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Mutations in the estrogen receptor α (ERα) occur in endo-
crine-resistant metastatic breast cancer. However, a ma-
jor gap persists with the lack of genetically tractable
immune competent mouse models to study disease.
Hence, we developed a Cre-inducible murine model ex-
pressing a point-activated ESR1Y541S (ESR1Y537S in hu-
mans) driven by its endogenous promoter. Germline
expression ofmutant ESR1Y541S reveals dramatic develop-
mental defects in the reproductive organs, mammary
glands, and bones of themice. These observations provide
critical insights into the tissue-specific roles of ERα during
development and highlights the potential use of our mod-
el in further developmental and cancer studies.
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ER-positive breast cancer was the first histological sub-
type to be identified and accounts for 70% of diagnoses
(Toy et al. 2013; Jeselsohn et al. 2015). ERα is a member
of the family of nuclear receptors. When estrogen binds
to the ligand-binding domain (LBD) of the ER, the receptor
dimerizes and translocates to the nucleus (Beekman et al.
1993). In the nucleus it binds directly to estrogen response
elements (EREs) in the DNA (classical model) or binds to
other proteins that interact with separate areas of DNA
(nonclassical model) leading to the transcriptional activa-
tion or repression of associated genes (O’Lone et al. 2004).
In the clinic, ER-positive breast cancer is generally treated
with the use of a selective estrogen receptor modulator
(SERM): tamoxifen (Jaiyesimi et al. 1995; Chang 2012).
However, 30% of patients display de novo resistance and
the majority of initial responders eventually develop ac-
quired resistance (Ariazi et al. 2006; Riggins et al. 2007;
Jeselsohn et al. 2015). In up to 20% of endocrine-resistant
metastatic tumors, this is caused bymutations in the LBD

(i.e., ESR1Y537S in humans, ESR1Y541S in mice) of ERα,
which leads to constitutive activation of the receptor
(Weis et al. 1996; Jeselsohn et al. 2018).

Although a number of cell lines expressing activated
forms of ERα exist, a genetically engineered mouse model
(GEMM) was lacking (Martin et al. 2017; Toy et al. 2017;
Jeselsohn et al. 2018). To functionally address the role of
the mutant ESR1Y541S, we generated mice expressing a
Cre-inducible ESR1Y541S allele in a germline fashion using
the ubiquitous βActin promoter to drive Cre expression.

Results and Discussion

Germline expression of a single allele of ESR1Y541S results
in runting of female and male carriers. The experimental
male mice display prominent nipples and a closer anal–
genital region, making them phenotypically indistin-
guishable from their female counterparts (Fig. 1; Supple-
mental Fig. S1). Experimental mice are significantly
smaller in length and weight compared with control ani-
mals (Fig. 1C). Interestingly, only 15% of female experi-
mental mice survive past 150 d of age compared with
85% of experimental male and 100% of wild-type mice
(Fig. 1D). Pathological examination of female carriers re-
veals ovarian, uterine, and fallopian tube cysts, which
upon rupturing could lead to their premature death
(Figs. 1D, 2A). Even though rare, male mice are also found
to die more often than their control counterparts. Nota-
bly, one male mouse (309 d old) was found to have devel-
oped a large cyst in its abdomen that seemed to be filled
with seminal fluid. As such, it is possible that cysts also
develop in male mice (data not shown).

