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ABSTRACT

Compared with traditional algorithms for long meta-
genomic sequence classification, characterizing
microorganisms’ taxonomic and functional abun-
dance based on tens of millions of very short
reads are much more challenging. We describe an
efficient composition and phylogeny-based algo-
rithm [Metagenome Composition Vector (MetaCV)]
to classify very short metagenomic reads
(75–100 bp) into specific taxonomic and functional
groups. We applied MetaCV to the Meta-HIT data
(371-Gb 75-bp reads of 109 human gut metage-
nomes), and this single-read-based, instead of
assembly-based, classification has a high resolution
to characterize the composition and structure of
human gut microbiota, especially for low abundance
species. Most strikingly, it only took MetaCV 10 days
to do all the computation work on a server with five
24-core nodes. To our knowledge, MetaCV, bene-
fited from the strategy of composition comparison,
is the first algorithm that can classify millions of very
short reads within affordable time.

INTRODUCTION

Recent advances in next-generation sequencing (NGS)
technologies have opened a new era in the field of meta-
genomics (1–5), by providing much higher throughput and
lower cost to sequence DNA directly taken from

environmental samples. The application of NGS
technologies on studies of microorganisms in human gut
(6–9), oral cavity and skin, has greatly revealed the
relationship of microorganisms to human disease, like
adiposity, high blood pressure and dental cavity. NGS
technologies also benefit the studies of bacterial
communities in soil (1,2), deep ocean (3,4) and even
ancient specimens (5). The fast expansion of NGS-based
metagenomics calls for new bioinformatic algorithms
which can handle the vast amount of sequence data
more efficiently and effectively. Yet, the biggest concern
for bioinformaticians is not only on the amount of the
sequencing data but also on their read length. As the
most popular NGS platforms, Illumina and Roche/454
output sequences as short as 75–400 bp, which bring
more challenges and difficulties to environmental
biologists.
There are currently two types of approaches to deal

with metagenomic sequences. One is alignment based,
like Megan (10), which compares short reads against
coding sequences in public databases of coding genes
using BlastX and then assigns them to their latest
common ancestors (LCA) of targeted organisms. BlastX-
based comparisons are commonly adopted to obtain fairly
similar alignment between query sequences and reference
proteins. Although many efforts have been made to
improve the alignment speed (11,12), this process is still
computationally expensive when working on tens of
millions of very short reads. A possible solution is to
first assemble the short reads into long contigs, and all
subsequent analyses are based on these assembled
contigs. Yet, almost all currently available assembly
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algorithms are designed for single genomes and require an
even coverage distribution across chromosome. Applying
them to assemble mass sequences from multiple species
can result in heterozygous and chimeric contigs contri-
buted by closely related species/strains and repetitive
elements. Most importantly, assembly-based approaches
may fail to assemble a certain amount of data, especially
for those low abundance species.
The other type of approaches, i.e. Phymm (13), TETRA

(14) and PhyloPythia (15) and CD-hit (16), uses informa-
tion of oligonucleotide/oligopeptide composition for
microorganism identification, because different organisms
tend to have different composition patterns (17), e.g. GC
content, codon usage or recognition sites of restriction
endonuclease, which could be used to recognize taxo-
nomic source of sequenced environmental reads.
Composition-based strategy greatly facilitates the fast
classification of microbial communities, compared with
the BlastX-based algorithms. However, most of these al-
gorithms (14,15) aim to work on sequence >1 kb, which
require a pre-assembly of short reads into contigs and thus
meet the same problem from misassembly. Furthermore,
due to the complexity of microbial communities and
limited number of sequenced genomes, distant related or-
ganisms are less likely to be detected by nucleotide-based
algorithms comparing with those by BlastX.
In this study, we present a new composition-based

approach, Metagenome Composition Vector (MetaCV),
which directly works on raw short sequencing reads.
Unlike any other composition-based methods, MetaCV
first translates a nucleotide sequence into six-frame
peptides, and these translated six-frame peptides are
further decomposed to k-strings (oligopeptides of fixed
length K), which are weighted and selected for further
taxonomical classification based on their frequency in a
pre-built reference protein database. Benefiting from this
new composition-based strategy, MetaCV performs nearly
as good as BlastX (even better at the Genus level), but
significantly reduces the computing time (�300� faster)
on a huge amount of metagenomic sequences. More im-
portantly, besides focusing on taxonomic classification,
MetaCV can also functionally annotate those
unassembled short reads, to address the question ‘what
they are doing’ after investigating ‘who they are’, and
allows researchers to study the metabolic activities in mi-
crobial communities.

