ancestral background are longer
compared with those on the derived allelic background.

For these analyses, genome-wide SNP data from Phase II
of the HapMap Project were used to investigate if the regions
associated with SLE showed evidence of selection in the CEU,
YRI, and ASN populations using these three metrics (iHS,
Tajima’s 𝐷, and 𝐹ST). Regions of 1Mb around each of the
74 regions in Table 1 were queried, and, when higher than
2, the maximum value on the 𝑌-axis (− log(𝑄)) in this 1Mb
interval was recorded. As described by Voight et al. [7], the
− log(𝑄) value represents the negative log of the rank of the
observed statistic for a given SNP divided by the total number
of SNPs.The statistic that is ranked is obtained independently
for each of the three statistics separately for each population.
For 𝐷, the estimated value of 𝐷 was used for ranking. For
iHS, for each SNP, 25 SNPs on either side of the SNP are
scanned for |iHS| > 2. The proportion of SNPs in this 51
SNPwindowwith |iHS| > 2 is computed. For𝐹ST, the statistic
to be ranked is obtained in a similar manner as that for iHS

http://haplotter.uchicago.edu/
http://haplotter.uchicago.edu/
http://hgdp.uchicago.edu/cgi-bin/gbrowse/HGDP/
http://hgdp.uchicago.edu/cgi-bin/gbrowse/HGDP/
http://haplotter.uchicago.edu/
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except for each population comparison, the thresholds for
defining a significant 𝐹ST is based on the top 5% cutoff for
each population comparison. The different thresholds used
for 𝐹ST were CEU-YRI: 0.2976, CEU-ASN: 0.2055, and YRI-
ASN: 0.3374. Haplotter also displays the 𝐹ST value of the SNPs
in the top 1%within each population comparison, whichwere
also recorded, if any such SNPs were present in the 1Mb
interval. In addition to these, Haplotter shows an empirical
𝑃 value estimated for each gene and for each population,
as detailed by Voight et al. [7]. When this 𝑃 value showed
significant evidence for selection, the value was recorded.

The HGDP Selection Browser displays results from a
series of genome-wide scans for natural selection using single
nucleotide polymorphism (SNP) genotype data from the
Human Genome Diversity-CEPH Panel (HGDP), a dataset
containing 938 individuals from 53 populations typed on the
Illumina 650Y platform (http://hgdp.uchicago.edu/cgi-bin/
gbrowse/HGDP/) [70]. Summary statistics regarding haplo-
type structure and population differentiation on this data can
be queried in the browser. These include the iHS, the 𝐹ST,
and the cross-population extended haplotype homozygosity
test (XP-EHH) [74]. While the iHS detects partial selective
sweeps of moderate frequency (∼50%–80%), the XP-EHH
detects selected alleles that have risen to near fixation in
one population (above 80% frequency) [7, 74]. As described
by Pickrell et al. [70], the 𝐹ST was calculated on the level
of population groupings identified by Rosenberg et al. [75];
that is, if a SNP has high 𝐹ST, most of the variance in allele
frequencies is captured by the seven labels identified in that
paper. In the browser, plotted is the − log

10

of the empirical
𝑃 value for each SNP—the higher this plotted − log

10

𝑃 value,
the more extreme (high) the 𝐹ST value is compared the rest
of the genotyped SNPs. The iHS was calculated as in Voight
et al. [7] and smoothed across windows. Plotted is the −log

10

of the 𝑃 value for a window centered at the SNP; high values
again indicate potential signals of positive selection. The test
statistic was the fraction of SNPswith |iHS| > 2.TheXP-EHH
was calculated as in Sabeti et al.’s work [74]. The test statistic
was the maximum XP-EHH. Again, the plotted measure is
a measure of how extreme a SNP is with regard to the rest
of the genome, and high values indicate outliers potentially
due to the action of natural selection. The iHS and XP-EHH
have been calculated in each individual population, as well
as in the following groupings: Bantu-speaking populations,
Europeans, Middle Easterners, Central Asians, East Asians,
Americans, and Oceanians.

Regions of 1Mb around each of the 74 regions in
Table 1 were queried, and the maximum value on the 𝑌-axis
(− log(𝑃)) in this 1Mb interval was recorded.

3. Results

To test whether SLE susceptibility loci show evidence of
positive selection, a list of 74 genetic regions with compelling
evidence of association with SLE was compiled (Table 1).
In order to test whether SLE-associated loci show evidence
for recent positive selection, 1Mb regions around each of
the 74 regions were queried. Regions where the maximum

− log(𝑄) > 3 (for Haplotter) or − log(𝑃) > 3 (for HGDP)
for the 𝐹ST, 𝐷, iHS, or XP-EHH were considered as showing
evidence for recent positive selection (Tables 2 and 3). In
addition, regions that in the HapMap populations had SNPs
with 𝐹ST values in the top 1%within each population compar-
ison, or whose empirical 𝑃 value estimated for each gene and
for each population showed significant evidence for selection
(𝑃 value < 0.001) were also considered to show evidence for
selection. Of the 74 regions associated with SLE, 19 showed
evidence of selection in a HapMap population (Table 2), and
16 exhibited a signal of selection in a HGDP population
(Table 3). Many of these loci also had corroborating evidence
using different metrics.

In the HapMap data multiple regions displayed evidence
of population differentiation, as indicated by the 𝐹ST, which
was the highest in the PTPN22, TET3-DGUOK, ITPR3,
ITGAM, and CD226 regions. Several SNPs with very high
𝐹ST (in the top 1% within each population comparison) were
identified in these and other regions, especially XKR6-BLK
(𝐹ST = 0.92 in YRI versus ASN), TET3-DGUOK (𝐹ST = 0.85
in YRI versus ASN, and 𝐹ST = 0.80 in YRI versus CEU),
CD226 (𝐹ST = 0.80 in CEU versus YRI), LRRC18-WDFY4
(𝐹ST = 0.80 in YRI versus ASN), IFIH1 (𝐹ST = 0.78 in
CEU versus YRI), PTPN22 (𝐹ST = 0.75 in YRI versus ASN),
and ITGAM (𝐹ST = 0.75 in YRI versus ASN). The highest
allele frequency differences, as indicated by the 𝐷 statistic,
were detected in the PTPN22, IFIH1, ITPR3, and XKR6-BLK
regions. The ITPR3 region also had a high iHS. This and
BLK are the regions that displayed the most consistently
strong evidence for selection according to all three metrics.
The ITPR3 gene lies at 6p21, adjacent to the centromeric
end of the extended MHC region, after the class II flank-
ing region. XKR6 and BLK lie on the same chromosomal
inversion at 8p23.1. PTPN22, ITPR3, andCD226 exhibited the
strongest evidence for selection according to the frequency-
based statistics. Finally, several regions included genes whose
empirical 𝑃 value showed significant evidence for selection.
These genes included XKR6 (𝑃 = 0.004 in ASN) and
UHRF1BP1 (𝑃 = 0.006 in CEU). Other genes were significant
in several regions, such as theTET3-DGUOK region (DUSP11
and STAMBP with 𝑃 = 0.005 and 𝑃 = 0.007, resp., in
CEU).The PTPN22, ITGAX (near ITGAM), ITPR3, and BLK
regions were recently reported to be under selection (in
YRI, YRI, YRI, and ASN, resp.) in a candidate gene study
by Grossman et al. [10], who used full-genome sequence
variation from the 1000 Genomes Project and the composite
of multiple signals (CMS) test.

Since the regions in Table 2 showed evidence of selection
in the HapMap samples, the evidence centered at the spe-
cific SNP associated with SLE were tested (Supplementary
Table 1 in the Supplementary Material available online at
http://dx.doi.org/10.1155/2014/203435). Specifically,Haplotter
displays the iHS and 𝐹ST for common SNPs. Of the queried
SLE-associated SNPs, the highest evidence of population
differentiation was shown by rs9937837 in ITGAM (𝐹ST =
0.81 in YRI versus ASN). Evidence for association according
to the iHS test was observed in CFHR1-CFHR4 (rs16840639,
iHS = −2.63 in YRI), NMNAT2 (rs2022013, iHS = 2.50 in
ASN), APOBEC4 (rs10911390, iHS = −2.36 in ASN), CFH

http://hgdp.uchicago.edu/cgi-bin/gbrowse/HGDP/
http://hgdp.uchicago.edu/cgi-bin/gbrowse/HGDP/
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Table 2: Regions with evidence for selection on the HapMap populations.

Gene region Chr Mb iHS 𝐷 𝐹ST Empirical 𝑃 value
Max − log(𝑄) Pop Max − log(𝑄) Pop Max − log(𝑄) Value Pop Min 𝑃 value Pop

PTPN22 1 114.158 — — 3.6 YRI 3.2 0.75 YRI versus ASN — —
TNFSF4 1 171.419 2.5 ASN 2.3 ASN 2.7 0.60 YRI versus ASN 0.005 ASN
NMNAT2 1 181.484 2.5 ASN 2.4 CEU — — — 0.004 ASN
NCF2 1 181.791 2.5 ASN — — — 0.65 CEU versus YRI 0.004 ASN
APOBEC4 1 181.882 2.5 ASN — — — 0.65 CEU versus YRI 0.004 ASN
CFH 1 194.888 — — — — 3.0 0.60 YRI versus ASN — —
CFHR1, CFHR4 1 196.789 2.0 YRI — — 3.0 0.60 YRI versus ASN — —
TET3, DGUOK 2 74.212 2.7 CEU 2.6 ASN 3.2 0.85 YRI versus ASN 0.001 CEU
IFIH1 2 162.832 — — 3.8 CEU 2.2 0.78 CEU versus YRI — —
TREX1 3 48.481 2.4 ASN 2.1 ASN — — — 0.002 ASN
TNIP1 5 150.390 — — 3.0 CEU — 0.65 CEU versus YRI — —
ITPR3 6 33.697 3.4 YRI 3.3 YRI 3.3 0.60 YRI versus ASN — —
UHRF1BP1 6 34.868 2.5 CEU 2.4 YRI — 0.50 — 0.004 CEU
XKR6 8 10.791 2.7 ASN 3.3 ASN 2.6 0.92 YRI versus ASN 0.003 ASN
BLK 8 11.389 2.7 ASN 3.2 ASN 2.6 0.92 YRI versus ASN 0.005 ASN
ARMC3 10 23.257 — — 2.5 CEU 2.5 0.65 YRI versus ASN — —
LRRC18, WDFY4 10 49.893 — — 2.0 ASN 2.5 0.80 YRI versus ASN — —
ITGAM 16 31.179 — — — — 3.4 0.75 YRI versus ASN — —
CD226 18 65.681 — — 3.1 CEU 3.7 0.80 CEU versus YRI — —
Regions were considered to show evidence for selection if the maximum − log(𝑄) > 3 for either the 𝐹ST,𝐷, or iHS, or it had SNPs with 𝐹ST values in the top
1% within each population comparison, or the empirical 𝑃 value estimated for the SLE-associated gene and for each population showed significant evidence
for selection (𝑃 value < 0.01). Cells that did not meet these thresholds or whose − log(𝑄) > 2 are marked with (—).The table shows the highest − log(𝑄) value
and respective population for the iHS,𝐷, and 𝐹ST, the 𝐹ST statistic (value) for SNPs in the top 1% and the population comparison, and the minimum empirical
𝑃 value in each region. 𝑄 is the rank of the observed statistic for a given SNP divided by the total number of SNPs. The statistic that is ranked is obtained
independently for each of the three statistics separately for each population. For iHS, for each SNP, 25 SNPs on either side of the SNP are scanned for |iHS| > 2.
The proportion of SNPs in this 51 SNP window with |iHS| > 2 is computed. For 𝐷, the estimated value of 𝐷 was used for ranking. For 𝐹ST, the statistic to be
ranked is obtained in a similar manner as that for iHS except for each population comparison, the thresholds for defining a significant 𝐹ST is based on the top
5% cutoff for each population comparison. SeeMethods for details. Chr: chromosome, Mb: mega basepairs, Max: maximum,Min: minimum, Pop: population,
ASN: East Asian, CEU: European, YRI: African.

Table 3: Regions with evidence for selection in the HGDP populations.

