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Abstract

SARS‐CoV‐2 infection is causing a pandemic disease that is reflected in challenging

public health problems worldwide. Human leukocyte antigen (HLA)‐based epitope

prediction and its association with disease outcomes provide an important base for

treatment design. A bioinformatic prediction of T cell epitopes and their restricted

HLA Class I and II alleles was performed to obtain immunogenic epitopes and HLA

alleles from the spike protein of the severe acute respiratory syndrome coronavirus

2 virus. Also, a correlation with the predicted fatality rate of hospitalized patients in

28 states of Mexico was done. Here, we describe a set of 10 highly immunogenic
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epitopes, together with different HLA alleles that can efficiently present these

epitopes to T cells. Most of these epitopes are located within the S1 subunit of the

spike protein, suggesting that this area is highly immunogenic. A statistical negative

correlation was found between the frequency of HLA‐DRB1*01 and the fatality rate

in hospitalized patients in Mexico.

1 | INTRODUCTION

The coronavirus disease (COVID‐19) was declared as a pandemic by

the World Health Organization (WHO) in March of 2020.1 It is es-

timated that by June the 10th of 2020 there were over 6.19 million

confirmed cases and 370,000 deaths worldwide.

COVID‐19 is a disease generated by the novel severe acute

respiratory syndrome‐coronavirus‐2 (SARS‐CoV‐2), with a wide

range of clinical manifestations, like fever (88.7%), cough (67.8%),

fatigue (38.1%), and acute respiratory distress syndrome in severe

cases.2 Interestingly, the molecular and clinical manifestations of

the disease vary between asymptomatic, mild‐symptomatic, and se-

vere patients, requiring hospitalization in some cases to prevent fatal

outcomes.3

Currently, the SARS‐CoV‐2 genome has been characterized as a

new betacoronavius, which shares around 87% of genomic identity

with bat‐SL‐CoVZC45 and bat‐SL‐CoVZXC21 viruses.4 A recent

analysis by Zhou et al.5 reported that there is a 96.2% identity with

BatCoVRaTG13 and a 79.5% identity with SARS‐CoV.2 The genomic

characterization of the virus not only provides information about its

taxonomy and probable origin but also offers opportunities to per-

form deeper analysis using bioinformatics tools.

The angiotensin‐converting enzyme‐2 (ACE‐2) receptor and the

transmembrane serine protease 2 are essential components of the

human host for the virus entry into the upper respiratory epithelial

cells. The virus recognizes ACE‐2 through the viral spike glycoprotein

(S), and this event leads to the virus–cell membrane fusion.6 The S

glycoprotein is found as a homotrimer of three identical monomers,

each one of which is divided into two subunits: S1 and S2. The first

subunit folds in four domains: A, B, C, and D. The B domain possesses

a receptor‐binding domain that recognizes ACE2, hence it is im-

portant for viral entry.7 The S2 subunit sequence has two tandem

domains, namely, HR1 and HR2, that play an essential role in the

viral fusion to the membrane.8 Furthermore, analysis of the spike

protein showed that it is conserved among SARS‐CoV and SARS‐CoV‐2
with 76.3% of identity and 87.3% of similarity.9

Several studies focused on viral diseases have shown that clinical

severity is closely associated with some individual factors, such as genetic

background and immune response. The human leukocyte antigen (HLA)

is responsible for the antigen presentation to T cells and, therefore, a key

component for adaptive immune response initiation. The HLA genes are

the most polymorphic genes in the human genome, and these poly-

morphisms influence the ability to present different sets of epitopes to

T cells. Some HLA molecules are more efficient than others presenting

certain antigens, which may lead to a better induction of immune re-

sponses. This fact has already been proven for some viral diseases like

A H1N1 influenza 10 and HIV.11

It has been previously reported an association between SARS‐CoV
infection and HLA‐B*07:03,12 HLA‐Cw*08:01,13 HLA‐B*46:01, and