MATERIALS AND METHODS

The nature of this algorithm is to classify short reads to
their most likely taxonomic group and gene function class
by comparing with known proteins in the aspect of
k-string similarity. As shown in Supplementary Figure
S1, we employ a five-step strategy to process the
comparison:

(1) Representing coding sequences by composition
vectors of oligopeptide

MetaCV adopts frequencies of amino acid strings as
features for classification as they are more conserved

among far related species. Given a protein sequence with
length L, we count the number of appearances of strings
of a fixed length K in the sequence, and there are totally
N ¼ 20K possible types of such strings. The collection of
such frequencies is also known as ‘term frequency’ (TF) in
the field of text mining. We also adopt ‘inverse document
frequency’ (IDF) to weight different types of strings by
different signal strength for inferring composition
similarities between gene pairs. Given a k-string � and
an organism tree df g of the protein set, IDF of the string
is defined as IDFð�Þ ¼ log df gj j

d:�2df gj j
, while df gj j represents

the total number of nodes in the organism tree and
d : � 2 df gj j stands for the number of nodes including or-

ganisms containing this string and internal nodes on the
paths to their LCA.

(2) Building of a k-string composition database for
reference genes

MetaCV calculates TF–IDF values for all possible strings
as components to form a composition vector for each
gene. A reference database contains a collection of all
gene vectors and a correlation matrix for each pair of
genes. The correlation CðA,BÞ between any two sequences
A and B is calculated as the cosine similarity of the two
representative vectors in the N-dimensional composition
space as described in (18). MetaCV calculates correlations
for any pair of proteins with at least three 6-mers shared
by them, and the final correlation matrix includes 3� 109

values, which used 12Gb space by using strategy of com-
pressed sparse row. In this analysis, which contains
5million proteins from 1691 organisms, a memory of
26Gb (almost identical to the sum of db files) is
required for downstream read binning.

(3) Comparing query reads with reference genes

Query nucleotide sequences are translated into coding se-
quences by considering six-frame translations. Here
MetaCV adopts an open reading frame (ORF) searching
strategy similar to OrfPredictor (19), which is designed for
expressed sequence tags (ESTs). Each frame is evaluated
individually to give complete/partial ORF candidates in
cases of having/lacking of start/stop codons. These candi-
dates are then compared with all proteins in the database,
and only the one who has the optimal correlation score, is
considered as the correct translation and kept for further
analysis. Users could also use a third party gene finders,
i.e. MetaGene (20) to translate short reads into amino acid
sequences as an alternative input for MetaCV. For
paired-end reads which are resulted from DNA libraries
with short insert size, both two ends of a given read pair
are evaluated together, and the strand information is also
taken into account.

(4) Tree construction for query read and targeted genes
to obtain taxonomic and functional information of the
read

Denote matched genes of a query read by g1, . . . , gn
� �

,
which are sorted descendingly according to their correl-
ation values against the query read represented by
s1, . . . , snf g: The first m genes g1, . . . , gm

� �
are selected by
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maximizing sm�sm+1

devð s1, ..., smf gÞ
: The method UPGMA (21) is then

applied on the sequence set including selected sequences

g1, . . . , gm
� �

and the query read to build a phylogenetic

tree. The aim of this step is to collect genes, denoted by

ga1, . . . , gar
� �

, in the sister-group of the query read on the

tree, to infer taxonomic and functional information of the

query.
The taxonomic position of the query is defined as the

LCA of organisms who contains the gene set ga1, . . . , gar
� �

in NCBI’s taxonomic tree (22), while the functional
categories of the query is defined as the KEGG class
(23) who have the most votes from annotation of the
gene set ga1, . . . , gar

� �
:

(5) Post-analysis and comparison of taxonomic and
functional enrichment of different samples

MetaCV outputs category enrichment at various taxo-
nomic levels from genus to phylum and also for each
level of KEGG functions. It can also compare multiple
samples and provide differentially enriched taxonomic or
functional categories. The output and comparison can be
displayed as tables and figures in an integrated R package.

Complete prokaryotic proteomes as references

We have included all prokaryotic complete genomes that
had been publicly available by April 2012 at the National
Center for Biotechnology Information (NCBI) (22).
Altogether 1691 organisms from 1023 prokaryotic
species distributed in 578 genera, 230 families, 113
orders, 53 classes and 32 phyla are included in our
complete genome collection. When a genome consists of
more than one chromosome, we would collect all the
translated sequences.

Metagenomic reads simulation

Dataset 1
To evaluate the performance of MetaCV on new species
detection, we used inGAP (24) to simulate single-end short
reads from each read donor genome. Among 578 known
genera in RefSeq, 154 of them contain at least two species
groups. For each of these 154 genera, only one strain from
one species was selected as a read donor genome, while all
the strains from the sister-species were used as references.
For each donor genome, 1000 reads were generated
for each different read length (as 100 bp, 200 bp, 400 bp,
600 bp, 800 bp and 1 kb, respectively). This procedure
was repeated five times to estimate the variance of evalu-
ation, and finally 4.6 million reads were generated. All the
four methods, MetaCV, Phymm (13)3.2, BlastX2.2.24
and RAPSearch2 (11) 2.04 were applied to classify these
reads against the same reference data set, in which
Phymm utilized the nucleotide genomic sequences while
MetaCV, BlastX and RAPSearch2 used the protein
sequences.

Dataset 2
We also tested the sensitivity and specificity of MetaCV by
using ‘benchmarked’ simulation datasets. Among the

currently available 1691 prokaryotic genomes in the
NCBI datasets, 428 of them were released after January
2011 and we used them as query genomes. The remaining
1263 genomes released before 2011 were regarded as ref-
erences. Similar to the first dataset simulation procedure,
by randomly selecting 1000 reads for each length variances
from each genome and after a five-time repeat, a total of
12.8 million reads were simulated, among which 2.1
million reads were of 100 bp. Because this test tripled the
number of simulation reads and doubled that of reference
genomes comparing with Dataset 1, only MetaCV was
applied to all simulated reads of different lengths, both
Phymm and BlastX were restrictively applied to the clas-
sification of those 100-bp reads by considering the
enormous time they consumed.RAPSearch2 was also
applied to the 100-bp simulation data.
All the simulated data and lists of both reads-donor and

reference organisms are available online at http://metacv
.sourceforge.net/.

Real NGS short reads from human gut samples

Qin et al. (6) studied the structure of bacterial commu-
nities from 124 human gut samples by using paired-end
Illuminia-sequencing technology. In their article, short
reads were assembled into contigs, on which BlastX
search against NR database (22) were applied, to obtain
relative enrichment of non-divergent prokaryotes com-
paring with those sequences available genomes. Here we
applied MetaCV on the same sequence data to predict the
enrichment of microorganisms, then compared the most
redundant organisms shared by cohorts of healthy people
with the ‘core set’ provided by Qin et al. since assembled
contigs are more likely to be from relatively enriched
species.

RESULTS

We compared the performance between MetaCV and
BlastX, which is time consuming but is still considered
as the most accurate algorithm to perform homology
search. The downstream taxonomic classification of the
short reads based on the results of BlastX is proceeded
by Megan (10). Phymm (13), a method adopted an
Interpolated Markov model and is capable of classifying
reads as short as 100 bp, and RAPSearch2, a fast align-
ment tool, were also applied on the same data for com-
parison. MetaCV adopted a score of 20 as a minimal value
to filter the classification results for 100 bp reads (see
‘Discussion’ section for longer reads). A cutoff e-value
of 1 e� 1 was applied to both BlastX and RAPSearch2
for all datasets. As Phymm did not claim a confidence
threshold for its binning scores, no cutoff value was set.

Species-mask comparison of MetaCV with other
approaches on Dataset 1

We first evaluated the performance of the four methods on
detecting new species. Till now, there are 1691 complete
prokaryotic genomes available in NCBI. By selecting 154
out of 578 genera in which two or more species are
sequenced, we simulated short reads from one species of
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a genus with various lengths (see ‘Materials and Methods’
section for details), while the sequences from the sister
species were used to build reference profiles, to perform
a species-mask comparison. As expected, due to higher
conservation of genes in the amino acid level than in the
nucleotide level within and among species, MetaCV could
classify 100-bp reads within their donor genera with sen-
sitivity/specificity as 41%/80%, which are very compar-
able to those based on BlastX (41%/87%) and
RAPSearch2 (41%/86%), and are considerably higher
than those of Phymm (24%/26%). Among all the 154
genera we employed, MetaCV outperformed Phymm in
131 of them on sensitivity and all genera on specificity
as shown in Figure 1 and Supplementary Table S1.
Interestingly, the average sensitivity of MetaCV on the
genus level performs better than that of BlastX of up to
6%, the longer the simulated read length is, the higher
sensitivity MetaCV reaches (Figure 2). This is because
Megan (10), the methods used here to process BlastX
results, tends to assign reads to the higher taxonomic
levels than MetaCV does (Supplementary Figure S2).
That also explains why the effectivity of BlastX-based
binning outperforms that of MetaCV on higher level com-
parison (Figure 2.). In general, MetaCV detects novel
species on short reads as effectively as BlastX does while
it operates much more efficiently when comparing compu-
tational speed as shown in Figure 3A.

However, out of the 154 genera, 20 have sensitivity
values <10% by MetaCV as shown in Figure 1, and the
scores were not significantly improved even when the
length of simulated reads was extended from 100 to 1 kb
(Figure 2 and Supplementary Table S2). Among the 20
genera, we noticed that 86% of the 100-bp reads simulated
from Escherichia were classified to Shigella or into a
higher level (Enterobacteriaceae family). The controversy
on the phylogeny definition of Shigella and Escherichia
has been existing for a long time (25) and it is debated
Shigella should be redefined as an species group within
Escherichia. If so, the sensitivity of MetaCV would be
saved (to 95%) on the evaluation of family-prediction
level.

Another interesting case came from genus Anabaena.
On the first submission of this work, NCBI taxonomy
showed that it had two species, Anabaena variabilis
(strain ATCC 29413) and Nostoc azollae (strain 0708)
and MetaCV classified 71% of the simulated reads from
Anabaena variabilis into an organism from its neighbour
genus, Nostoc punctiforme (strain PCC 73102). A further
BlastP comparison was made to observe the protein-level
divergence among the three organisms. As shown in
Supplementary Figure S3, there are only 41% proteins
on Anabaena variabilis have matches on its sister-species,
Nostoc azollae, with high identity (>50%). In contrast,
76% of proteins in Anabaena variabilis matched to

Figure 1. Performance comparison on the species-mask testing of MetaCV, Phymm, BlastX and RAPSearch2 on the classification of 100-bp
simulated reads from 154 genera. Sensitivities (top) and specificities (bottom) of MetaCV, Phymm, BlastX and RAPSearch2on each genus are
displayed vertically in one dot, represented in blue, red green and orange, respectively. The 154 genera are sorted according to BlastX sensitivities
(green dots) in descending.
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Nostoc punctiforme, which indicates that Anabaena
variabilis is phylogenetically closer to Nostoc punctiforme.
A similar observation was also made based on the char-
acteristics of cellular fatty acids (26). Interestingly but not
unexpectedly, NCBI taxonomy updated the phylogenetic
relationship among them in 2012 (Supplementary
Figure S3), where Nostoc azollae was put under a new
genus Trichormus, thus consequently avoided this contro-
versy but still could not answer the challenge of MetaCV
result.

We further performed an all-against-all BlastP compari-
son for the proteins in 154 genera, to figure out the cor-
relation between BlastP-based similarity and MetaCV

accuracy rate. As shown in Supplementary Figure S4,
the higher ratio of homologues shared within genus, the
higher accuracy rate reached by MetaCV. To monitor the
correlation between the composition scores and BlastX
identities, we inspected them on 100-bp short reads from
four genera by considering various homologue identities
of BlastX from 60% to 90%, as shown in Supplementary
Figure S5. Most of the reads with composition scores> 20
(the cutoff value) were correctly classified. Likewise,
falsely classified reads usually have composition scores
lower than the cutoff. We noticed that there were still a
few reads with high composition scores and BlastX
identities, but were falsely classified by both methods.

Figure 3. (A) Computation time of MetaCV (blue), Phymm (red), BlastX (green) and RAPSearch2 (orange) on different lengths of reads, compared
with a reference database of 5� 106 genes. For 100-bp reads, MetaCV could process one million reads with �5 h on a single thread. (B) Accuracy
comparison of MetaCV between taxonomic classification and functional assignment on simulated reads.

Figure 2. Sensitivity and specificity comparisons of MetaCV (blue), Phymm (red), BlastX (green) and RAPSearch2 (orange) on different read
lengths. Sub-figures from left to right, represent sensitivities (top) and specificities (bottom) of the methods from genus to phylum level.
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For example, a 100-bp read was simulated from a
RNA-directed DNA polymerase of Pectobacterium atro-
septicum SCRI1043. However, it was classified to Erwinia
tasmaniensis Et1/99. This is because the donor gene has a
91% similar homologue in Erwinia but no homologue in
its sister-species.
Moreover, we observed that a small proportion of reads

were assigned to a higher taxonomic level. This is due to
the reason that the donor genes are highly conserved
among many species and the reads were thus assigned to
their last common ancestors. For example, we found that
a read simulated from an acyltransferase of Pyrobaculum
aerophilum (strain IM2) was classified into the Archaea
domain, because this gene was highly conserved in many
archaeal genera, i.e. Thermoproteus, Vulcanisaeta,
Sulfolobus and Metallosphaera.

Performance evaluation on simulated ‘randomized’
metagenome datasets (Dataset 2)

The real metagenomic samples might have relatively simple
community structures, reflected by DNA sampling from,
i.e. acid mine drainage biofilms (27). However, in most
cases, environmental samples may include thousands of
organisms from a wide spectrum of taxonomy. To build
simulated datasets including random organisms to test
these methods further, we chose the 428 genomes
released after than January 2011 to simulate short reads,
while the rest 1263 genomes published earlier to build ref-
erence database. The ‘random’ division of organisms into
queries and references by their release dates could be used
both to make a randomized mixture of read donor
genomes and to inspect coverage of taxonomic tree by
recent sequenced organisms.
Among the 428 query genomes distributed in 219

genera, 117 organisms (27%) come from 103 genera, aver-
agely one organism per genus, which are brand new and
distantly related to the reference organisms. Therefore, the
simulated reads from the 117 organisms are considered as
‘negative’ in the comparison of genus level. On average,
MetaCV could correctly assign 58% of 100-bp reads to
their donor genera, slightly lower than that of BlastX
(61%) and RAPSearch2 (60%) and much better than
Phymm (28%) as shown in Figure 4. On the comparison
of family level, only 21 organisms (5%) from 17 new
families are considered as ‘negative’, the rest 96
new-genus organisms are from ‘known’ families. Adding
them reduces the overall sensitivity to 52% due to their
divergence to any references, while the specificity remains
the same.

Behaviour of MetaCV to deal with human DNA
contaminations and prokaryotic non-coding sequences

It is worthy to note that some environmental samples are
likely possible to be contaminated by eukaryotic DNA,
especially for host-associated bacterial communities. In
practice, an initial step to process potentially
contaminated metagenomic data is to align them to
known eukaryotic genomes and then to filter all the
mapped reads. However, there still is a possibility that
some host sequences pass the filtering step and are used

to determine their ‘bacterial original’. To test the robust-
ness of MetaCV, we simulated 1 million 100–1000 bp
random DNA segments from chromosome 1 of the
human genome and applied MetaCV to do taxonomic
classification. As shown in Supplementary Figure S6,
95% of 100-bp human sequences were not assigned to
any bacterial taxon when using a minimal identity score
of 20 as a cutoff. The cutoff value reduces along with the
increasing of read length at the same false positive rate of
5% (Supplementary Figure S6). These cutoff values were
applied all through this work.

As suggested by the anonymous reviewer, there is a
possibility that non-coding sequences of prokaryotes
could share similarities with reference sequences in the
view of composition. To test this hypothesis, we inspected
the classification results of the 66 817 non-coding reads
(100 bp, on average 8.7% per genome) from the first
simulated dataset (see ‘Materials and Methods’ section).
Among them, 82.8% obtained a composition-identity
score <20 (the cutoff value), compared with reference
proteins. In this sense, not all metagenomic DNA se-
quences could be utilized for the estimation of taxonomic
abundance by MetaCV: the more non-coding regions an
organism has, the lower ratio of its short reads could pass
the filter. On the other hand, we found 2572 of non-coding
reads (0.3%) shown composition identity as high as 100 to
reference proteins by using MetaCV, and they were
further approved by using BlastX. This indicates these
reads might come from real coding regions in the donor
genome and were recognized as ‘non-coding’ due to in-
complete annotation. As expected, MetaCV classified
these reads with sensitivity as 86.0% and specificity as
94.7% on genus level (96.2% and 97.7% on family level,
respectively).

A case study on 109 human gut metagenomic data

To further evaluate the performance of MetaCV on real
datasets, we applied it to classify and annotate 371-Gb
NGS reads from Meta-HIT (6). In Qin et al.’s study (6),
short reads were first assembled into contigs, and then
BlastX searches against NR databases (22) were applied
to obtain the relative enrichment of identified microorgan-
isms. Here we applied MetaCV on the same sequence data
to predict the enrichment of microorganisms at a single-
read resolution. To avoid bias of classification accuracy on
different read lengths, 109 of 124 human faecal samples
were selected which adopted Illumina 2� 75-bp
paired-end sequencing technology. Among 4952 million
reads in the raw data, 1530 million of them had compos-
ition identity scores >20 and were kept for further statis-
tical analyses. As shown in Supplementary Figure S7,
Bacteroidetes, as the most abundant phylum reported by
Qin et al. (6), occupied 54% of the total reads from all 109
samples assigned by MetaCV, followed by Firmicutes
(34%) and Proteobacteria (5%). It should be noted that
MetaCV successfully identified an archaeal genus,
Methanobrevibacter, which was recently reported as a
human gut-associated archaeon and played an important
role in the metabolism of hydrogen (28). As shown in
Figure 5B, healthy cohorts contain much less
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Methanobrevibacter, compared to the samples of ulcera-
tive colitis or Crohn’s disease patients, except for sample
MH0011. Among the 271 490 reads contributed to a draft
assembly (6) of Methanobrevibacter (�1.6Mb), 74% of
them were further confirmed as Methanobrevibacter by
MetaCV. These reads could be evenly distributed along
the contigs (Figure 5C), and we also identified a number
of intraspecific polymorphic sites on them (Figure 5D),
which may help investigate the relative enrichment of
Methanobrevibacter strains at a deeper taxonomic level.

A list of 44 genera, which includes at least 400 reads per
million sequences on average of all samples, is shown in
Figure 5A and Supplementary Table S4. Of the 44 genera,
31 were found to present in at least 50 gut specimens
(Supplementary Table S4 and Supplementary Figure S8).
Compared with the list of 27 genera reported by Qin et al.
based on short read assembly, 13 of 27 genera have
complete genomes available in the reference database of
MetaCV, and all of them are top abundant in the MetaCV
classifications, which implies that more abundant organ-
isms tend to have a higher possibility to be assembled.
MetaCV further investigated the genera with relatively
lower abundance but present in a majority of cohorts.
Most of them were considered as gastrointestinal

bacteria by the Human Microbiome Project (HMP) (29)
(Supplementary Table S4). MetaCV also identified a few
gut-associated genera not listed in HMP (Figure 5B and
Supplementary Table S4): Ethanoligenens, reported to
have a possible correlation with Irritable Bowel
Syndrome in rats by a recent study based on microarray
analysis (30); Burkholderia, of which a type of bacterio-
phage is found to be enriched among viral community of
human faeces (31); Spirochaeta, which may have a phylo-
genetically close relative in pig gut microbiota (32); and
Fibrobacter, a type of polysaccharide-utilizing bacteria
commonly existing in gut of rumen (33).
In the studies of metagenomics, instead of only

analysing abundance of species, it may be also important
to detect the existence of specific genes or pathways, espe-
cially of the genes easily to be transferred horizontally.
Furthermore, as most enriched functional categories are
usually for basic metabolic processes (Supplementary
Figure S9), it makes the studies on low abundant
pathways necessary. Abundance of functional categories
assigned by MetaCV shows less fluctuation compared to
the taxonomic classifications (Supplementary Figures S10
and S11). This was further confirmed by using the simu-
lation data, on which the accuracy of function prediction

Figure 4. Evaluation of classification sensitivities (top) and specificities (bottom) of the four methods on ‘randomized’ metagenomic data by
simulating reads from 428 genomes released after January 2011, compared with 1263 genomes published earlier. Ratio values of MetaCV,
Phymm, BlastX and RAPSearch2 are coloured by blue, red, green and orange, respectively. Five groups from left to right are the results of
these methods on different taxonomic level (genus to phylum, respectively). Only MetaCV is applied to classify simulated reads >100 bp.
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outperforms that of taxonomic classification on different
read lengths, as shown in Figure 3B. A possible reason is
that the definition systems of gene functions, like KEGG
(23) and eggnog (34), etc. are based on homology com-
parison, and provide a relatively ‘fair’ standard than that
of the definition of taxonomic groups which depends on
the collections of phenotypes and metabolism features.

DISCUSSION

Although limited prokaryotes have whole genome
sequence available at present and most of them are
human disease related, more and more organisms are
being sequenced and assembled in laboratories worldwide.
Bergey’s Manual Trust initialized a large-scale genome
sequencing project, which aims to cover most phyla of
prokaryotes. Department of Energy of the USA supported
a project of ‘A Genomic Encyclopedia of Bacteria and
Archaea’ for the same purpose. Classifications of
taxon-unknown sequences based on homology search
will largely benefit from the sharp increase of whole
prokaryotic genomes in the next few years. At present,

divergent organisms, which lack closely related references,
are hard to be correctly classified by supervised (or
reference-guided) methods including MetaCV. In an evalu-
ation on genus-masking comparison (Supplementary
Figure S12), none of the methods involved have acceptable
sensitivities to trace short reads back to their donor
families, although the specificities of MetaCV and BlastX
are >60% on average. This problem can be partially
overcome by incorporating with unsupervised methods,
like TETRA (14) etc., which can efficiently discover new
genera or even far related organisms. The integration of
two or more types of algorithms calls for further study.

Another way to detect very divergent organisms, when
sharing enough oligopeptides between query reads and
reference genes are rare possible, is to allow mutations
in the process of composition comparison, i.e. to avoid
the requirement of exact matching of k-strings. It is well
known that the replacement of some residues by other
ones with the same physical properties, basic or acidic,
hydrophobic or hydrophilic, might not affect the folding
of proteins and are tolerated by natural selection during
evolution. This has been also reflected more or less in

Figure 5. Display of taxonomic classification of MetaCV on 109 Meta-HIT samples. (A) Box plots of read coverage for the top 44 most abundant
genera on average of 109 samples. Whiskers show the lowest and highest value among samples, while the boxes denote the first, median (line) and the
third quartiles. Total number of reads in each sample is normalized to one million. (B) Relative abundance of selected prokaryotes among 109
samples, in which 70 samples are from healthy human (marked as ‘Healthy’), 27 samples are from ulcerative colitis patients (as ‘UC’) and 12 from
Crohn’s disease patients (as ‘CD’). (C) The alignment of MetaCV-classified reads to the 1.6-Mb scaffolds of Methanobrevibacter. (D) Mapping details
of a 3-kb region in (C) reveal nucleotide polymorphisms in Methanobrevibacter contigs.
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scoring matrices adopted by BlastP alignment. Naturally,
simplifying the alphabet of 20 amino acids in MetaCV will
be a candidate solution.

The only parameter in this method is the length of
oligopeptides K, of which the selection has been discussed
to highlight the phylogenetic signals within compositions
for phylogenetic study of prokaryote relationships (18,35).
In this study, we tested the performance of MetaCV under
different K-values. Taking calculating time into account,
K=6 runs 20 times faster than K=5 (Supplementary
Figure S13), and faster further than K=4. For accuracy
of classification, K=6 has sensitivities almost identical to
K=5 but has much higher specificities (Supplementary
Figure S14). Therefore, K is set as 6 by default in
MetaCV and is also adopted throughout this work. K-
values> 6 are not considered, because the number of
oligopeptide types is over 1� 109, which makes the com-
position database too large to load in many workstations.

In general, MetaCV not only performs taxonomic clas-
sification at various levels from genus to phylum but also
provides functional annotation for short reads without any
assembly. In addition, it can compare multiple samples and
report differentially enriched taxonomic or functional
categories. MetaCV is implemented in C++ and is
integrated with R scripts to generate figures and tables.
Comparing with BlastX, MetaCV speeds up computing
>300-fold faster, which mainly benefits from its searching
strategy of compositions instead of doing alignment.
Computation time of MetaCV is linearly correlated with
length of reads as shown in Figure 3A. It takes MetaCV 10
days to compare 5 billion reads (2� 75-bp paired-end
sequencing, 371Gb in total) of 109 human faecal samples
against 1691 prokaryotic organisms on a mini server with
five 24-core nodes, averagely 0.2 million reads per hour per
core. Its classification results could be visualized by Megan
(10), which provides user-friendly graphical interface for
checking community structure of environmental organ-
isms. The source code of MetaCV and the corresponding
database can be freely accessed at http://metacv.
sourceforge.net/

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4 and Supplementary Figures
1–14.

ACKNOWLEDGEMENTS

The authors thank Profs Bailin Hao (Fudan University),
Jingchu Luo (Peking University) and Liping Zhao
(Shanghai Jiaotong University) for discussion and
comments. This research is supported by the biological
supercomputing server of Computing Center of Beijing
Institutes of Life Science.

FUNDING

The National Natural Science Foundation of China
[31100094 to J.Q., 31100952 to F.Z.]; open fund of State

Key Laboratory of Freshwater Ecology and
Biotechnology [2012FB16]. Funding for open access
charge: National Natural Science Foundation of China
[31100094 to J.Q., 31100952 to F.Z.].

Conflict of interest statement. None declared.

REFERENCES

1. Leininger,S., Urich,T., Schloter,M., Schwark,L., Qi,J.,
Nicol,G.W., Prosser,J.I., Schuster,S.C. and Schleper,C. (2006)
Archaea predominate among ammonia-oxidizing prokaryotes in
soils. Nature, 442, 806–809.

2. Tringe,S.G., von Mering,C., Kobayashi,A., Salamov,A.A.,
Chen,K., Chang,H.W., Podar,M., Short,J.M., Mathur,E.J.,
Detter,J.C. et al. (2005) Comparative metagenomics of microbial
communities. Science, 308, 554–557.

3. DeLong,E.F. (2005) Microbial community genomics in the ocean.
Nat. Rev. Microbiol., 3, 459–469.

4. Venter,J.C., Remington,K., Heidelberg,J.F., Halpern,A.L.,
Rusch,D., Eisen,J.A., Wu,D., Paulsen,I., Nelson,K.E., Nelson,W.
et al. (2004) Environmental genome shotgun sequencing of the
Sargasso Sea. Science, 304, 66–74.

5. Poinar,H.N., Schwarz,C., Qi,J., Shapiro,B., Macphee,R.D.,
Buigues,B., Tikhonov,A., Huson,D.H., Tomsho,L.P., Auch,A.
et al. (2006) Metagenomics to paleogenomics: large-scale
sequencing of mammoth DNA. Science, 311, 392–394.

6. Qin,J., Li,R., Raes,J., Arumugam,M., Burgdorf,K.S.,
Manichanh,C., Nielsen,T., Pons,N., Levenez,F., Yamada,T. et al.
(2010) A human gut microbial gene catalogue established by
metagenomic sequencing. Nature, 464, 59–65.

7. Turnbaugh,P.J., Hamady,M., Yatsunenko,T., Cantarel,B.L.,
Duncan,A., Ley,R.E., Sogin,M.L., Jones,W.J., Roe,B.A.,
Affourtit,J.P. et al. (2009) A core gut microbiome in obese and
lean twins. Nature, 457, 480–484.

8. Gill,S.R., Pop,M., Deboy,R.T., Eckburg,P.B., Turnbaugh,P.J.,
Samuel,B.S., Gordon,J.I., Relman,D.A., Fraser-Liggett,C.M. and
Nelson,K.E. (2006) Metagenomic analysis of the human distal gut
microbiome. Science, 312, 1355–1359.

9. Kurokawa,K., Itoh,T., Kuwahara,T., Oshima,K., Toh,H.,
Toyoda,A., Takami,H., Morita,H., Sharma,V.K., Srivastava,T.P.
et al. (2007) Comparative metagenomics revealed commonly
enriched gene sets in human gut microbiomes. DNA Res., 14,
169–181.

10. Huson,D.H., Auch,A.F., Qi,J. and Schuster,S.C. (2007) MEGAN
analysis of metagenomic data. Genome Res., 17, 377–386.

11. Zhao,Y., Tang,H. and Ye,Y. RAPSearch2: a fast and
memory-efficient protein similarity search tool for next-generation
sequencing data. Bioinformatics, 28, 125–126.

12. Kent,W.J. (2002) BLAT–the BLAST-like alignment tool. Genome
Res, 12, 656–664.

13. Brady,A. and Salzberg,S.L. (2009) Phymm and PhymmBL:
metagenomic phylogenetic classification with interpolated Markov
models. Nat. Methods, 6, 673–676.

14. Teeling,H., Waldmann,J., Lombardot,T., Bauer,M. and
Glockner,F.O. (2004) TETRA: a web-service and a stand-alone
program for the analysis and comparison of tetranucleotide usage
patterns in DNA sequences. BMC Bioinformatics, 5, 163.

15. McHardy,A.C., Martin,H.G., Tsirigos,A., Hugenholtz,P. and
Rigoutsos,I. (2007) Accurate phylogenetic classification of
variable-length DNA fragments. Nat. Methods, 4, 63–72.

16. Li,W., Wooley,J.C. and Godzik,A. (2008) Probing metagenomics
by rapid cluster analysis of very large datasets. PLoS One, 3,
e3375.

17. Karlin,S. and Burge,C. (1995) Dinucleotide relative abundance
extremes: a genomic signature. Trends Genet., 11, 283–290.

18. Qi,J., Wang,B. and Hao,B.I. (2004) Whole proteome prokaryote
phylogeny without sequence alignment: a K-string composition
approach. J. Mol. Evol., 58, 1–11.

19. Min,X.J., Butler,G., Storms,R. and Tsang,A. (2005) OrfPredictor:
predicting protein-coding regions in EST-derived sequences.
Nucleic Acids Res., 33, W677–W680.

PAGE 9 OF 10 Nucleic Acids Research, 2013, Vol. 41, No. 1 e3

http://nar.oxfordjournals.org/cgi/content/full/gks828/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks828/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks828/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks828/DC1
http://metacv.sourceforge.net/
http://metacv.sourceforge.net/
http://nar.oxfordjournals.org/cgi/content/full/gks828/DC1


20. Noguchi,H., Park,J. and Takagi,T. (2006) MetaGene: prokaryotic
gene finding from environmental genome shotgun sequences.
Nucleic Acids Res., 34, 5623–5630.

21. Sokal,R. and Michener,C. (1958) A statistical method for
evaluating systematic relationships. Univ. Kansas Sc. Bull., 38,
1409–1438.

22. Sayers,E.W., Barrett,T., Benson,D.A., Bolton,E., Bryant,S.H.,
Canese,K., Chetvernin,V., Church,D.M., DiCuccio,M.,
Federhen,S. et al. (2011) Database resources of the National
Center for Biotechnology Information. Nucleic Acids Res., 39,
D38–D51.

23. Kanehisa,M., Goto,S., Furumichi,M., Tanabe,M. and
Hirakawa,M. (2010) KEGG for representation and analysis of
molecular networks involving diseases and drugs. Nucleic Acids
Res., 38, D355–D360.

24. Qi,J., Zhao,F., Buboltz,A. and Schuster,S.C. (2010) inGAP: an
integrated next-generation genome analysis pipeline.
Bioinformatics, 26, 127–129.

25. Bouvet,O.M., Lenormand,P., Guibert,V. and Grimont,P.A. (1995)
Differentiation of Shigella species from Escherichia coli by
glycerol dehydrogenase activity. Res. Microbiol, 146, 787–790.

26. Caudales,R. and Wells,J.M. (1992) Differentiation of free-living
Anabaena and Nostoc cyanobacteria on the basis of fatty acid
composition. Int. J. Syst. Bacteriol., 42, 246–251.

27. Tyson,G.W., Chapman,J., Hugenholtz,P., Allen,E.E., Ram,R.J.,
Richardson,P.M., Solovyev,V.V., Rubin,E.M., Rokhsar,D.S. and
Banfield,J.F. (2004) Community structure and metabolism
through reconstruction of microbial genomes from the
environment. Nature, 428, 37–43.

28. Hansen,E.E., Lozupone,C.A., Rey,F.E., Wu,M., Guruge,J.L.,
Narra,A., Goodfellow,J., Zaneveld,J.R., McDonald,D.T.,

Goodrich,J.A. et al. Pan-genome of the dominant human
gut-associated archaeon, