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Abstract

From 2006 to 2013, an increasing incidence of fusariosis was observed in the hematologic

patients of our University Hospital. We suspected of an environmental source, and the

indoor hospital air was investigated as a potential source of the fungemia. Air samplings

were performed in the hematology and bone marrow transplant (BMT) wards using an air

sampler with pre-defined air volumes. To study the molecular relationship among environ-

mental and clinical isolates, 18 Fusarium spp. recovered from blood cultures were included

in the study. DNA sequencing of a partial portion of TEF1α gene was performed for molecu-

lar identification. Molecular typing was carried out by multi-locus sequence typing (MLST)

using a four-gene scheme: TEF1α, rDNA, RPB1 and RPB2. One hundred four isolates were

recovered from the air of the hematology (n = 76) and the BMT (n = 28) wards. Fusarium iso-

lates from the air were from five species complexes: Fusarium fujikuroi (FFSC, n = 56),

Fusarium incarnatum-equiseti (FIESC, n = 24), Fusarium solani (FSSC, n = 13), Fusarium

chlamydosporum (FCSC, n = 10), and Fusarium oxysporum (FOSC, n = 1). Fifteen Fusar-

ium isolates recovered from blood belonged to FSSC, and three to FFSC. MLST identified

the same sequence type (ST) in clinical and environmental isolates. ST1 was found in 5 iso-

lates from blood and in 7 from the air, both identified as FSSC (Fusarium petroliphilum).

STn1 was found in one isolate from blood and in one from the air, both identified as FFSC

(Fusarium napiforme). F. napiforme was isolated from the air of the hospital room of the

patient with fungemia due to F. napiforme. These findings suggested a possible clonal origin

of the Fusarium spp. recovered from air and bloodcultures. In conclusion, our study found a

diversity of Fusarium species in the air of our hospital, and a possible role of the air as

source of systemic fusariosis in our immunocompromised patients.
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Introduction

Filamentous fungi of the genera Fusarium are ubiquitous in the environment and are found in

the soil, water, and air [1]. Fusarium species are primarily plant pathogens, and produce toxins

that can cause food poisoning[2]. Fusarium can also infect humans and cause localized or dis-

seminated diseases depending on the predisposing factors and the immunological status of the

host [3, 4]. Keratitis[2] and onychomycosis[5] are the most common infections in the immu-

nocompetent hosts, and the infections may also occur because of trauma or by the use of con-

taminated contact lens[6, 7].

In the immunocompromised patients, especially those with hematologic malignancies and

recipients of allogeneic hematopoietic stem cell transplantation (HSCT), Fusarium can dissem-

inate in the organism causing a systemic and invasive infection (fusariosis) [3, 8, 9]. Fusarium
solani is the most frequent species involved in fusariosis (50% of cases), followed by Fusarium
oxysporum (20%) and Fusarium verticillioidis and Fusarium moniliforme (10% each). In Brazil,

Fusarium is the leading cause of invasive mold infections, followed by Aspergillus, with an

overall incidence of 6 cases per 1,000 HSCTs[3, 10, 11]. Fusarium spp. may show an antifungal

susceptibility profile marked by high level of resistance; however some isolates can be suscepti-

ble in vitro to amphotericin B, voriconazol[12, 13], notwithstanding, the mortality rate iof dis-

seminated fusariosis may exceed 75%.

For severely immunocompromised patients, hospitalization in a controlled environment

has been recommended, such as in private rooms equipped with high-efficiency particulate air

(HEPA) filters and positive airflow system. Several studies evaluated the effectiveness of HEPA

filters in preventing or reducing invasive aspergillosis in hematologic and oncologic patients

[14, 15], but did not evaluate other filamentous fungi, such as Fusarium.

From 2006 to 2013, 34 patients from the hematology and the bone marrow transplant

(BMT) wards were diagnosed with invasive fusariosis in our University Hospital, with an inci-

dence density during this period ranging from 0.18 to 2.4 per 1,000 patients-day (incidence

density in 8 years: 0.82 cases per 1,000 patients-day). Fusariosis, in our hospital, was surpris-

ingly higher than most hospitals worldwide[11] raising the hypothesis that an environmental

source could be implicated in the high incidence of fusariosis. Therefore, we studied the air as

a potential environmental source for invasive fusariosis by comparing the genetic relationship

of Fusarium isolates obtained from the environment, as well as the ones obtained from blood

cultures.