Gene region Chr Mb 𝐹ST iHS XP-EHH
Max − log(𝑃) Max − log(𝑃) Pop Max − log(𝑃) Pop

PTPN22 1 114.158 2.5 3 Afr 3.5 Afr
TNFSF4 1 171.419 4.5 2.5 EAsia 3.5 EAsia
CRP 1 199.719 3.5 — — 2.5 Afr, Eur
IL10 1 205.008 4 2 MEast, EAsia 2.5 SAsia EAsia
TET3, DGUOK 2 74.212 2.5 2 SAsia 3.5 MEast, SAsia
TNIP1 5 150.390 3.5 1.5 MEast 3 Amer
PTTG1 5 159.781 — 3.5 Afr 2.8 MEast, Afr
UHRF1BP1 6 34.868 — 3 Amer 3.5 Amer
IKZF1 7 50.315 3.5 3 EAsia 2.5 EAsia
BLK 8 11.389 4 3 SAsia, MEast, Afr 4 EAsia
ARMC3 10 23.257 2.5 2.5 MEast 3.5 MEast
SLC15A4 12 127.844 3.5 — — 2.5 Afr, Eur
CLEC16A 16 11.038 2 4 Amer 4 Amer
ITGAM 16 31.179 2.5 2 EAsia 3.5 EAsia
IRF8 16 84.490 2.5 2 SAsia 4 SAsia
SCUBE1 22 41.929 2.5 2 Oceania 3 Oceania
Regions were considered to show evidence for selection if the maximum − log

10

(𝑃) > 3 for either the 𝐹ST, iHS, or XP-EHH. The table shows the highest
− log
10

(empirical 𝑃 value) and respective population for the 𝐹ST, iHS, and XP-EHH in each region. Regions whose − log
10

(𝑃) < 2 are marked with (—). See
Methods for details. Chr: chromosome, Mb: mega basepairs, Max: maximum, Pop: population. Populations: Bantu-speaking Africans (Afr), Europeans (Eur),
Middle Easterners (MEast), Eastern Asians (EAsia), South Asians (SAsia), Americans (Amer), and Oceanians (Oceania).
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Table 4: Summary of regions with evidence for selection on both the HapMap and HGDP populations.

Gene region
HapMap HGDP

iHS 𝐷 𝐹ST Min empirical 𝑃 value 𝐹ST iHS XP-EHH
Max − log(𝑄) Max − log(𝑄) Value Max − log(𝑃) Max − log(𝑃) Max − log(𝑃)

PTPN22 3.6 3.2 0.75 3.0 3.5
TNFSF4 0.6 0.005 4.5
TET3, DGUOK 3.2 0.85 0.001 3.5
TNIP1 3.0 0.65 3.5 3.0
UHRF1BP1 |2.28|

∗ 0.004 3.0 3.5
BLK 0.92 0.005 4.0 3.0 4.0
ITGAM 3.4 0.75 3.5
Please refer to footnotes on Tables 2 and 3 for details. ∗iHS = −2.28 for rs11755393.

(rs6677604, iHS = −2.30 in YRI), UHRF1BP1 (rs11755393,
iHS = −2.28 in CEU), and CD226 (rs727088, iHS = 2.14
in CEU).The evidence for selection at theUHRF1BP1 variant
was recently reported in a study of candidate inflammatory-
disease SNPs using the same statistic and HapMap II data
[76].

In the HGDP data, the highest XP-EHH was detected in
the BLK, CLEC16A, and IRF8 regions and the maximum iHS
in the CLEC16A and PTTG1 regions. The CLEC16A, BLK,
PTPN22, and UHRF1BP1 regions showed strong evidence
for selection under the haplotype-based statistics. TNFSF4,
IL10, and BLK were the regions showing the highest degree
of population differentiation. The TNFSF4 and BLK regions
showed the strongest most consistent evidence of selection
according to all three metrics. Using the same HapMap II
data, Raj and colleagues [76] previously reported SNPs with a
significant signal of selection in CLEC16A (rs12708716, iHS =
2.29 in CEU) and UHRF1BP1 (rs11755393, iHS = −2.28 in
CEU). As mentioned, the BLK and ITGAX-ITGAM regions
were recently reported to be under selection (inASNandYRI,
resp.) in a candidate genes study using the 1000 Genomes
Project samples [10]. For the genes in Table 2, an inspection
of the worldwide distribution of allele frequencies for the
SNPs associated with SLE (Supplementary Table 2) revealed
interesting patterns for SNPs in BLK, ITGAM, and CLEC16A
(Figure 1).

