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Abstract: Hepatocyte growth factor (HGF), also known as scatter factor (SF), is a pleotropic 

factor required for normal organ development during embryogenesis. In the adult, basal 

expression of HGF maintains tissue homeostasis and is up-regulated in response to tissue 

injury. HGF expression is necessary for the proliferation, migration, and survival of epithelial 

and endothelial cells involved in tissue repair in a variety of organs, including heart, lung, 

kidney, liver, brain, and skin. The administration of full length HGF, either as a protein or 

using exogenous expression methodologies, increases tissue repair in animal models of 

tissue injury and increases angiogenesis. Full length HGF is comprised of an N-terminal 

hairpin turn, four kringle domains, and a serine protease-like domain. Several naturally 

occurring alternatively spliced isoforms of HGF were also identified. The NK1 variant 

contains the N-terminal hairpin and the first kringle domain, and the NK2 variant extends 

through the second kringle domain. These alternatively spliced forms of HGF activate the 

same receptor, MET, but they differ from the full length protein in their cellular activities 

and their biological functions. Here, we review the species-specific expression of the HGF 

isoforms, their regulation, the signal transduction pathways they activate, and their 

biological activities. 
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1. Introduction 

Hepatocyte growth factor (HGF), or scatter factor (SF), was first identified as a factor from the 

plasma from humans and rabbits, and also rat platelets, that could induce the proliferation of 

hepatocytes in culture [1–3]. Following its initial discovery, HGF was demonstrated to be produced 

primarily by mesenchymal cell types, especially fibroblasts, in a variety of tissues including lung, 

heart, kidney, liver, skin, and brain [4–14]. HGF is required for normal embryonic development,  

and mice lacking HGF display failure for the development of multiple organs [9,15–20]. The HGF 

receptor, MET, was identified as a 145 kDa tyrosine kinase receptor with a single transmembrane 

domain, a juxtamembrane regulatory domain, and a C-terminal multifunctional docking domain that 

was phosphorylated in response to HGF [21,22]. Like HGF, MET is expressed in a wide variety of 

tissues [9,23–28]. However, in contrast with HGF, MET is localized primarily on epithelial and 

endothelial cell types [29–31]. Thus, in normal tissues, it is believed that HGF functions in 

homeostasis as a paracrine factor synthesized by mesenchymal cells to induce the survival and 

maintenance of the other cells of the tissue [9,26]. 

Shortly after the discovery of HGF, several isoforms of the factor were identified. Full length HGF 

was shown by Northern blots to correspond to an mRNA of about 6 Kb, encoding a protein of  

~82,000 kDa, that is proteolytically processed to produce a ~69 kDa alpha subunit with a single 

disulfide bond to a ~34 kDa beta subunit [32]. Structurally, the full length HGF protein was shown to 

contain an N-terminal hairpin loop and four kringle domains in the alpha subunit, and a serine 

protease-like domain in the beta subunit [32,33]. An alternatively processed mRNA for human HGF 

was identified by Northern blot, with an estimated size of 1.5 kb, with a predicted translation product 

of ~33 kDa protein containing the N-terminal hairpin loop and the first two kringle domains of HGF 

(named NK2) [34,35]. A second splice variant of human HGF was later identified by Northern 

blotting, a ~1.2 kb transcript, encoding a protein of ~20 kDa protein containing the HGF N-terminal 

hairpin loop and the first kringle domain (named NK1) [36]. This later truncated isoform was also 

identified in murine mRNA [37]. Both the NK2 and NK1 isoforms were demonstrated to compete with 

HGF for binding to the same MET receptor [34,36–39]. However, the biological and cellular activities 

of the two truncated isoforms differ greatly from that of the full length HGF as does the regulation of 

their expression. 

2. Hepatocyte Growth Factor (HGF) Isoforms 

HGF is a high-molecular-weight polypeptide growth factors whose domain structure and mechanism 

of activation resemble those of the blood protease plasminogen, and belongs therefore to a family of 

plasminogen-related growth factors [33]. Besides HGF, this family includes the macrophage 

stimulating protein (MSP), an effector of macrophage chemotaxis and phagocytosis [40]. These two 

proteins share a common ancestral gene with the plasminogen and apolipoprotein. Phylogenetic studies 

suggest that these proteins evolved from a common ancestor that consisted of a single kringle domain 

and a serine protease (or serine protease-like) domain, separated by a region involved in their 

activation [33]. HGF and MSP have 45% sequence homology with each other, and 40% with 

plasminogen. Four main features distinguish HGF and MSP from plasminogen: (1) high-affinity 
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binding to a specific membrane receptor, activating a complex cell-signaling pathway; (2) lack of 

enzymatic activity of the serine protease domain; (3) the number of kringle domains (four in HGF and 

MSP, five in plasminogen); (4) binding to heparan sulfate proteoglycans [20]. 