Amore exhaustive investigation of the experimental fe-
male phenotype reveals an abnormal distribution of epi-
thelial cells in the uterus. The ovaries contain a greater
number of follicles per surface area but lack the presence
of the corpus luteum (CL), a structure that develops after
ovulation (Niswender et al. 2000). Thus, their infertility
may be due to their inability to ovulate (Fig. 2A). In addi-
tion, the mammary glands of experimental mice develop
ductal ectasia and form ductal side buds, similar to mice
overexpressing AIB-1, a known cofactor of ERα (Fig. 2B;
Supplemental Fig S2A; Tikkanen et al. 2000). Besides sex-
ual maturation, estrogen signaling is known to be essen-
tial in maintaining bone mineral density and proper
distribution of osteoblasts (generates bone matrix) and os-
teoclasts (degrades bone matrix) (Gay et al. 2000; Khalid
and Krum 2016). Consistent with the role of estrogens in
stimulating osteoblast function, we found that experi-
mental mice have a significant increase in bone area (la-
mellar and calcified collagen) (Fig. 2C; Waters et al.
2001; Khalid and Krum 2016). In contrast, no pathological
differencewas observed in the spleen, kidney, thymus, liv-
er, and brain (Supplemental Fig. S2B–F). Additionally,
there is no difference in cellular proliferation assayed by
Ki67, or apoptosis assayed by cleaved caspase 3 (CC3) in
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themammary glands, uterus, and ovaries. However, there
is a significant decrease in the level of ERα in the uterus of
experimental mice, likely due to the abundance of cystic
cells without βActin expression (Supplemental Fig. S3).
These observations indicate that expression of activated
ERα has selective developmental effects on a number of
tissues.
Given the profound effect of ESR1Y541S on ductal out-

growth, mammary epithelial expression of ESR1Y541S

was evaluated. The ESR1Y541S mice were intercrossed to
ones expressing Cre-recombinase driven by the mouse
mammary tumor virus (MMTV) promoter (Fig. 2D). In
contrast to what was observed in the germline strain,
there is no difference in mammary ductal outgrowth in
virgin female mice (6, 8, and 10 wk of age) or during preg-
nancy, lactation, and involution (days 2, 4, and 6) (Fig. 2E;
Supplemental Fig. S4A). All male mammary fat pads re-
main duct-free (Supplemental Fig. S4B). To assesswhether
mammary ductal outgrowth is independent of ovarian es-
trogen in the context ofmammary epithelial expression of
ESR1Y541S, ovariectomy was performed on 4 wk old fe-
male mice, which resulted in attenuated ductal out-
growth. However, ovariectomy did not inhibit ductal
outgrowth in the germline strain, demonstrating indepen-
dence of exogenous estrogen (Fig. 2F; Supplemental Fig.
S4C). TheMMTVpromoter is active in response to steroid
hormones, thus after puberty, which argues that the
developmental window of ESR1Y541S expression may dic-
tate the severity of the phenotype (Otten et al. 1988; Wag-
ner et al. 2001). Alternatively, expression of ESR1Y541S

may be essential in both the epithelium and stroma for
the development of mammary ducts (Mueller et al. 2002).
Pathologically, male mice with germline ESR1Y541S ex-

pression display a dramatic atrophy of the testes and semi-
nal vesicles as well as an absence of the preputial glands,
which are critical in sexual and dominance behavior
(Fig. 3A; Bronson andCaroom 1971; Bronson andMarsden

1973). The reduction in size of the male sexual organs is
consistent with previous results showing that the mass
of seminal vesicles are reducedwhen ERα is overexpressed
(Hruska et al. 2002). These mice are sterile, consistent
with the absence of sperm, sertoli (support germ cells),
and leydig cells (support cells that produce testosterone)
(Fig. 3A; Lucas et al. 2011; Shima et al. 2013). In contrast
to their control counterparts, 44% of experimental male
mice develop an abnormal ductal tree (mostly hyperpla-
sia) in at least one mammary gland, consistent with the
feminization phenotype (Fig. 3B). Male carriers have sim-
ilar hypertrophic bone cortices as the experimental female
mice (Fig. 3C), but no other pathological differences were
noted (Supplemental Fig. S5). The status of proliferation
and apoptosis of themale reproductive tract was also eval-
uated. Elevated levels of ERα correlated with an increase
in Ki67 in the testes and seminal vesicles, indicating a po-
tential compensatory increase in proliferation of these at-
rophied organs (Supplemental Fig. S6). Although an overt
pathological phenotype in the liver was absent, serum
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Figure 1. Germline expression of an ESR1Y541S knock-in feminizes
male mice and mice of both sexes are runted. (A) Simplified breeding
strategy. Animals expressing Cre-recombinase driven by the βActin
promoter are crossed with mice expressing a conditional ESR1Y541S