Comparing the results of the tests for selection in the
HapMap and the HGDP samples shows that there are seven
genetic regions captured by at least one test in both datasets
(Table 4). The common regions captured by the majority of
tests were that of the PTPN22, UHRF1BP1, and BLK genes.
While the region of the TNIP1 gene was captured in both the
HapMap and HGDP populations by the frequency spectrum
and population differentiation statistics (𝐷 and 𝐹ST), the
region of theUHRF1BP1 gene was captured by the haplotype-
based statistics. The evidence for selection in these seven
genetic regions (Table 4) is strengthened by the fact that they
show consistent evidence across different studies and analytic
methods.

4. Discussion

The diversity exhibited in the human genome is a result of
stochastic population genetics processes such as mutation,

migration, drift, and selection. SLE disproportionately affects
women of child bearing age and without treatment would
tend to put affected individuals at a reproductive disad-
vantage; here, reproductive disadvantage not only includes
conception but the ability to raise offspring that success-
fully reproduce. Thus, strong alternative forces or changing
selective pressure must exist that permits the relative high
frequency of these risk alleles seen in current populations
around the world. Infectious diseases and pathogenic expo-
sures have been postulated to be important factors result-
ing in strong selective pressure and might provide such
alternative pressures. This study investigated whether SLE
susceptibility loci show signs of recent positive selection by
comparing these regions to the background distribution of
genetic variation.

Two important studies have computed several genome-
wide tests for selection in two main reference populations,
the HapMap and the HGDP populations [7, 70], and imple-
mented the results in genetic browsers. These browsers were
queried to assess whether SLE-associated genetic regions
have shown evidence for selection in theHapMap andHGDP
populations.

This study reports several SLE-associated loci that show
evidence for selection in the HapMap populations, and
several SLE-associated loci that show evidence for selection
in the HGDP populations. Seven genetic regions showed
evidence for selection on both the HapMap and HGDP pop-
ulations. These include the regions of the PTPN22, TNFSF4,
TET3-DGUOK, TNIP1, UHRF1BP1, BLK, and ITGAM genes.
In addition to the regions that are concordant, the different
results obtained with the different metrics and datasets are
expected, mostly due to the different coverage of the SNP
arrays used, local adaptation in different ethnic groups, and
the different test statistics which are likely recovering selective
events from different time periods and for different stages of
the selective sweep [77].

Several of these genes have been previously reported
to show patterns of genetic variation that are consistent
with evidence for recent positive selection. For example, in
their search for inflammatory-disease SNPs that localize to
regions of the genome where patterns of genetic variation
are consistent with that expected under a model of recent
positive selection, Raj and colleagues [76] also reported SNPs
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Figure 1: Worldwide distribution of allele frequencies for SLE-associated SNPs rs2736340 in BLK (a), rs9937837 in ITGAM (b), and
rs12599402 in CLEC16A (c).

in CLEC16A and UHRF1BP1 that exhibit a significant signal
of selection using the iHS test. Furthermore, they show
that the SLE susceptibility allele in UHRF1BP1 is associated
with decreased UHRF1BP1 RNA expression in different cell
subsets, suggesting that the SLE risk allele is under recent
selection and has a regulatory effect [76]. Furthermore,
UHRF1BP1 has been shown to be significantly differentially
expressed in dendritic cells afterMycobacterium tuberculosis
(MTB) infection [78]. Using full-genome sequence variation
from the 1000Genomes Project and the composite ofmultiple
signals (CMS) test, Grossman et al. [10] reported thePTPN22,
ITGAX (near ITGAM), ITPR3, and BLK regions to show
evidence for recent positive selection.

Several of the immune genes that have been identified
in regions under selection are under the selective pressure
of known pathogens, such as the Duffy blood group atypical
chemokine receptor (DARC) gene to Plasmodium vivax
malaria [79], ras homolog family member A (RHOA), and
OTU domain ubiquitin aldehyde binding 1 (OTUB1) genes to
Yersinia pestis (plague) [80], or the tyrosylprotein sulfotrans-
ferase 1 (TPST1) gene to HIV [81]. Several genetic regions
associated with susceptibility to different autoimmune dis-
eases show evidence of selection that has been attributed
to host-pathogen coevolution, including the multiple major