Functional orthologs of HGF and MET can be found in vertebrates from bony fishes to humans,  

and HGF and MET related gene sequences of limited length and without clear functional similarity can 

be found in invertebrates as well. The most common transcript variant of HGF is the full length HGF. 

The human orthologs are 4792 nt (XM_006715956), 2820 nt (NM_000601), and 2805 nt (NM_001010932) 

long transcripts that contain 18 exons [41]. The first two transcripts encode for a 728 aa polypeptide  

and last one encodes a 723 aa polypeptide. 

The NK1 isoform is the shortest functionally active isoform of HGF. In humans, it is transcribed as  

a 2079 nt-long transcript (NM_0010934) consisting of five exons that encode a 201 aa polypeptide. 

NK1 sequences are predicted in several other species including the mouse (Mus musculus, 

NM_00128946), rabbit (Oryctolagus cuniculus, XM_008258180), opossum (Monodelphis domestica, 

XM_007504021), and non-human primates (e.g., Chlorocebus sabaeus, XM_007982358). They are 

highly similar among different species. Primates share ~98.5% sequence identity, and the murine and 

human NK1 coding regions are 88.63% identical. The NK1-3'UTR of primates are ~95.7% identical, 

but the 3'UTR of rabbit and human share 71.57% identical sequence. The 3'UTR of the murine NK1 is 

only 48.85% identical to the human. The HGF gene contains an alternative splice acceptor in the 

intron that follows the five coding exons among these species. 

The other functionally active isoform of HGF is the NK2. It is transcribed in humans as a  

1292 nt (NM_001010933) or 1307 nt (NM_001010931) mRNA of seven exons, encoding 284 aa or  

290 aa, respectively. 

The NCBI Gnomon [42] predicted NK2 similar sequences in several other species like 

Chrysochloris asiatica (golden mole, XM_006834344.1), Ceratotherium simum simum (rhinoceros, 

XM_004431294) and Canis lipus familiaris (dog, XM_005630886), in addition to primates (Figure 1). 

Sequence analysis using Basic Local Alignment Search Tool (BLAST) [43] revealed that the murine 

HGF sequence does not contain the splice sites required for the generation of NK2 (Figure 1) and data 

from our laboratory indicated that the NK2 isoform was not expressed in mice [44]. Only primates 

share significant sequence similarities in the 3'UTR, e.g., Pan troglodytes (chimpanzee) XM_003318558 

and Nomascus leucogenys (gibbon) XM_003252220 share 97% similarity with the two NK2 isoforms 

(NM_001010933 and NM_001010931) of human (Figure 2). Although the sequences present in the 

NCBI Gnomon predict the expression of NK2 in dog, rhinoceros, and golden mole, supporting 

experimental data have not yet been produced. 
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Figure 1. Generation of the NK2 message. (A) A schematic comparison of hepatocyte 

growth factor (HGF) genes. Bars and numbers indicate exons. The alternative exon used 

for NK2 splicing is indicated by a triangle at the corresponding introns. The murine intron 

does not contain this alternative exon; (B) The exon (capital letters)–intron (small letters) 

boundary sequences for NK2 splicing. Predicted splice donor and acceptor sites are 

underlined. The murine sequence lacks characteristics commonly found in splice acceptor 

sites. The carboxy-terminal amino acids of NK2 and the stop codon (*) are shown below 

the coding sequence. 

 

 
  

Mus musculus (mouse, 65.89 kb)

Homo sapiens (human, 67.47 kb)

1-2            3       4   5            6        7  8                                    9      10      11   12           13  14 -18   19

Homo sapiens NK2                           

Canis lupus  (dog, 80.69 kb)
1              2        3   4         5           6  7                                    8               9    10       11-16  17          18

1              2        3   4         5               6  7                              8        9          10    11             12    13-17  18

Pan troglodytes  (chimpanzee, 68.40 kb)

1               2       3   4         5                6  7                             8       9         10     11           12-13 14-17  18