Materials and methods

Study location

This study was performed at the Clinical Hospital of the University of Campinas, Campinas,

Sao Paulo, Brazil. It is a 419-bed tertiary-care university hospital and is the referral hospital for

all major medical services in an area of 3,000,000 inhabitants. The BMT ward has 7 rooms

with 9 beds, HEPA filters and positive pressure airflow. The hematology ward has 9 rooms

with 11 beds and no controlled air. All patients with hematologic malignancies were hospital-

ized in this ward and patients that underwent HSCT were hospitalized in the BMT. As we had

an increasing number of systemic fusariosis in patients with hematologic malignancies, we

assumed that we were having an outbreak with a potential source that needed a prompt inves-

tigation by the Infection Control Team and the Mycology Laboratory. The Infection Control

Division performed the air samplings without consulting the University Ethical Committee, as

that investigation of potential sources of outbreaks is mandatory.

Airborne transmission of fusariosis
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Clinical isolates

Eighteen isolates of Fusarium obtained from 15 patients with hematologic diseases, between

2007 and 2013, were included in this study. Fusarium species were isolated from blood cultures

by using the Bact/ALERT (BioMérieux, France) and subsequent morphology evaluation in

Sabouraud Dextrose Agar medium (Difco, USA)[16]. Fifteen isolates were from individual

patients and three isolates were from three different blood samples withdrawn from the same

patient. All samples were collected for routine diagnostic exams and no clinical information

was collected from the patients’ records. The clinical isolates numbers: 917, 952, 1192, 1549,

1601, 1603, 1631, 1750, 2020, 916, 1103,1202, 1207, 1372 and 1554 were isolated from patients

hospitalized from July 2007 to July 2011, and they were stored in the Mycology Laboratory

Culture Collection. As these isolates belonged to a Culture Collection, there was no need for

ethical approval. The isolates number 2008, 2009 and 2010 were from patients that participated

in the Project CAAE 0870.0.146.000–11 approved by the Ethical Committee Decision No. 964/

2011 (Principal investigators: M. de Sousa and P. Trabasso)[17].

Air sampling

The air samplings were performed from March 2012 to March 2013 at the hematology and

BMT wards. The samplings were performed during summer, autumn, and spring seasons. The

air was collected by the air sampler Bio Samp Model MBS 1000D (Yotsubishi Corp., Japan) in

a selective culture medium for Fusarium modified by Mikami Y., Chiba University, Japan[18].

The volume of 1,000 L and 500 L of air was collected from the BMT and hematology wards,

respectively. All the samples were taken approximately 1.5 m above the floor and the air was

sampled three times in the same room and once in the bathroom. Air isolates were inoculated

in Sabouraud Dextrose Agar medium (Difco, USA). Temperature and humidity during sam-

pling were also recorded. The plates were incubated at 37˚C for 15 days and fungi with micro

and macro morphology resembling Fusarium spp. and the strains for working stock were

stored in distilled water[16, 19].

Molecular identification

DNA extraction. Strains were transferred to Sabouraud Dextrose Agar medium (Difco,

USA) and incubated at room temperature for 7 days. DNA was extracted using the QiaAmp

DNA Mini Kit (Qiagen, USA), according to the manufacturer’s instructions.

PCR reactions. PCR was performed using specific primers in order to amplify four genes

fragments chosen for Fusarium identification and MLST: TEF1α (translation elongation factor—

1α), rDNA (ribosomal DNA), RPB1 (RNA polymerase largest subunit) and RPB2 (RNA polymer-

ase second largest subunit). The position and sequences of the primers used in this study are

described in Table 1. PCR was performed using PCR Master Mix (Promega, USA). PCR reactions

were incubated in a Veriti 96 well Thermal Cycler (Applied Biosystem, USA) under the following

conditions: 2 min of initial denaturation at 98˚C, 40 cycles of DNA denaturation at 98˚C for 30 s,

primer annealing temperature varying according to the target gene for 30 s, elongation at 72˚C

for 1 min and a final elongation step at 72˚C for 5 min. PCR products were verified by electropho-

resis in a 2% agarose gel, 100 v for 30 min. PCR products were purified with ExoSAP-IT for PCR

Product Clean-up (Affymetrix USB, USA) prior to sequencing analysis.

DNA sequencing for identification. A partial portion of TEF1αwas sequenced with the

BigDye Terminator reagent kit (Applied Biosystems, USA) in an ABI Prism 3,100 Genetic

Analyzer (Applied Biosystems, USA) using HS392, HS393, EF11 and EF21 primers [20, 21]

(Table 1). DNA sequences were edited and assembled by Sequencher version 5.2.4 (Gene

Codes, USA). For identification, a homology search for the sequences of TEF1α gene was done
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using the BLAST tool of the NCBI database (GenBank), the database FUSARIUM-ID (http://
isolate.fusariumdb.orgl/), and the Fusarium CBS database (http://www.cbs.knaw.nl/fusarium).

To confirm the identity of our Fusarium species, we evaluated their position with maximum

likelihood (ML) method and a tree of TEF1α analysis was constructed. In these analyses, our

sequences, together with sequences retrieved from GenBank and CBS database, were analyzed.

Consensus sequences were computed with SeqMan from the Lasergene package (DNA Star,

USA). Sequences were aligned with the program MAFFT (www.ebi.ac.uk/Tools/msa/mafft/),
followed by manual adjustments with MEGA 6 [22] and BioEdit v7.0.5.2.

Multi Locus Sequencing Typing (MLST) for isotyping. Fusarium isolates found in air and

blood from to the same species or species complex were submitted to MLST. Portions of the fol-

lowing four genes fragments were chosen for MLST: TEF1α (598 bp), rDNA (1,029 bp), RPB1
(2,705 bp) and RPB2 (1,750 bp) (Table 1; S1 Fig). The number of loci used for MLST was based

on the previous studies of Scheel et al [23]which include TEF1α, rRNA and RPB2 and O’Donnell

et al [27] that used TEF1α, RPB1 and RPB2 for phylogenetic analysis. We combined the loci

described by both authors to generate a 4-loci scheme with more robust genetic typing. These

Table 1. Primers used for sequencing of clinical and environmental Fusarium isolates.

Gene Protein Primer Reference

Name Sequence (5’ - 3’)a

TEF1α Translation elongation factor 1 alpha HS392 TCAAAATGGGTAAGGA(A/G)GACAAGAC [20, 21]

HS393 GCCTGGGA(A/G)GTACCAGT(C/G)ATCATGTT [20, 21]

EF11 GTGGGGCATTTACCCCGCC [21]

EF21 GAGTGGCGGGGTAAATGCC [21]

rDNA Ribosomal DNA ITS4 TCCTCCGCTTATTGATATGC [23]

ITS5 GGAAGTAAAAGTCGTAACAAGG [24]

NL1 GCATATCAATAAGCGGAGGAAAAG [23]

NL4 GGTCCGTGTTTCAAGACGG [24]

RPB1 RNA polymerase largest subunit Fa CAYAARGARTCYATGATGGGWC [25]

F5 ATGGGTATYGTCCAGGAYTC [25]

F7 CRACACAGAAGAGTTTGAAGG [25]

F8 TTCTTCCACGCCATGGCTGGTCG [25]

R8 CAATGAGACCTTCTCGACCAGC [25]

G2R GTCATYTGDGTDGCDGGYTCDCC [25]

R9 TCARGCCCATGCGAGAGTTGTC [25]

F2 GATGGGATCGBGCHTTYGTCA This study

F1c GACTGGTTCAAGCATGACTACGAAT This study

F1e CGACAAGTGCGACAGATTAACAAGG This study

RPB2 RNA polymerase second largest subunit 6F TGGGGKWTGGTYTGYCCTGC [26]

5F2 GGGGWGAYCAGAAGAAGGC [24]

7cR CCCATRGCTTGYTTRCCCAT [24]

7cF ATGGGYAARCAAGCYATGGG [24]

11aR GCRTGGATCTTRTCRTCSACCC [24]

40R AGCTTGCGTCCAGTATGACC [23]

40-2F CAAAAACCTCTGGCGACAAC [23]

2F ATTTGCATGACKCCNGARGATC This study

2R ACTRCTCTGGTTCATAATGACGGAA This study

bp: base pairs.
a Y: C or T; W: A or T; R: A or G; K: G or T; S: G or C; D: A, G or T; B: G, T or C; H: A, C or T.

https://doi.org/10.1371/journal.pone.0196426.t001
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four portions were sequenced in an ABI Prism 3,100 Genetic Analyzer (Applied Biosystems,

USA) using primers described before[20, 21] and additional designed primers (Table 1). DNA

sequences were edited and assembled by Sequencher version 5.2.4 (Gene Codes, USA). Sequences

for all genes (6,082bp) were aligned by Clustal W tool and followed manual adjustments with

MEGA6[22]. Numbers were assigned to each allelic variant and combined in order to generate a

unique sequence type (ST) for every Fusarium isolate. The sequence data obtained in this study

was deposited in GenBank and the accession numbers are listed in S1 Table.

Results

Air sampling and climatic conditions

We performed nine air samplings from 2012 to 2013. Five air samplings were positives for the

recovery of Fusarium spp. and four samplings resulted negatives (S2 Table). One hundred and

four isolates were recovered from hematology (n = 76; 73.1%) and BMT units (n = 28; 26.9%).

The median temperature during the sampling days was 30.4 ± 3.68 (˚C) and the median

humidity varied from 49.0 ± 17.2 to 72.0 ± 15.4 (oC). No relationship was found between the

dates of air samplings, climate conditions, and season of the year, and the number of Fusarium
species isolated from the hospital air.

Identification by TEF1α sequencing

The DNA sequencing of a portion of TEF1α gene was performed for air (n = 104) and clinical

(n = 18) Fusarium isolates. Results of phylogenetic analysis of the 104 strains from air assigned 86

strains to species level, belonging to five species complexes: F. solani (FSSC), Fusarium fujikuroi
(FFSC), Fusarium oxysporum (FOSC), Fusarium incarnatum-equiseti (FIESC) and Fusarium chla-
mydosporum (FCSC) (Fig 1, S2–S4 Figs). The most common species of FFSC isolated from air

was Fusarium verticillioides (n = 21 isolates), followed by Fusarium proliferatum (n = 12), F. fuji-
kuroi (n = 3), Fusarium napiforme (n = 1), Fusarium pseudocircinatum (n = 1), and Fusarium sub-
glutinans (n = 1). The species of FSSC isolated from air were Fusarium petroliphilum (n = 10) and

Fusarium haematococcum (n = 2). We also recovered 24 isolates of FIESC (23 Fusarium incarna-
tum and 1 Fusarium equiseti), 10 FCSC (F. chlamydosporum), and 1 FOSC (F. oxysporum). Eigh-

teen isolates from the air were not assigned to species level: FFSC (n = 17), and FSSC (n = 1), and

formed well-supported monophyletic branches suggesting that further phylogenetic work is nec-

essary for species delimitation and description for these isolates (Fig 1, S2–S4 Figs).

Our results also showed that air isolates that belong to FFSC were predominant in the

hematology unit (n = 46 isolates, 60.5%), followed by FIESC (n = 21, 27.6%), FSSC (n = 4,

5.3%), FCSC (n = 4, 5.3%), and FOSC (n = 1, 1.3%) (Fig 2). In the BMT, FFSC isolates were

predominant (n = 10, 35.7%), followed by FSSC (n = 9, 32.1%), FCSC (n = 6, 21.4%), and

FIESC (n = 3, 10.7%).

Among 18 Fusarium isolates from blood cultures, 15 belonged to FSSC and three isolates to

FFSC. The phylogenetic analysis classified the clinical isolates into F. petroliphilum (FSSC,

n = 9 isolates), F. keratoplaticum (FSSC, n = 5), and F. napiforme (FFSC, n = 3) (S2 and S3

Figs). The phylogenetic tree also presented the monophyly of one undefined species of FSSC

(isolate 1554) (S3 Fig). Detailed information about the Fusarium isolates (isolation date, ward,

room, and sequencing identification) is shown in S1 Table.

Molecular typing of clinical and air isolates

Fusarium isolates belonging to FSSC and F. napiforme (FFSC) recovered from blood (16 iso-

lates) and from the air (12 isolates) were submitted to clonal origin analysis (MLST). Thirteen

Airborne transmission of fusariosis
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distinctive STs were determined based on the four-locus dataset (6,082 bp): 2 STs for F. napi-
forme isolates (STn1 and STn2) and 11STs for FSSC (ST1 to ST11) (Fig 3). Eight STs were

assigned only for blood Fusarium isolates (ST4 to ST9, ST11 and STn2), and 3 STs were found

exclusively in isolates from the air (ST2, ST3 and ST10).

ST1 and STn1 were found in clinical and environmental isolates and determined a possible

clonal origin between blood and air Fusarium. ST1 was found in 5 isolates of F. petroliphilum

Fig 1. Molecular identification of Fusarium species isolated from hospital air samplings. (A) and (B) shows TEF1αDNA sequencing

classification in species complex and species, respectively. The number of isolates is shown above each bar. FCSC: F. chlamydosporum species

complex; FFSC: F. fujikuroi species complex; FIESC: F. incarnatum-equiseti species complex; FOSC: F. oxysporum species complex; FSSC: F.

solani species complex.

https://doi.org/10.1371/journal.pone.0196426.g001
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(FSSC) from blood that were recovered from hospitalized patients from 2007 to 2013 (BMT: 1

isolate, Hematology: 4 isolates), and 7 isolates of F. petroliphilum recovered from the air in

2012 (BMT: 6 isolates, Hematology: 1 isolate) (Table 2). STn1 (F. napiforme) was detected in

one isolate from blood culture of a patient that was hospitalized in the hematology unit and in

one isolate from the air. Both were isolated in 2013 from the same room during the time that

the patient was hospitalized and showed a genetic relationship using MLST.

Discussion

Fusarium species are ubiquitous in the environment, whose spores can easily be carried by

wind and rain, causing transmission and subsequent infection to humans. Our study showed,

for the first time, a genetic relationship between Fusarium species isolated from indoor hospi-

tal air with the ones recovered in blood cultures of hematologic patients, suggesting that the air

may be a potential source for fusariosis.

Fig 2. Distribution of Fusarium species isolated from hospital air. The frequency of each species complex in the

hematology (A, n = 76) and BMT (B, n = 28) wards is shown. The species identified for each complex is presented

outside the graphs. The species found exclusively in hematology unit are marked with (�). FCSC: F. chlamydosporum
species complex; FFSC: F. fujikuroi species complex; FIESC: F. incarnatum-equiseti species complex; FOSC: F.

oxysporum species complex; FSSC: F. solani species complex.

https://doi.org/10.1371/journal.pone.0196426.g002
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Air samplings were performed during one year in BMT and hematology units in our Clini-

cal Hospital. The Clinical Hospital is located in an area surrounded by farms of soy and canola

plantations, which may be a potential source of the Fusarium isolated in the hospital air once

the species are mainly plant pathogens[1]. The hospital is placed on an area of tropical climate

with dry winters and very warm rainy summers. Although climate conditions have been previ-

ously associated with the onset of crop disease by Fusarium[28, 29], the association between

Fig 3. Sequence types (ST) determined by sequencing of portions of the genes TEF1α, rDNA, RPB1 and RPB2 for Fusarium species

isolated from air and blood. The number of samples with each ST is shown above the bar. FSSC: F. solani species complex. FFSC: F. fujikuroi
species complex. ST: sequence type.

https://doi.org/10.1371/journal.pone.0196426.g003

Table 2. Detailed information about ST1 (F. petroliphilum—FSSC) and STn1 (F. napiforme—FFSC) isolates.

Sample Source Isolation date Ward

ST1 (F. petroliphilum—FSSC)

952 Blood 11/28/07 Hematology

1196 Blood 03/29/08 BMT

1549 Blood 12/09/10 Hematology

1750 Blood 06/03/11 Hematology

2020 Blood 06/26/13 Hematology

F16 Air 03/05/12 Hematology

F17-1 Air 03/29/12 BMT

F17-2 Air 03/29/12 BMT

F50 Air 10/10/12 BMT

F51 Air 10/10/12 BMT

F52 Air 10/10/12 BMT

F54 Air 10/10/12 BMT

STn1 (F. napiforme- FFSC)

2008 Blood 11/27/13 Hematology

F111 Air 03/21/13 Hematology

FSSC: F. solani species complex; FFSC: F. fujikuroi species complex; BMT: bone marrow transplant ward.

https://doi.org/10.1371/journal.pone.0196426.t002
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the weather and the development of fusariosis is poorly known. A peak of Fusarium spores

count isolated from indoor hospital and outdoor air in Houston, Texas, USA, was found in the

rainy summer of 1988 and 1989[30]. This peak correlated with the seasonal clustering of cases

of fusariosis. However, we could not find a correlation between temperature or humidity and

the frequency of Fusarium isolates recovered in the hospital air.