HLA‐B*54:01. Specifically, it has been reported that the individuals who

are HLA‐B*46:01 positive have a higher risk of severe infection,14

whereas the frequency of HLA‐DRB2*03:01 is lower among patients

with COVID‐19.12

Mexico is one of the top 10 countries with higher mortality, and

its number of cases and deaths keeps increasing significantly.15

Some of the most common haplotypes reported in Mexico′s less

affected states are HLA A*02‐B*35‐DRB1*08‐DBQ1*04, A*68‐
B*39‐DRB1*04‐DBQ1*03:02, and A*02‐B*15‐DRB1*08‐DBQ1*04,

according to the Allele Frequency Net Database website (www.

allelefrequencies.netwww.allelefrequencies.net).16

On the other hand, up to now, Mexico City is the region with the

highest number of reported cases. The studies regarding allele frequency

in this city have reported that its haplotype is largely composed of Native

American haplotypes, specifically 63.85 ±1.55% American, 28.53 ± 3.13%

European, and a less apparent 7.61 ±1.96% African.17 Individually, some

studies have reported that the most frequent alleles in Mexican popu-

lation are HLA‐A*02, ‐A*24, ‐A*68, ‐B*35, ‐B*39, ‐B*51, ‐DRB1*04, ‐
DRB1*08, ‐DRB1*07, ‐DQB1*0302, ‐DQB1*0301, and ‐DQB1*0201.18

Nonetheless, there are no studies related to the HLA association with the

susceptibility or the resistance against COVID‐19 in the Mexican popu-

lation. The understanding of the relationship between viral infection,

HLA, and disease susceptibility is important to drive towards vaccine

development and molecular epidemiology research that can contribute

to novel therapies.

So far, the control of the COVID‐19 pandemic remains a challenge,

resulting in thousands of new cases and deaths reported daily. It is ne-

cessary to find prophylaxis and specific treatments to contain this un-

controlled infection and to reduce the global morbidity and mortality.

The generation of a vaccine that targets this virus remains as the primary

solution,19 however, the lack of knowledge regarding the immune re-

sponse, such as the HLA‐virus interactions, makes it a challenging task.

In addition, the genetic variations among different populations and

their possible link with SARS‐CoV‐2 viral responses remain unknown. In

this report, we analyze which epitopes of the SARS‐CoV‐2 spike protein

are highly immunogenic and able to be presented by HLA Class I and II in

different populations using bioinformatic tools. We also demonstrate an

ecological correlation between HLA allele frequency and the predicted

fatality rate in hospitalized patients of 28 Mexican states.
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2 | METHODS

2.1 | Study design

A bioinformatic epitope prediction of the S glycoprotein was performed.

This gave information about the most immunogenic peptide‐HLA mat-

ches and the HLA alleles that are more likely to present these epitopes

efficiently. Also, an ecological study was made to look for correlations

between the HLA allele frequencies and the predicted fatality rate of

hospitalized patients with COVID‐19 to May 29th, 2020.

2.2 | Bioinformatic epitope prediction

Bioinformatic analyses were performed to predict HLA Class I

and II epitopes using the sequence of the SARS‐CoV‐2 spike

protein. The sequence for the SARS‐CoV‐2 S glycoprotein was

obtained from the GenBank with the accession number

QHR63290.2 in FASTA format. This sequence was then sub-

mitted to the TepiTool server from the IEDB Analysis Resource

database (http://tools.iedb.org/tepitool/).20 The epitope predic-

tion was performed for the 27 most frequent HLA‐A and ‐B
alleles that cover for most populations (Table S1).21 Once the

total epitope list was obtained, it was submitted to the T cell

Class I pMHC immunogenicity predictor server (http://tools.iedb.

org/immunogenicity/) to get the immunogenicity score, which is

predicted according to the amino acid residues of the peptide.22

The peptide‐HLA pairs with a positive immunogenicity score and

a predicted IC50 level lower than the established cut‐off (Table S2)

from the complete list were chosen,23 considering that the lower the

IC50 value, the higher the binding affinity. The 10 more im-

munogenic peptide‐MHC combinations from this list were selected.