1               2       3   4         5                6  7

A

…GGAGTACTGTGCAATTAAAATGTG TGgtaagttag… … ttcctccccAGACATAACATGA… 3’-UTR 
…E  T  C  A  I  K  M  C  E                       T  *         dog NK2

…GGAGTACTGTGCAATTAAAACATG CGgtaagtgaa… …cctccccagAGACA TAACATGG … 3’-UTR 
…E  T  C  A  I  K  T  C  E                       T  *         human NK2

…GGAGTACTGTGCAATTAAAACATG CGgtaagtgaa… …cctccccagAGACATAACTTGG … 3’-UTR 
…E  T  C  A  I  K  T  C  E                       T  *         chimpanzee NK2

…GGAGTATTGTGCAATTAAAACGTG CGgtaagttag… …attagatagagacatgctttta … exon-intron 8-9
…E  T  C  A  I  K  M  C  E                                    mouse HGF

B
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Figure 2. Multiple alignment of the human NK2 3'UTR with predicted 3'UTR sequences 

from species using the European Molecular Biology Laboratory—European Bioinformatics 

Institute Clustal Omega program [45]. Asterisks indicate nucleotides identical with the 

human sequence; non-identical nucleotides are shown as red letters. The first two 

nucleotides (AG, blue) are the predicted primate splice acceptor site. 

 

3. Regulation of Expression of HGF and Its Isoforms 

HGF is expressed in most tissues, and both mRNA and protein have been detected in the liver,  

lung, kidney, skin, and brain. The HGF gene promoter has been extensively analyzed to determine the 

mechanism(s) of its regulation in development/growth, tissue repair, fibrosis, and oncogenesis [46–48]. 

HGF expression is positively regulated by other growth factors, such as epidermal growth factor, 

platelet-derived growth factor, and several members of the fibroblast growth factor family [49].  

HGF expression is also increased in response to inflammatory cytokines interleukin (IL)-1α and -1β, 

IL-6, IL-8, and interferon-γ [50–53]; the regulation by these cytokines may be linked to HGF 

expression during early phases of inflammation that precede tissue repair. Analyses of the HGF 

promoter revealed functional cis-elements for transcription factor binding including IL-6 response 

elements, activating protein-2 (AP2) elements, nuclear factor-1 (NF1) elements, nuclear factor-IL6 

elements, a cyclic AMP response element, several binding sites for the SP family of transcription factors, 

an upstream stimulatory factor (USF) element, a chick ovalbumin upstream promoter-transcription 

factor element, a complex C1 element, and the cell type specific CCAAT/enhancer binding  

protein (C/EBP) binding element [54–57]. Another element in the HGF promoter, the peroxisome  

proliferator-activated receptor gamma (PPAR γ)-responsive element, was shown to strongly regulate 

HGF expression in response to either PPAR γ 1 or PPAR γ 2 ligands, but because this binding site 

Golden Mole   AGAGACATAACATGTGCTGTCAG---ATGATGAACCTTTTCTGGTAAGTGACTGAGGTTA
Dog CCAGACATAACATGAGCTGTCAACTGACCATGAACCTCTTCTGGTGAATGATAGAATCAC
Rhinocerus CCAGACATAACATGAGCTGTCAACTGACTGTGAACCTCTTCTAGTGAATG----------
Gibbon AGAGACATAACATGAGCTCTCAACTGATGGTGAACCTCTTCTGGTGAGTGACAGAGGCTG
Chimpanzee AGAGACATAACTTGGGCTCTCAACTGATGGTGAACTTCTTCTGGTGAGTGACAGAGGCTG
Human AGAGACATAACATGGGCTCTCAACTGATGGTGAACTTCTTCTGGTGAGTGACAGAGGCTG

********* ** *** ***    *   ***** * **** ** * **

Golden Mole   CAAAGGAGTATAATACAAGTGGATCTAATAGC-------AGCTTCACAGTTGTTGTTGTT
Dog           -ACTGAAGAATAGTAAGTCTGATAGAACAATCTCCCAGACATCGTGAAGCTCTAGAGGCT
Rhinocerus CAATGAAGAATAATAAATCTAATAGATGCTTCTAATAGATGTCTTTAATCTCTAGTAGCT
Gibbon CGAGGAAGAATAATGAGTCTAATAGAAGTTTATCACAGATGTCTCTAATCTCTATAG---
Chimpanzee CAATGAAGAATAATGAGTCTAATAGAAGTTTATCACAGATGTCTCTAATCTCTATAG---
Human CAGTGAAGAATAATGAGTCTAATAGAAGTTTATCACAGATGTCTCTAATCTTTATAG---