knock-in. (B) Images of wild-type and experimental female and
male mice showing prominent nipples (1) and closer anal–genital re-
gion (2). Micewere sacrificed at 10wk of age. (C ) Length andweight of
female andmale wild-type and experimental mice. (D) Survival curve
and summary table of female and male mice kept up to 150 d.
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Figure 2. Female mice expressing ESR1Y541S develop uterine cysts,
are infertile, and display abnormalmammary gland and bone develop-
ment. (A, panels i–iv) Pictures and H&E staining of the female repro-
ductive organs at different magnifications. (Panel v) Quantification of
the number of follicles per surface area of the ovary in six samples per
experimental condition. (B, panels i,ii) Mammary gland whole
mounts of wild-type and experimental female mice as well as H&E
sections at different magnifications. (C ) H&E staining of bone tissue
and quantification of the area of bone marrow/area of bone matrix
in nine control samples and six experimental samples. (D) Simplified
breeding strategy. Animals expressing Cre-recombinase driven by the
MMTV promoter are crossed to mice expressing conditional
ESR1Y541S. (E, panels i–iii) Mammary gland whole mounts of wild-
type and experimental female mice at 6, 8, and 10 wk of age. (F,
panel i) Schematic of ovariectomy timeline. (Panels ii,iii) Mammary
gland whole mounts of ovariectomized mice.
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levels of liver enzymeswere quantified. An increase in the
levels of alkaline phosphatase (AP) in male experimental
mice and a trend in female mice is observed. High AP lev-
els without significant increase in other liver enzymes is
likely due to the bone defect (Supplemental Fig. S7A;
Stein and Lian 1993). In addition, there are no significant
differences in the levels of steroid hormones assessed by
ELISA (Supplemental Fig. S7B). Taken together, these
data argue that germline expression of a single ESR1Y541S

allele is sufficient to feminize male carriers.
To further identify developmental pathways affected by

germline expression of ESR1Y541S, spleen, bone, mamma-
ry gland (female), uterus/fallopian tubes, ovaries, testes,
and seminal vesicles from control and experimental
mice were subjected to RNA-seq analysis. Strikingly, we
found that the transcriptional profile of experimental
male testes and seminal vesicles cluster with that of the
ovaries and uterus/fallopian tubes, respectively, indicat-
ing that the male reproductive organs have adopted tran-
scriptional features from their female counterparts. The
rest of the transcriptional programs cluster by organ and
experimental condition (Fig. 4A). Volcano plots show
that many genes are found differentially regulated in be-
tween experimental conditions (Supplemental Fig. S8).
Gene ontology (GO) analysis reveals signatures up-regu-
lated in the testes and seminal vesicles that relate to cell
migration, differentiation, and the extracellular matrix.
In contrast, down-regulated genes are involved with
sperm differentiation and movement in the testes, and in-
volve the endoplasmic reticulum, Golgi, and glycosyla-
tion in the seminal vesicles. The ovaries and uterus/
fallopian tubes display an up-regulation of inflammatory