The epitopes for HLA Class II molecules were also predicted

using the same sequence as before and submitting it to the IEDB

MHC Class II epitope prediction tool (http://tools.iedb.org/mhcii/)

using the IEDB recommended 2.2 algorithm and the most common

HLA‐DP, DQ, and DR alleles (Table S1).24 The predicted epitopes

with an SMM‐predicted IC50 value higher than 50 were excluded

and the sequences were ordered by the percentile rank.25 The

MHC‐II prediction tools use a core of nine amino acids to predict the

best peptide binding affinity, even when the Class II molecules bind

peptides with 15 amino acid length, so the 10 SMM cores with the

minor percentile rank—what means the highest affinity binding—

were selected.

2.3 | Structural modeling

To provide a graphical representation of the location of the epitopes,

we used the structural model the full‐length SARS‐CoV‐2 spike gly-

coprotein (ID:6VSB_1_1_1). The full‐length SARS‐CoV‐2 structural

model is available at CHARMM‐GUI13 COVID19 Archive.26

The three‐dimensional (3D) structure was obtained and analyzed

using PyMOL® software (Schrödinger LLC. Molecular Graphics

System [PyMOL] Version 1.80 LLC, New York, NY, 2015). The basic

local alignment search tool online (https://blast.ncbi.nlm.nih.gov/

Blast.cgi) was used to assess the position of the predicted peptides in

the glycoprotein and the protein sequence was adjusted manually

using the PyMOL tools.

2.4 | Analysis of HLA alleles frequency and
fatality rates

We selected 28 states of Mexico considering the homogeneity in

epidemiological reports and registered the allele frequency of the

main capital city of each state. All the states were included except for

Mexico State, Baja California Sur, and Tamaulipas because no in-

formation was found.

We used the Allele Frequency Net Database (http://www.

allelefrequencies.net/default.asp) and searched for populations in

North America′s geographical region and used Mexico′s (132)

database. The total state samples reported on the databases was

of 5840.

For HLA Class I, the subgroup alleles was not reported for 26 of

the states. However, Mexico City Mestizo and Veracruz Xalapa did

contain subgroup data.

In the selection of the Class II molecules, the HLA‐DPA1*03:01,

DPB1*04:02, HLA‐DPA1*01:03, DPB1*02:01, HLA‐DPA1*02:01,

DPB1*01:01, and HLA‐DQA1*05:0 alleles were not found in the

database of any population. All the frequency data is summarized in

Table S3 organized per city.

2.5 | Fatality rate

We used national public data reporting all individuals with a result

for SARS‐CoV‐2 in Mexico to July 8th, 2020 (SARS‐CoV‐2 Mexico

database). This database is compiled by the Ministry of Health

(available at https://www.gob.mx/salud/documentos/datos-abiertos-

152127). We considered the following information: age, sex, state of

birth, date of birth (if applicable), and type of healthcare facility

where the patients were assisted—IMSS, ISSSTE, SSA, private hos-

pital, and others. There is also information about comorbidities—

diabetes, hypertension, obesity, asthma, immunosuppression, chronic

kidney disease, and cardiovascular disease, as well as smoking status

and hospitalization status. The registration options were yes, no, not

known, or not specified. Finally, it is specified whether the patients

were attended in sentinel units. The primary care sentinel institu-

tions test for SARS‐CoV‐2 to one of every 10 patients with an acute

respiratory infection, while the nonsentinel institutions perform tests

according to physician criteria. The 100% of patients with severe

acute respiratory infection who require hospitalization are tested in

both institutions, sentinel, and nonsentinel.27
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The total database contained 684,804 records. We only included

records of Phase 3 (614,370). We excluded 60,520 patients who

were admitted for hospitalization after July 1st to allow the pre-

sentation of the outcome “death,” since the median from hospitali-

zation to death was 7 days. Of the 553,850 remaining records,

307,421 had a negative or pending result, 173,724 were not hospi-

talized, 123 did not have information of the state of birth, and 1026

were indigenous people. We excluded 448 pregnant women because

the immune response is expected to be different.28 Finally, nine

records were eliminated because the date of death was before the

admission date. Hence, our final sample was 71,099 records.