histocompatibility complex (MHC) [82–84] and the celiac
risk locus SH2B3 as a protective factor against bacterial
infection [85]. Karlsson et al. [86] have recently reported that
cholera has exerted strong selective pressure on proinflam-
matory pathways, and Jostins et al. [87] reported considerable
overlap between susceptibility loci for inflammatory bowel
disease and mycobacterial infection. Variants in the IFIH1
gene, whose protein is a cytoplasmic helicase that recognizes
RNA of picornaviruses and mediates induction of interferon
response to viral RNA, have been shown to affect IFIH1
function and host antiviral response [88]. In the context of
SLE predisposing loci, Clatworthy et al. [89] have shown that
FCGR2B is important in controlling the immune response to
Plasmodium falciparum, the parasite responsible for the most
severe formofmalaria, and suggests that the higher frequency
of human FCGR2B polymorphisms predisposing to SLE
in Asians and Africans may be maintained because these
variants reduce susceptibility to malaria. The complement
component (3b/4b) receptor 1 (CR1) gene has been shown to
be a P. falciparum resistance gene [90] used by the parasite
for host invasion. Machado et al. [91] have suggested that
helminth infection has driven positive selection of FCGRs
variation. Finally, Grossman et al. [10] implicated Salmonella
typhimurium and other exposures that directionally drive
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selection of the toll-like receptor 5 (TLR5) gene [92]. Given
that infectious organisms are strong agents of natural selec-
tion, it is plausible that alleles selected for protection against
infection predispose to autoimmune diseases.

It is important to acknowledge the challenges and limi-
tations inherent to the study of traits with complex genetic
architectures and/or a less clear influence on survival and
reproduction, such as SLE. As Castiblanco and colleagues
[93] recently articulated, the differences in allele and geno-
type frequencies of diverse human populations depend upon
their evolutionary and epidemiological history, including
environmental exposures, which might explain why some
risk alleles to autoimmunity may be protective factors to
infectious diseases and vice versa in a given population
(e.g., PTPN22 [94, 95] and TNF [96]). Immune and infec-
tious agents have been recognized as among the strongest
selective pressures for natural populations, as shown by the
identification of candidate adaptive alleles that functionally
contribute to biological variation in contemporary popu-
lations. However, clarifying the relationship between the
functional alleles and reproductive fitness in the environment
in which they rose to a high frequency in the ancestors
of the study population can rarely be attained. In complex
diseases such as SLE, despite the established associations to
specific regions or polymorphisms, the true causal variants
still remain largely unknown. The emerging availability of
genome-wide functional data allows the integration of an
unprecedented amount of biological information to help
identify potential functional variants and characterize their
biological impact. Recent examples demonstrate how the
integration of signatures of positive selectionwith phenotypic
association studies and/or with regulatory data can improve
the identification of functional loci [10, 97–99]. Also, the
complex genetic architecture of SLE, resulting from the effects
of many alleles of small effects, suggests that adaptation is
likely to have occurred by simultaneous selection on variants
at many loci. In this scenario, the response to selection
is due to small frequency shifts of many alleles. However,
most methods to detect selection rely on rapid fixation of
strongly selected alleles. The development of novel analytical
approaches to detect more subtle signatures of selection will
improve the identification of selection signatures in complex
diseases like SLE. Clearly, much remains to be done until the
functional adaptive SLE risk loci are identified, the pheno-
typic consequences of these risk alleles elucidated, and the
relationship between the functional alleles and reproductive
fitness clarified. Recent progresses will provide the necessary
tools to accelerate the discovery of these functional adaptive
variants that increase the risk of SLE, which will improve
knowledge about the etiology and deepen our understanding
of the natural history of SLE. Further research regarding
exploration of the interplay between infection, type of expo-
sure, additional environmental factors, and autoimmunity
will result in the discovery of multiple factors underpinning
perhaps newly identified physiopathology mechanisms of
SLE and autoimmune diseases [93].

In summary, this study has systematically queried the
HapMap and HGDP populations for evidence for selection
at SLE susceptibility regions and provides a comprehensive

catalog of regions with both evidence for recent positive
selection and association with SLE. These results provide
support for recent positive selection influencing genetic
variation associated with SLE, suggesting that population-
specific selective pressures may be one of the factors behind
the high frequency of SLE risk alleles in the population and
differential disease risk. Finally, these results support future
analyses aimed at identifying the specific selective pressures
and characterizing the functional mechanisms of adaptation
and disease predisposition.
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