signatures, likely associated with the presence of cysts.
In addition, the ovaries exhibit down-regulation of steroid
metabolism and the uterus/fallopian tubes show down-
regulation of organ morphogenesis (Supplemental Figs.
S9, S10). In the bone, there is an up-regulated muscle
and contractility signature and a down-regulation of
B-cell activation in both female and male experimental
mice. In the mammary gland, there is an up-regulation
of a ribosomal signature and down-regulation of fatty
acid metabolism. When isolating the top 40 differentially
regulated genes in the mammary gland we decided to val-
idate three significantly up-regulated genes in the experi-
mental mice: lipocalin 2 (Lcn2), whey acidic protein
(Wap), and β-casein (Csn2). These genes were chosen for
their high number of reads and lowP-values. Interestingly,
Lcn2 is associated with the innate immune response and
cancer progression (Flo et al. 2004; Yang et al. 2009).
Both Wap and Csn2 are genes associated with the lactat-
ing mammary gland, suggesting that the fluid filling the
ducts of the experimental mice may be milk (Supplemen-
tal Table ST1; Supplemental Figs. S11, S12; Campbell
et al. 1984; Kumar et al. 1994). To address the alteration
in the differentiation status of female and male reproduc-
tive organs, we performed immunostaining with an anti-
Sox9 antibody, a protein that plays a critical role in the dif-
ferentiation of sertoli cells and the maintenance of stem
cells (Jo et al. 2014). We show an increase in Sox9 protein
levels in the uterus/fallopian tubes, testes, and seminal
vesicles, which is consistent with their undifferentiated
state (Fig. 4B). These observations support the contention
that expression of a mutated ESR1 allele has a dramatic
impact on the transcriptional profiles of organs sensitive
to ER signaling during development.

ESR1Y541S is rarely found in primary ER-positive breast
tumors, but has been described inmetastasis of endocrine
resistant cancers (Takeshita et al. 2015). Notably, ER-pos-
itive cancer progression has been found to occur through
the recruitment of myeloid-derived suppressor cells
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Figure 3. Male mice expressing ESR1Y541S develop atrophied repro-
ductive organs and display abnormal ductal and bone development.
(A, panels i–iv) Pictures andH&E staining of themale reproductive or-
gans at different magnifications showing testes (1), seminal vesicles
(2), and preputial glands (3). (Panel v) Quantification of the surface
area of the testes in five samples for control mice and nine for exper-
imental mice. (B, panels i,ii) Mammary gland whole mounts of wild-
type and experimental male mice as well as H&E sections at different
magnifications. (Panel iii) Table summary of the percentage and num-
ber of male mice that develop a ductal tree in at least one mammary
gland. (C ) H&E staining of bone tissue and quantification of the area
of bone marrow/area of bone matrix in five control samples and nine
experimental samples.

BA

Figure 4. The reproductive organs of experimental male mice are
more transcriptionally similar to female reproductive organs.
(A) Heatmap of differentially expressed genes. (T) testes, (SV) seminal
vesicles, (O) ovaries, (S) spleen, (B) bone, (MG) mammary gland, (U)
uterus/fallopian tubes, (E) experimental, (C) control, (F) female, (M)
male. (B, panels i,ii) Immunohistochemistry for Sox9 in the uterus/
fallopian tubes and the ovaries. (Panels iii,iv) Immunohistochemistry
for Sox9 in the seminal vesicles and the testes. Analysis was done us-
ing Halo; moderate and strong staining levels were used to quantify
the uterus, ovaries, and testes, and strong staining levels were used
to quantify the seminal vesicles.
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(MDSCs) to the tumor (Svoronos et al. 2017; Rothenberger
et al. 2018). GO analysis of spleen samples identified up-
regulation of signatures associatedwith chromosomal seg-
regation and DNA replication in experimental mice and
down-regulation of the lymphoid lineage (Supplemental
Fig. S13A–D).Therefore,we investigatedwhether thismu-
tation correlatedwith an up-regulation at the protein level
of the myeloid lineage by assessing MDSCs in the spleen
and blood identified with CD11b+, Ly6G+, and Ly6C+ by
fluorescence-activated cell sorting (FACS) (Supplemental
Fig. S13E).We found a significant up-regulation ofMDSCs
in the spleen of experimental mice and a similar trend in
the blood (Fig. 5; Supplemental Fig. S14). Taken together,
these data argue that in addition to altering the differenti-
ation status of the reproductive tract, ESR1Y541S canhave a
profound effect on the immune system.
It is important to note that the dramatic effects on tis-

sue morphogenesis in this model is a consequence of ex-
pressing a single mutant allele at physiological levels,
suggesting an integral role for the tight regulation of
ESR1 activity during development. The observed femini-
zation of the male ESR1Y541S GEMM is consistent with
the longstanding view that estrogen signaling plays a crit-
ical role in the sexual differentiation of reproductive tracts
in both sexes (Bondesson et al. 2015).
In addition, our observations that expression of