2.6 | Statistical analysis

To create a predictive model of the hospitalized fatality rate—

number of deaths caused by COVID‐19, we performed a stepwise

approach with all the variables reported in the SARS‐CoV‐2 Mexico

database in a Poisson model. All the variables that were sig-

nificantly associated with death were kept in the model: age, sex,

diabetes, hypertension, obesity, chronic kidney disease, type of

healthcare, being a sentinel unit or not, and admission date. We

explored if a multilevel model, using state of birth as a second level,

would be a better fit for the data, but the LR test was not significant

(p = 1). Hence, the state of birth variable was included in the Pois-

son model. Afterward, the predictive risk of death in each state was

calculated. Then, a factorial analysis was performed with the 21

HLA types to determine groups that explained the variance be-

tween them and selected the representative HLA allele of each

factor as the one with the maximum correlation within the factor.

We selected seven factors that explained 85.2% of the variance and

selected the HLA with the highest correlation within each factor as

follows: Factor 1 HLA‐A*68:01, Factor 2 HLA‐A*11:01, Factor 3

HLA‐DRB1*07:01, Factor 4 HLA‐A*01:01, Factor 5 HLA‐B*57:01,
Factor 6 HLA‐DRB1*01:01, and Factor 7 HLA‐B*58:01 (Table S4).

Afterward, a Spearman's rank correlation was performed between

the seven HLA allele frequencies and the risk of death at state level.

A p < .05 was considered statistically significant. The analyses were

performed in Stata v14 and figure were created using Graphpad

Prism version 6.0®.

3 | RESULTS

To assess the best Spike protein epitope‐HLA Class I matches, its

sequence was analyzed looking for epitope predictions in the most

frequent HLA‐A and HLA‐B alleles. The 10 most immunogenic

peptides with a higher affinity binding to its restricted HLA are

shown in Table 1.

Although the most immunogenic peptide from this list is

GTHWFVTQR, the match with the highest affinity was between the

peptide FIAGLIAIV and HLA‐A*02:03. Of note, here we analyzed the

most frequent Class I A and B alleles, so this analysis reveals

epitopes that can be used for vaccine development and the HLA

alleles that best present epitopes of this particular protein.

The best epitopes and HLA Class II alleles were also predicted, as

shown in Table 2. The prediction tool for HLA Class II uses a core of nine

amino acids to predict the binding efficiency of peptides to the pocket of

the molecules, even if this core is in the middle of different peptides of 15

amino acids. Interestingly, among this whole set of peptides, only seven

HLA molecules resulted with a high binding affinity: HLA‐DPA1*01:03/

DPB1*02:01, HLA‐DPA1*02:01/DPB1*01:01, HLA‐DPA1*03:01/

DPB1*04:02, HLA‐DQA1*05:01/DQB1*03:01, HLA‐DRB1*01:01,

HLA‐DRB1*07:01, and HLA‐DRB1*09:01.

To track down and illustrate the specific location of the peptides

in the SARS‐CoV‐2 spike glycoprotein, the corresponding 3D model

was obtained. In this model, the different predicted epitopes

(Tables 1 and 2) were searched in the protein structure considering

its subunits and domains (Figure 1). Notably, HLA Class I peptides

WTAGAAAYY, SANNCTFEY, and YLQPRTFLL—7, 8, and 9—are lo-

cated in the A domain, which is highly conserved among other cor-

onavirus species,8 suggesting that these could also be epitopes for

other coronaviruses. On the other hand, it was found that the Class II

epitopes FELLHAPAT, VVVLSFELL, FLVLLPLVS, VLSFELLHA, and

FTISVTTEI—a, b, c, d, and h—and the HLA Class I EVFNATRFA—4 are

preferentially found in the B domain.

3.1 | HLA allele analysis and correlation with a
predicted fatality rate in hospitalized patients

After factorial analysis, we found a significant negative correla-

tion between the frequency of the HLA‐DRB1*01:01 allele and

the predicted fatality rate in hospitalized patients (R = −0.44,

p = .02; Figure 2). No other significant correlations were observed

(Table 3).