* ** *** *     *                           *  * *       

Golden Mole   GTTAAGTGCCATTGAGTTGGTTCCAACTAATAGCAACTCTGCATAGGGTTTGCTACGATT
Dog GATGCCCACCTCCCTGGCTG-----CCTCGTCCACAGCCTGTATTCTGTACCAACCTGTC
Rhinocerus GGTCCCCCCCCCCCACCCCGGCTGTCCTTGTACGCAGCCTGCACTCTATTTCAACCTGTC
Gibbon --CTGATCCCTACCTCTCTGGCTGTCTTTGTACCCAGCCTGCATTCTGTTTCGATCTGTC
Chimpanzee --CTAATCCCTACCTCTCTGGCTGTCTTTGTACCCAGCCTGCATTCTGTTTCGATCCGTC
Human         --CTGATCCCTACCTCTCTCGCTGTCTTTGTACCCAGCCTGCATTCTGTTTCGATCTGTC

**                 *  *    *  *** *     *  *  * 

Golden Mole   GGTTGGTGGGTTTGAACCACCAACTTATGGTTAACAGTCTAGTGCTTATCCTTCAGTACC
Dog TTTAGCTGTGCT---G-----TGTTTGTTTTGTATGTACTGGCCTTTGACC-----AACA
Rhinocerus TTTTGGCAGTCCTATA-----GTCT--TTTTCTATATATTGGCCTTTACCC-----AACT
Gibbon TTTTAGCAGTCCATAC-----AATCATTTTTCTACATGCTGGCCCTTACCC-----AGCT
Chimpanzee TTTTAGCAGTCCATAC-----AATCATTTTTCTACATGCTGGCCCTTTCCC-----AGCT
Human TTTTAGCAGTCCATAC-----AATCATTTTTCTACATGCTGGCCCTTACCT-----AGCT

*                        *  *  *     * *   **  * * 

Golden Mole   ATCCCAAGATTCTTATAAAAGCTTCTTATAG-------
Dog CTCCTGAACTTATGATAGAAGCTTCTTCCTCATTGGCT
Rhinocerus GTCTTCAATTTATAATAAAAAGTGTTTTTTCTCGCTTG
Gibbon TTTCTGAATTTACAATAAAAACTATTTTTTAACCTGTT
Chimpanzee TTTCTGAATTTACAATAAAAACTATTTTTTAACG----
Human TTTCTGAATTTACAATAAAAACTATTTTTTAACGTGAA

*    *  **   *** **  *  ** 
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overlaps with the NF1 and chicken ovalbumin upstream promoter-transcription factor elements,  

the binding of these other factors repress PPAR γ activation [55]. Specific regulation of HGF in 

response to tissue injury and/or inflammation is believed to occur through factor binding to the C/EBP 

element [56]. 

HGF expression is tightly regulated, and several elements within the promoter suppress its 

expression. Binding of activating protein-2 (AP2) to a regulatory site −230 to −260 bp upstream of the 

transcriptional start site suppresses HGF expression [58]. Another repressor of HGF expression,  

a repeat of 30 deoxyadenosines (termed “deoxyadenosine tract element” or DATE) is located about 

750 bp upstream of the HGF start site [59]. The DATE element is thought to be a hot spot for promoter 

mutations leading to HGF dysregulation in breast cancer [59]. 

HGF expression is potently suppressed in fibroblasts and other cell types by the pro-fibrotic 

cytokine transforming growth factor beta 1 (TGF-β1), by hypoxia, and by glucocorticoids [50,60].  

In a human fetal lung fibroblast cell line, TGF-β1 down-regulated HGF protein and mRNA. 

Interestingly, the regulation of HGF occurred without affecting NK2 expression in the cells [61]. 

Recent findings in human adult lung fibroblasts provide evidence that the selective regulation of HGF 

by TGF-β1 occurs through TGF-β1 up-regulation of miR-199a-3p [44]. The miR-199a-3p binds to the 

HGF mRNA 3'UTR leading to degradation of HGF mRNA. The NK2 mRNA has an alternative 3'UTR 

sequence that is not regulated by miR-199a-3p [44]. 

4. Cellular Signaling by HGF and Its Truncated Isoforms 

HGF is a pleiotrophic factor, inducing motogenesis, mitogenesis, survival, and in some cell types, 

morphogenesis [8,62,63]. HGF signaling occurs through its high affinity receptor, MET, a tyrosine 

kinase receptor [21,22]. Analysis of functional residues of the MET receptor revealed that, in addition 

to phosphorylation of tyrosines in the kinase domain (Y1234 and Y1235), two other phosphotyrosines  

in the carboxy-terminal multifunctional docking domain, Y1349 and Y1356, regulate downstream  

signaling [64–68]. Tyrosine phosphorylation of MET allows its interaction with adaptor proteins and 

signaling molecules, resulting in the downstream activation of major signaling pathways including 

Ras/p42/p44 mitogen activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt,  

src kinase, protein kinase C isoforms (PKC), signal transducer and activator of transcription 3 

(STAT3), small GTP-binding proteins Rap1, Rac, and Rho, and [69–77]. A number of investigations 

have attempted to identify individual signaling pathways required for the various biological effects of 

HGF, and there appears to be substantial overlap [76–79]. While mitogenic and antiapoptotic actions 

of HGF appear to require p42/p44 MAPK, PI3K/Akt, and STAT3, the motogenic activity requires 

PI3K and src kinase [76–79]. Morphogenesis and tubulogenesis appear to require PI3K as well as 

other pathways downstream of the Grb2 adaptor protein [79]. HGF inhibition of apoptosis from a 

variety of causes including oxidative stress, DNA damaging agents, or signaling by angiotensin II has 

been shown to require PI3K/Akt, p42/p44 MAPK, and STAT3 [78,80–84]. 

Following their initial discoveries, it was demonstrated that NK1 and NK2 bound to MET and 

induced its phosphorylation in a competitive manner with full length HGF [34,36,38,85]. In early 

studies, it appeared that the level of total MET tyrosine phosphorylation by the truncated isoforms in 

cell cultures of breast epithelial cells was somewhat reduced compared to MET phosphorylation by 
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full length HGF [38]. However, later studies with higher amounts of refolded, purified protein,  

the MET phosphorylation could be induced by the truncated isoforms to the same total levels as with 

full length HGF [36,85,86]. 

NK1 induced motility in Madin Darby canine kidney (MDCK) cells and 32D cells expressing  

MET [85,87–89]. At high concentrations, NK1 was found to induce proliferation in a breast cancer 

epithelial cell line and in BALB/MK cells, MCF-10A cells, and in BaF3 cells expressing MET, albeit 

at a lower level than HGF [36,85,87,90–92]. However, NK1 was not shown to induce proliferation in 

the A549 lung cancer cell line, possibly due to lower levels of the factor that were used [38].  

High concentrations of NK1 were also reported to be capable of inducing branching morphogenesis in 

endothelial cells [87]. In BALB/MK cells, NK1 was demonstrated to activate p42/p44 MAPK at levels 

similar to full length HGF [89]. In a non-tumorigenic human prostate epithelial cell line, NK1 was 

demonstrated to activate p42/p44 MAPK, Akt, srk kinase, p125 focal adhesion kinase, SMAD2/3,  

and STAT3 [93]. Although NK1 has been demonstrated to recapitulate most of the actions of full 

length HGF, it is not known whether the signaling of NK1 in cells is the same as for full length HGF. 

Like NK1, NK2 induced motility in MDCK cells, but NK2 failed to induce motility in human 

umbilical vein endothelial cells [85–87]. In contrast, NK2 did not induce proliferation in any cell line 

tested, and NK2 did not induced branching morphogenesis [34,85–87]. Furthermore, NK2 could 

competitively inhibit HGF-induced proliferation and morphogenesis [85,87]. Interestingly, examination 

of NK2-induced signal transduction in cell culture demonstrated that NK2 was capable of activating 

both PI3K and p42/p44 MAPK in 32D cells expressing MET and in a breast cancer epithelial cell line, 

suggesting that these two pathways were not sufficient to induce proliferation in response to MET 

activation [86]. In another effort to characterize NK2-induced signaling in vivo, a study of melanoma 

cells in NK2 transgenic mice demonstrated that the tissues of these mice had reduced MET 

phosphorylation and reduced p42/p44 MAPK activation in contrast with HGF transgenic mice, 

suggesting that signaling by this isoform in vivo is compromised [94]. The signal transduction by NK2 

in normal non-transformed cells remains poorly understood. 

5. Biological Functions of HGF and Its Isoforms 

5.1. HGF Isoforms during Development 

HGF plays an essential role during development in the placenta [95], liver [15], and kidney [17,96]. 

HGF is also critical for normal neuronal development and for limb skeletal muscle [16,97–99]. 

Consequently, knockout mice for HGF die in utero during early stages of embryogenesis [99].  

A pattern of HGF secretion, along with other essential growth factors, has been noted in a variety of 

developmental epithelial layer, including in the intestinal lamina propria, where epithelial and 

mesenchymal interactions are essential for normal epithelial cell differentiation [100,101]. 

Although the expression patterns and effects of HGF have been investigated in development, the 

roles of the two naturally occurring isoforms of HGF, NK1 and NK2, in development are not yet 

understood. One study of HGF isoform expression during development in macaques found low levels 

of expression of both NK1 and NK2 as well as novel forms of NK1 and NK2 (dNK1 and dNK2) with 

a five amino acid deletion in the first kringle domain [102]. Increased HGF and all isoforms were 
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found to be increased at 144 days of gestation, and all forms were found in the endometrium and 

placenta [102]. The role of the expression of the HGF isoforms during embryogenesis and development 

is not yet known. 

5.2. Role of HGF Isoforms for Tissue Homeostasis and Repair 

HGF is a growth factor, survival factor, and mitogen for epithelial and endothelial cells from the 

lung, skin, kidney, liver, heart, and brain [103–111]. In the adult, basal expression of HGF is believed 

to be important for normal tissue homeostasis, where the local production of HGF by resident 

mesenchymal cells maintains the specialized epithelium of the tissue [9,10,13,26,28,29,63,112–117]. 

For instance, in the kidney, expression of HGF by mesangial cells in the tissue microenvironment  

is believed to maintain normal growth of kidney endothelial cells [112], and HGF is required for  

trans-telencephalic migration of interneurons and for neuronal survival for brain cell homeostasis [118]. 

HGF expression is greatly increased in response to most types of tissue injury [5]. HGF expression  

is induced in animals after experimental renal, cardiac, pulmonary, adrenal gland, or hepatic  

injury [1,112,115,119–128]. For the vascular endothelium, HGF is a potent proliferative factor critical 

for angiogenesis, a process often required for repair of tissue injury [129]. Interestingly, the lung was 

also shown to synthesize HGF in response to injuries in distal organs, suggesting a paracrine function 

for tissue repair by the lung [130]. Increased expression of HGF in response to tissue injuries was 

demonstrated to be related to tissue repair activities in vivo [131,132]. Additionally, the time course of 

HGF up-regulation or administration of HGF correlated with the increased proliferation of epithelial 

cells following experimentally-induced tissue injury [119,133,134]. Direct evidence for the role of 

HGF in tissue repair was provided in experiments in which the blockade of HGF using neutralizing 

antibodies resulted in the inhibition of hepatocyte proliferation for liver regeneration and kidney 

regeneration following injury [135,136]. Also, the generation of a conditional knockout of HGF  

in mice was demonstrated to result in impaired liver regeneration following CCl4 treatment [137]. 

Severely impaired liver generation was also observed after partial hepatectomy in a conditional MET 

mutant mouse with MET-null phenotype [138]. The failure in normal liver repair was characterized by 

altered cell cycle progression and cell cycle entry. Others have shown that conditional knockout of 

MET caused hypersensitivity to FAS-induced apoptosis of hepatocytes and impaired recovery from 

centrolobular lesions as a result of persistent inflammatory reaction, overproduction of osteopontin, 

early calcification, and suppressed hepatocyte migration into the injured area [139]. Wound healing 

experiments with mice in which MET was conditionally inactivated in the epidermis demonstrated that 

MET-deficient mice required twice as much time as wild type mice for the healing and only MET 

positive cells that escaped knockout recombination were involved in this delayed skin healing [140]. 

The administration of HGF, whether as a purified protein or through ectopic expression methods, 

was demonstrated to increase normal tissue repair in experimental injury models of the lung, skin, 

liver, kidney, heart, pancreas, and brain, and improves angiogenesis [24,31,131,141–157]. Of critical 

importance, HGF administration increases normal repair processes and inhibits fibrotic remodeling 

and/or scar tissue formation [24,142,145,148,150,156,158–167]. Currently, non-viral plasmids for the 

expression of HGF are being explored for efficacy in treatment of critical limb ischemia and for 

peripheral neuropathy in diabetes [168,169]. 
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The basal expression of NK1 and NK2 has been observed in multiple tissues, including in normal 

fibroblasts from the lung [44]. Interestingly, the expression of NK1 and NK2, but not full length HGF, 

was observed in chondrocytes [170]. In general, the normal biological function of the truncated 

isoforms is not known. Over-expression of the HGF truncated isoforms in vivo has been shown to have 

varying effects on cellular proliferation, survival and migration, cellular events that are all believed to 

be required for normal tissue repair. 

In cell culture, NK1 has been shown to act as a mitogen and anti-apoptotic factor for normal 

hepatocytes in culture [171]. Transgenic mice over-expressing NK1 had similarities to mice  

over-expressing full length HGF, including “enlarged livers, ectopic skeletal-muscle formation, 

progressive renal disease, aberrant pigment cell localization, precocious mammary lobuloalveolar 

development” [37]. However, in NK1 transgenic mice, some of these abnormalities were reduced 

compared with HGF transgenic mice. For instance, in NK1 mice, livers were enlarged 1.5-fold, 

compared with 2–3-fold increases observed in HGF mice, and incidences of cancers were lower in the 

NK1 mice [37]. In another study, NK1 over-expression was observed to increase hepatocyte proliferation 

in vivo and to reduce liver fibrosis in murine partial hepatectomy model [171]. Administration of 

recombinant NK1 protein was also demonstrated to induce the proliferation of isolated islets in culture 

and to induce proliferation pancreatic β-cells in a murine model of type 2 diabetes [172]. 

Murine models of tissue injury suggest that NK2 does not induce the proliferation of normal cells  

and may inhibit normal tissue repair. NK2 transgenic mice did not exhibit the phenotypic consequences 

observed in response to HGF over-expression, including the inhibition of hyperplastic lesions of the 

kidney or olfactory mucosa, and abnormalities of the mammary gland and skeletal muscle [94].  

NK2 transgenic mice also did not display gastrointestinal obstruction, progressive renal disease,  

or enlarged livers [94]. Interestingly, metastasis of malignant melanoma cells were extremely activated 

in NK2 transgenic mice compared to the wild type. The number of metastatic cells in the liver were 

nearly the same as that obtained with HGF transgenic mice, and the size of metastatic tumors in the 

NK2 livers were equivalent to wild type [94]. Additionally, NK2 over-expression in combination with 

HGF over-expression in bi-transgenic mice blocked the HGF-induced alterations [94]. At the cellular 

level, NK2 was demonstrated to inhibit HGF-induced proliferation of normal hepatocytes in culture 

and in vivo [94,147]. In a murine model of liver repair after partial hepatectomy, it was found that NK2 

over-expression blocked liver tissue regeneration [173]. 

In an early investigation of a murine model of liver injury, the inducible expression of HGF  

both prevented the induction of liver injury and induced tissue repair [147]. In contrast, this report 

demonstrated that NK2 augmented CCl4-induced liver injury, but did not inhibit endogenous  

hepatocyte proliferation following liver injury [147]. In this study, the final level of liver recovery was 

not examined [147]. In a later study of NK2 over-expression following CCl4-induced liver injury in 

mice, it was found that NK2 promoted liver fibrosis and prevented normal tissue repair [174]. 

5.3. HGF Isoforms in Cancer 

Expression of HGF and/or its receptor MET is increased in a wide variety of cancers [175].  

The HGF/MET axis is believed to contribute significantly to proliferation, metastasis, extracellular 

matrix remodeling, tumor cell survival, and angiogenesis associated with tumors [176–178].  
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MET, originally identified as a proto-oncogene [179,180], was found to be up-regulated in a variety of 

cancers, inducing its constitutive expression [181–186]. Oncogenic forms of MET have been detected 

that induce constitutive activity and in some cases new functions [179,187,188]. HGF over-expression 

has also been demonstrated to be sufficient for neoplastic transformation in cells expressing normal 

levels of wild type MET, and HGF over-expression in transgenic mice drives the development of 

multiple cancers [189–194]. Because of the widespread expression of MET and HGF in cancer,  

their expression has been analyzed for cancer severity, and the degrees of expression of MET and HGF 

are believed to indicate the progression of disease as well as serve as prognostic markers for some 

forms of cancer [195–198]. 

Early studies suggested that NK1 and NK2 did not induce cancer cell proliferation in cell culture,  

and that the activation of motility was also reduced in some cancer cell types. For instance, both NK1 

and NK2 inhibited the proliferation and motility of A549 lung cancer cell line in vitro [176]. In these 

same cells, both NK1 and NK2 altered the expression of matrix metaloproteinases, suggesting that  

the mechanism for the reduction of cellular motility in part lay in altered interactions with the 

extracellular matrix and increasing the adhesion capacity of the cells [176]. However, later studies 

suggested that NK1 at higher concentrations could induce both mitogenic and motogenic activities in a 

variety of cancer cells [36,199]; these activities were demonstrated to be improved in the presence  

of cell surface heparin or other mechanisms to induce NK1 dimerization [88,90,200]. In contrast,  

NK2 failed to induce proliferation of most cancer cells, and had varying effects on cancer cell  

motility [94,201]. 

In vivo studies challenged the original views of NK1 and NK2 as inhibitors of cancer. Transgenic 

mice over-expressing NK1 had a number of similar oncogenic events as found in mice over-expressing 

full length HGF, including mammary, hepatocellular, and melanocytic tumors [37]. In transgenic mice 

over-expressing NK2, NK2 inhibited HGF-induced melanoma cell proliferation in vivo [94].  

NK2 gene transfer was also demonstrated to inhibit proliferation of glioma cells in vivo [201]. 

However, in the melanoma model system, NK2 over-expression did induce higher levels of metastasis 

of the cancer cells [94]. 

6. Clinical Applications of HGF Isoforms 

HGF has been used successfully as both protein and DNA as a therapeutic agent in preclinical 

animal models for ischemic heart disease, renal fibrosis, pulmonary fibrosis, and for other diseases 

where there is a need for increased tissues repair [142,148,163,164,202,203]. In humans, HGF has 

been investigated for the clinical treatment of myocardial injury (NIH clinical trial identifier: 

NCT01233336). To date, these studies have revealed that HGF is an early marker of myocardial injury 

and prognostic factor for post myocardial infarction. Other clinical trials (NCT00189540 and 

NCT00060892) in critical limb ischemia revealed that HGF gene therapy is safe and improved wound 

healing, reduced the necessity for amputation, improved pain at rest, and improved hemodynamic 

measurement without adverse effects on the quality of life in the critical limb ischemia population. 

HGF is also under investigation for treatment of diabetic peripheral neuropathy [169]. Furthermore, 

plasmid expression of HGF is in Phase III Clinical Trials to treat severe peripheral arterial disease in 

Japan [204], and adenovirus mediated HGF gene-transfer is under investigation as a potential treatment 
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for coronary artery disease in a Phase I Clinical Trial in China [205]. Phase I/II Clinical Trials of 

recombinant human HGF protein are currently underway for the treatment of acute spinal cord  

injury (NCT02193334). 

NK4, an artificial HGF isomer, contains the N-terminal hairpin domain and the subsequent  

four-kringle domains, and has been shown to act as an antagonist to HGF monogenic activity [206]. 

Based on the abundant preclinical data appears to be a potential role for the use of NK4 in gene therapy 

for the treatment of cancer, including pancreatic cancer, gastric carcinoma, hepatocellular carcinoma, 

breast and endometrial cancer, lung cancer, and prostate cancer [207–214]. Due to its activity in the 

suppression of inflammatory cytokine production by CD4+ T cells, preclinical models have also  

shown that NK4 may provide a new approach for the treatment of rheumatoid arthritis [215,216].  

The use of NK4 in ovarian cancer is currently under investigation. 

In contrast with full length HGF and the synthetic HGF antagonist NK4, the naturally occurring 

isoforms of HGF are not currently in clinical trials. Although NK1 has been shown to induce all the 

signal transduction pathways of full length HGF, its lower level activity suggests that it may not be as 

beneficial as full length HGF for clinical applications. Additionally, NK2, though its ability to 

antagonize HGF proliferation could be useful for anti-cancer therapy, however its partial activation of 

MET may also preclude this application. 

7. Conclusions 

The naturally occurring isoforms of HGF, NK1 and NK2 are expressed in human tissues during 

development and in normal adults. Studies in cell culture and in transgenic animals suggest that NK1  

is capable of recapitulating normal HGF signaling and biological activities, while NK2 appears to be 

an antagonist for HGF-induced cellular proliferation. NK2 expression is increased relative to full 

length HGF in human fibrotic organ diseases, and it is possible that NK2 may play a role in the failure 

of normal repair. The normal biological roles of the HGF truncated isoforms remain to be determined. 

Further understanding of the normal functions of these proteins may provide insight for their use in 

human diseases. 
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