ESR1Y541S can skew the MDSC population is in agree-
ment with the concept that estrogen signaling can modu-
late the immune microenvironment (Ouyang et al. 2016).
Further studies with myeloid-specific expression of
ESR1Y541S should allow us to test this issue directly. Con-
sistentwith clinical observations that ESR1mutations are
rarely found in primary tumors, mammary epithelial ex-
pression of ESR1Y541S does not induce any pathological
abnormality in the mammary gland. These data strongly
argue that expression of ESR1Y541S is not sufficient to
drivemalignant transformation of themammary epitheli-
um but requires additional genetic alterations to facilitate
transformation. In this regard, AIB-1 has been frequently
reported as overexpressed and amplified in ER-positive
breast cancer (Anzick et al. 1997). In addition, mammary
epithelial loss ofNF1, an ERα corepressor, has been report-
ed to drive breast cancer development (Wallace et al.
2012). All these observations potentiate the use for our

conditional ESR1Y541S mouse model in the study of devel-
opment, behavior, and endocrine-resistant metastatic
breast cancer in combination with other mouse models
of mammary tumorigenesis.

Materials and methods

Generation of ESR1Y541S mice

This GEMM was generated using a targeting vector expressing wild-type
ESR1 with loxP sites flanking wild-type exon 9 and a neomycin stop cas-
sette. Two positive ES clones were sent to the Goodman Cancer Research
Center (GCRC) Transgenic Facility for blastocyst injection to obtain chi-
meric ESR1Y541S mice. One clone had successful germline transmission.
ESR1Y541S strain was backcrossed seven times on an FVB/N background.
In the presence of Cre-recombinase, the loxP sites recombine excising
wild-type exon 9 and the neomycin stop cassette, which proceeds a point
mutated exon 9 (details are in the Supplemental Material; Andrechek
et al. 2000).

Animal husbandry

Our mice were housed in the animal facility at the GCRC and our exper-
iments followed our approved animal use protocol (AUP). The strains used
in this study were ESR1, βActin-Cre, MMTV-Cre, and were all kept on an
FVB/N background.

DNA extraction genotyping PCR

DNAwas extracted from tail pieces at 2wk of age and at sacrifice using salt
precipitation as described previously (Simond et al. 2017). Primers used for
genotyping were ESR1 F (GCCTTTGGAGTTGCTCATCC), ESR1 R (TTG
TAGAGATGCTCCATGCC), gender F (CTGAAGCTTTTGGCTTTGA
G), gender R (CCACTGCCAAATTCTTTGG), Cre F (TGCTCTCGTT
TGCCG), and Cre R (ACTGTGTCCAGACCAGGC). All primers were
used at a concentration of 10 µM. The PCR enzymes used were as follows:
Qiagen Taq polymerase (Qiagen 20120X) was used for ESR1 and gender
genotyping PCRs, and OneTaq polymerase (NEB M0480X) was used for
Cre genotyping PCRs.

Tissue sample processing

Tissue samples were collected at necropsy and either flash-frozen in liquid
nitrogen and stored at−80°C until further use or fixed immediately in 10%
neutralized formalin for 24 h (brain, liver,mammary gland, kidney, spleen,
and thymus) or in 4% paraformalyhyde for 24 h (bone). Fixed tissue was
paraffin embedded and sectioned at a thickness of 4 µm by the histology
core facility in the GCRC at McGill University. H&E staining was per-
formed by the histology core facility.

Immunohistochemistry

Slides were deparaffinized and hydrated. The antigen retrieval step was
done by submerging slides in sodium citrate (pH 6) (Vector Laboratories
H-3300). Sections were blocked for 5 min with 1× power block (Biogenex)
and then incubated with primary antibody. Next, a secondary antibody
(SignalStain Boost IHC detection reagent HRP, rabbit 8114) was added.
Once counterstain was deemed sufficient, samples were dehydrated and
immediately mounted. Scanned slides were analyzed using the Halo soft-
ware (details are in the Supplemental Material).
The primary antibodies used were Ki67 (1:50 rabbit mAb; Cell Signaling

12202), cleaved caspase 3 (1:200 rabbit mAb; Cell Signaling 9661), ERα
(1:200 rabbit mAb; Santa Cruz Biotechnology 543 ), and Sox9 (1:400 rabbit
mAb; Abcam 3697). All staining was done on formalin-fixed paraffin em-
bedded tissue.

B C D EA

Figure 5. Animals with germline expression of ESR1Y541S have high-
er levels of MDSCs in the spleen. Percentage and number of MDSCs
(A), neutrophils (B), monocytes (C ), anti-inflammatory monocytes
(D), and proinflammatory monocytes (E). Data from female and
male mice were pooled.
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Quantification of ductal ectasia

H&E-stained imageswere used and a classifier was designed using theHalo
software that could recognize the mammary epithelium and the lumen of
the ducts. The surface area of the mammary epithelium or the lumen was
divided by the total surface area of the mammary gland.

ELISA

For estradiol and progesterone, four samples were pooled and three inde-
pendent pools were quantified. For testosterone, five independent serum
samples were used for control and experimental conditions
The following kits were used: estradiol parameter assay kit KGE014

from R&D Systems, progesterone ELISA kit ADI-900-011from Enzo Life
Sciences, and testosterone parameter assay kit KGE010 from R&D
Systems.
Protocol from the companies were followed and plates were read on the

Varioskan plate reader (Thermo Fisher Scientific)

RNA-seq analysis

Two independent samples per experimental conditionwere used and RNA
was extracted using the RNeasy kit (Qiagen). RNA-seq analysis was per-
formed by Novogene (details are in the Supplemental Material)

qRT-PCR

mRNA was reverse-transcribed into cDNA using TransScript (TransGen
Biotech). Real-time quantitative PCR was performed using SYBR Green
mastermix (Roche), run on a LighCycler 480 in triplicates, and normalized
to Gapdh (primers are listed in the Supplemental Material).

FACS analysis

Peripheral blood was collected by cardiac puncture after treating mice
with 0.25 mg of ketamine and red blood cells were lysed using Vitalyse
(Bio E, Inc.). Cells were stained and then fixed using IC fixation buffer
(eBioscience). Full spleens were processed into single-cell suspensions
and red blood cells were lysed with ACK lysis buffer (150 mM NH4Cl,
1 mM KHCO3, 0.1 mM Na2EDTA, dissolved in H2O and adjusted to
pH 7.2–7.4). Cells were then stained and fixed using IC fixation buffer
(eBioscience). The following antibodies were used in an appropriate com-
bination of fluorochromes: CD11b (clone M1/70; BioLegend), CD11c
(clone N418; BioLegend), CD45 (clone 30-F11; BD), F4/80 (clone Bm8;
BioLegend), Ly6C (clone HK1.4; BioLegend), and Ly6G (clone 1A8; BioLe-
gend). Samples were analyzed with a BD LSRFortessa flow cytometer (BD
Biosciences) and FlowJo software (Tree Star). Flow cytometry was per-
formed on spleen and blood when mice reached 10 wk of age, collected
in five separate sessions, and then pooled.

Statistical analysis

All experiments on animals were done nonrandomized and nonblinded.
Data were analyzed using GraphPad Prism. The statistical analysis used
throughout the study was an unpaired two-tailed student t-test. All error
bars represent standard error of the mean (SEM). For all statistical tests,
P-values <0.05 were considered statistically significant.

Data availability

RNA-seq data have been uploaded to the Sequence ReadArchive (SRA) un-
der accession number PRJNA624176.
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