4 | DISCUSSION

Determining HLA interactions with epitopes for optimal presenta-

tion is crucial for understanding the immunological response to

SARS‐CoV‐2. Here, we present a group of epitopes of the spike

protein that can be efficiently presented to CD8 and CD4 T cells

and are probably related to the virus′s immune‐mediated elimina-

tion. These peptides can be either used for the peptide‐based de-

sign of vaccines or in further analysis of the immunogenicity and

structure of this relevant protein.

COVID‐19 vaccine development includes five clinical‐Phase I

vaccine candidates, 11 preclinical‐vaccine candidates, and 26

research‐stage vaccine candidates.29,30 Recently, the full proteome

of the SARS‐CoV‐2 has been characterized through in silico analysis

to show the prediction of the most immunogenic epitopes from

each viral protein for 438 MHC alleles—either Class I or Class

II.31,32 This knowledge has been considered in the design of two of

the Phase I‐vaccine candidates, which are LV‐SMENP‐DC and
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pathogen‐specific aAPC. Nevertheless, most of the other vaccine

candidates have been designed based on the spike protein of the

SARS‐CoV‐2 due to better immunogenic and protective potential.

The S protein is the main target for COVID‐19 vaccine develop-

ment. Even though the S gene sequences of SARS‐CoV‐2 have a

93.2% nucleotide sequence identity to the bat coronavirus RaTG13

and less than a 75% nucleotide sequence identity with the SARS‐CoV,
three out of the five Phase I‐vaccine candidates—which are

mRNA‐1273, Ad5‐nCoV, and INO‐4800s, have been designed

using this protein as the main target.29,30

Remarkably, our structural analysis of the protein shows a

higher abundance of epitopes in the A and B domains of the S1

subunit of the virus, indicating that, in the case of this part of the

protein being processed by the host cells, it could represent a

highly immunogenic region. In this analysis, we did not look for B

cell epitopes in the structure of the protein. We cannot confirm

TABLE 1 HLA Class I epitope prediction

Peptide/protein residues

(predicted immunogenicity score) HLA Restriction

1 GTHWFVTQR /1096‐1104 HLA‐
A*31:01

HLA‐
A*68:01

HLA‐
A*11:01

HLA‐
A*03:01

(0.3513)

Predicted IC50 9.5 14.5 29.6 379.3

2 RSFIEDLLF/813‐821 HLA‐
B*58:01

HLA‐
B*57:01

HLA‐
A*32:01

(0.2744)

Predicted IC50 7.5 24.6 62.7

3 FIAGLIAIV/1218‐1224 HLA‐
A*02:03

HLA‐
A*02:06

HLA‐
A*02:01

HLA‐
A*68:02

(0.272)

Predicted IC50 3.2 6.3 8.5 13.7

4 EVFNATRFA /338‐346 HLA‐
A*68:02

(0.2182)

Predicted IC50 12

5 QYIKWPWYI /1205‐1213 HLA‐
A*23:01

HLA‐
A*24:02

(0.2162)

Predicted IC50 4.3 6.9

6 NTQEVFAQV /775‐783 HLA‐
A*68:02

(0.1788)

Predicted IC50 5.2

7 WTAGAAAYY /256‐264 HLA‐
A*26:01

HLA‐
A*68:01

HLA‐
A*01:01

HLA‐
A*30:02

(0.1525)

Predicted IC50 9.9 27.4 31.1 36.4

8 SANNCTFEY /160‐168 HLA‐
B*35:01

(0.1327)

Predicted IC50 14.1

9 YLQPRTFLL /267‐275 HLA‐
A*02:01

HLA‐
A*02:03

HLA‐
A*02:06

HLA‐
B*08:01

HLA‐
A*23:01

HLA‐
A*24:02

HLA‐
A*32:01

(0.1305)

Predicted IC50 4.1 7.8 9.1 23.9 125.3 201.3 202.7

10 VVFLHVTYV /1057‐1065 HLA‐
A*02:03

HLA‐
A*02:06

HLA‐
A*02:01

HLA‐
A*68:02

(0.1278)