The recovery of Fusarium isolates in the BMT rooms might suggest that the laminar airflow

systems were not sufficiently protecting our patients. As the hematology unit does not have

controlled air, the higher number of isolates, and the species diversity of Fusarium might rep-

resent the outside air condition. We presumed that the recovery of a substantial amount of

Fusarium isolates from the air could be due to the modified selective culture medium used for

air sampling[18]. In most studies, Sabouraud Agar formulations were used in the air samplers,

and as Aspergillus and others filamentous fungi are more prevalent in the air, they were first

recovered than Fusarium in environmental surveillances[15, 31].

The identification of Fusarium to complex or species levels is very important not only to

select an appropriate antifungal agent but also to clarify the epidemiology. In this study, we

applied TEF1αDNA sequencing for identification of the genus Fusarium for strains recovered

from the air (n = 104) and blood (n = 18). The identification of members of FSSC is of special

importance because this complex is responsible for about 50% of human infections, and com-

prises the most virulent species[3]. In addition, FSSC are usually resistant to azoles in vitro and

exhibit higher minimum inhibitory concentration for amphotericin B than other Fusarium
species[32, 33].

The sequencing of the TEF1α locus classified the non-FSSC isolated from air into four com-

plexes: FCSC, FFSC, FIESC and FOSC. The FOSC members are of special interest, because

they are known as the second most common species in human fusariosis, representing approx-

imately 20% of the cases. Surprisingly, in our study, only one isolate was recovered from the

air, and no FOSC was identified from clinical samples. F. oxysporum isolates have been recov-

ered from several hospital environmental sources, including water[34], shower, sink and bath-

room swab[23], but not in the air, suggesting that maybe FOSC is more likely to be recovered

from different environmental sources than air.

We used a MLST scheme based on partial sequencing of TEF1α, rDNA, RPB1 and RPB2
genes [20, 21, 23, 24, 26] for determining the clonality of Fusarium isolated from air and

blood. New primers sequences were designed to cover regions and gaps of the RPB2 gene that

were not properly sequenced by the primers previously reported. Previous studies reported the

molecular relationship between clinical and environmental isolates from hospital water sys-

tem, hospital surfaces and plumbing drains of external buildings[23, 30, 34, 35]. Revising the

recent literature, there are not robust data implicating the air or other environment as poten-

tial sources of fusariosis, in hospital settings. Carlesse et al. [36] reported an outbreak of cathe-

ter-related fungemia caused by F. oxysporum but no environmental source was identified.

Litvinov et al. [37] described an outbreak of invasive fusariosis in a children´s cancer hospital.

They recovered Fusarium from the environment (water, air, swabs) of patients’ rooms, but no

molecular correlation was done in this study. In the study performed by Edel-Hermann et al.

[38] the authors described the clonal linage of F. oxysporum isolated from the tap water of dif-

ferent French hospitals, but no correlation was established with clinical samples. Short et al.

[35] described the occurrence of a clonal distribution of the same sequencing typing of Fusar-
ium spp. clinical isolates and in the plumbing drains of hospitals and other facilities.

To our knowledge, our study is the first one describing the identification of two clonal STs:

Fusarium petroliferum and Fusarium napiforme isolated in the air and in blood of patients with

fusariosis hospitalized in our hospital. In our study, we found ST1 as the most frequent ST

belonging to FSSC (F. petroliphilum), and ST1 was identified in five of the clinical isolates and
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in seven isolates from air, indicating a possible environmental source of fusariosis. In addition,

one F. napiforme was isolated from air sampling and the molecular typing showed the same ST

for this environmental isolate and for one F. napiforme recovered from blood (STn1). F. napi-
forme was recovered from the patient´s blood culture and from the air of the same room in

which the patient was hospitalized, in the hematology unit in 2013[17]. F. napiforme is a less

frequent pathogen and very few cases were previously reported causing keratomycosis[39],

hypersensitivity pneumonitis[40], and systemic infection in immunocompromised patients

[17, 41].

The molecular typing revealed that F. petroliphilum and F. napiforme recovered in the air

samplings were related to the ones that caused systemic diseases. In conclusion, systemic fusar-

iosis may occur from the encounter of Fusarium spp. present in environmental sources, such

as in the air of our hospital, and the susceptible patients hospitalized in BMT and hematology

units. This study indicates that there is a need for effective surveillance of hospital environment

quality control.
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