Predicted IC50 9.3 11.9 21.2 24.5

Abbreviation: HLA, human leukocyte antigen.
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TABLE 2 HLA Class II epitope prediction

SMM core Peptides HLA‐restriction Percentile rank

a FELLHAPAT LSFELLHAPATVCGP HLA‐DRB1*01:01 0.03

VLSFELLHAPATVCG HLA‐DRB1*01:01 0.03

VVLSFELLHAPATVC HLA‐DRB1*01:01 0.03

SFELLHAPATVCGPK HLA‐DRB1*01:01 0.09

VVVLSFELLHAPATV HLA‐DRB1*01:01 0.09

FELLHAPATVCGPKK HLA‐DRB1*01:01 0.71

b VVVLSFELL QPYRVVVLSFELLHA HLA‐DPA1*03:01/DPB1*04:02 0.24

PYRVVVLSFELLHAP HLA‐DPA1*03:01/DPB1*04:02 0.25

YRVVVLSFELLHAPA HLA‐DPA1*03:01/DPB1*04:02 0.25

PYRVVVLSFELLHAP HLA‐DPA1*02:01/DPB1*01:01 0.3

QPYRVVVLSFELLHA HLA‐DPA1*02:01/DPB1*01:01 0.3

YQPYRVVVLSFELLH HLA‐DPA1*02:01/DPB1*01:01 0.3

YRVVVLSFELLHAPA HLA‐DPA1*02:01/DPB1*01:01 0.3

PYRVVVLSFELLHAP HLA‐DPA1*01:03/DPB1*02:01 0.36

QPYRVVVLSFELLHA HLA‐DPA1*01:03/DPB1*02:01 0.36

YQPYRVVVLSFELLH HLA‐DPA1*01:03/DPB1*02:01 0.36

YRVVVLSFELLHAPA HLA‐DPA1*01:03/DPB1*02:01 0.36

RVVVLSFELLHAPAT HLA‐DPA1*02:01/DPB1*01:01 0.63

VVVLSFELLHAPATV HLA‐DPA1*02:01/DPB1*01:01 0.68

RVVVLSFELLHAPAT HLA‐DPA1*03:01/DPB1*04:02 0.85

YQPYRVVVLSFELLH HLA‐DPA1*03:01/DPB1*04:02 2.2

c FLVLLPLVS FVFLVLLPLVSSQCV HLA‐DRB1*01:01 0.24

MFVFLVLLPLVSSQC HLA‐DRB1*01:01 0.24

VFLVLLPLVSSQCVN HLA‐DRB1*01:01 1.3

FLVLLPLVSSQCVNL HLA‐DRB1*01:01 1.8

d VLSFELLHA RVVVLSFELLHAPAT HLA‐DRB1*01:01 0.24

e GYQPYRVVV GYQPYRVVVLSFELL HLA‐DPA1*02:01/DPB1*01:01 0.3

f FGAGAALQI SGWTFGAGAALQIPF HLA‐DRB1*09:01 0.33

TSGWTFGAGAALQIP HLA‐DRB1*09:01 0.34

GWTFGAGAALQIPFA HLA‐DRB1*09:01 0.35

WTFGAGAALQIPFAM HLA‐DRB1*09:01 0.67

WTFGAGAALQIPFAM HLA‐DQA1*05:01/DQB1*03:01 1.6

g FVFLVLLPL MFVFLVLLPLVSSQC HLA‐DPA1*03:01/DPB1*04:02 0.34

FVFLVLLPLVSSQCV HLA‐DPA1*03:01/DPB1*04:02 0.36

MFVFLVLLPLVSSQC HLA‐DPA1*01:03/DPB1*02:01 5.2

h RVVVLSFEL GYQPYRVVVLSFELL HLA‐DPA1*01:03/DPB1*02:01 0.36

GYQPYRVVVLSFELL HLA‐DPA1*03:01/DPB1*04:02 6.2

i FTISVTTEI AIPTNFTISVTTEIL HLA‐DRB1*07:01 0.4

PTNFTISVTTEILPV HLA‐DRB1*07:01 0.51

IPTNFTISVTTEILP HLA‐DRB1*07:01 0.52

TNFTISVTTEILPVS HLA‐DRB1*07:01 0.52
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TABLE 2 (Continued)

SMM core Peptides HLA‐restriction Percentile rank

NFTISVTTEILPVSM HLA‐DRB1*07:01 2.5

FTISVTTEILPVSMT HLA‐DRB1*07:01 2.6

j TNFTISVTT IAIPTNFTISVTTEI HLA‐DRB1*07:01 0.47

Abbreviation: HLA, human leukocyte antigen.

F IGURE 1 Localization analysis of immunogenic
peptides of SARS‐CoV‐2 spike glycoprotein by
three‐dimensional modeling. (A) Structure of the
SARS‐CoV‐2 spike glycoprotein with S1–S2
subunits. The S1 domains consist of A, B, C, and D.
The S2 subunit consists of the fusion peptides and
domains HR1 and HR2. (B) The predicted epitopes
for HLA Class I are shown in red (C) and the
suggested peptides for HLA Class II in blue. The
peptides are marked individually, listed from 1 to 10
for Class I and a–j for Class II, corresponding to the
immunogenicity Tables 1 and 2. HLA, human
leukocyte antigen; SARS‐CoV‐2, severe acute

respiratory syndrome‐coronavirus‐2
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that the specific target of the presented epitopes could interfere

with its viral function, as would be the case of neutralizing

antibodies.

HLA peptide groove sequence determines which epitopes from

an antigen are presented to the immune system to elicit an effective

response. The high rate of polymorphisms in the HLA locus can in-

dicate a different ability to respond to certain antigens by different

individuals. Furthermore, some HLA alleles can be more efficient in

presenting certain antigens, thus also in protecting from certain

infections.11 Our analysis from the most representative HLA alleles

revealed those that present more effectively the spike protein

antigens of SARS‐CoV‐2, hence, one can hypothesize that their

presence in an individual might confer an enhanced ability to defend

against the virus.

To assess this, we analyzed the frequency of these alleles and

their relation to the disease dynamics in different states of Mexico.

Although it would be interesting to extrapolate these results to

several countries with different epidemiological behaviors of the

disease, epidemiological reports would be highly heterogeneous and

data at an individual level associated with risk of death would be

needed to adjust the fatality rate.

While there is a myriad of factors related to the lethality of the

disease, little is known about the involvement of the immune system

in this regard. It has been proposed that many patients develop an

exaggerated immune response against the infection, accompanied by

a cytokine releasing syndrome33 or autoinflammatory syndromes.34

Also, Grifoni et al.35 showed that T helper cell responses (initiated by

HLA Class II molecules) seem to be protective against the infection

through a strong correlation with the production of virus‐specific
antibodies, and also that they are highly represented by S‐protein
specific clones.

A significant negative correlation was found between the fre-

quency of the Class II HLA‐DRB1*01 allele and the fatality rate in

hospitalized patients from the states that were included. Remarkably,

this correlation was weak, suggesting that other important factors

apart from HLA could be involved in the protection. Therefore, it is

plausible that the correlation we found based on bioinformatic pre-

dictions, would mean that these alleles could show some degree of

protection against lethal outcomes of the disease. Although, the fre-

quency of this specific allele is low in the different states, so the

overall effect in fatality rates might be small. Thus, further experi-

mental studies are needed to reinforce these outcomes.

HLA‐DRB1*01 alleles have been previously associated with

multiple sclerosis resistance.36 Nevertheless, its role in the sus-

ceptibility to viral diseases remains poorly understood. A recent re-

port demonstrated, using molecular docking, that this molecule can

interact with the VYQLRARSV epitope from the ORF‐7a protein of

the SARS‐CoV‐2 virus.37 Our results revealed an ecological negative

correlation of this allele and that it can present a set of epitopes.

Previous reports have identified that this allele can present at least

nine epitopes of the M protein and 11 of the N protein (Table S4),

revealing that this molecule can be highly relevant for SARS‐CoV‐2
immunity.

A remarkable characteristic of this study is that we narrowed it

to the S protein, which has been the most used target for vaccine

development. Considering that we did not include other viral pro-

teins, we made an exhaustive bibliographic review that allowed us to

compile a total of 77T cell epitopes for the M protein and 87 for the

N protein that were already evaluated experimentally and included

an analysis of the HLA alleles used for its prediction. As shown

in Table S4, the HLA‐A*26:01, HLA‐A*03:01, HLA‐A*11:01,
HLA‐A*31:01, HLA‐A*32:01, HLA‐A*68:01, HLA‐B*57:01, HLA‐B*58:01,
HLA‐A*01:01, HLA‐A*02:01, HLA‐A*02:03, HLA‐A*02:06,
HLA‐A*68:02, HLA‐A*23:01, HLA‐A*24:02, HLA‐B*35:01, HLA‐A*30:02,
and HLA‐DRB1*01:01 alleles—which resulted in our epitope

prediction—can also be effective presenting peptides of other

proteins like M and N.

F IGURE 2 Spearman's correlation of HLA‐DRB1*01:01 frequency
and fatality rate. The correlation is shown as a dot plot graph with

the regression tendency line. The frequency of this HLA allele in
Mexico was obtained and a correlation was performed with the
predicted risk of death associated with SARS‐CoV‐2 infection in
hospitalized patients. According to the bioinformatic prediction, the
HLA‐DRB1*01:01 molecule can efficiently present eleven of the S
protein predicted epitopes (LSFELLHAPATVCGP,
VLSFELLHAPATVCG, VVLSFELLHAPATVC, SFELLHAPATVCGPK,
VVVLSFELLHAPATV, FELLHAPATVCGPKK, FVFLVLLPLVSSQCV,
MFVFLVLLPLVSSQC, VFLVLLPLVSSQCVN, FLVLLPLVSSQCVNL,
and RVVVLSFELLHAPAT; Table 2). HLA, human leukocyte antigen;
SARS‐CoV‐2, severe acute respiratory syndrome‐coronavirus‐2

TABLE 3 Correlation between the representative HLA alleles (7)
resulted from factorial analysis and fatality rate in Mexico
states (n = 26)

R p

F1: HLA‐A*68 .15 .45

F2: HLA‐A*11:01 −.3 .12

F3: HLA‐DRB1*07:01 .11 .6

F4: HLA‐A*02:01 .05 .79

F5: HLA‐B*57:01 .35 .07

F6: HLA‐DRB1*01:01 −.44 .02

F7: HLA‐B*58:01 −.14 .49

Note: Spearman's rank correlation
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Other studies have reported an association between HLA I al-

leles and several SARS‐CoV outcomes within specific populations:

HLA‐B*07:03 with infection rate in China12; or HLA‐B*46:01 13,14

with severity and HLA‐Cw*08 with infection in Taiwan.38 Besides,

HLA‐DR*03*01 has been associated with a lower frequency of SARS‐
CoV infection.38

Several limitations need to be acknowledged. First, the association

of the frequency of the HLA allele and fatality rate is ecological and

cannot be applied at an individual level. Other studies need to be

conducted to explore if the association persists at an individual level in

hospitalized patients. Second, the predictive model of the fatality case

was conducted using only data from hospitalized patients. Given that

different comorbidities can lead to hospitalization, we cannot exclude

the possibility of collider bias. That is, the conditioning of analysis on

hospitalization can produce biased associations between the risk

factors and the outcome “fatality rate” in this case. Third, we do not rule

out the possibility of misclassification since the information on

comorbidities is self‐reported. However, our aim was not to make an

inference of the fatality rate at an individual‐level factor, but rather to
create a predictive model that was as less biased as possible. Fourth,

there may be other state characteristics that are associated with death,

such as the health infrastructure or the number of available specialized

medical staff that are not considered in the model. Finally, the HLA

allele frequencies do not include minorities like the indigenous popu-

lation, who might have different HLA alleles frequencies.
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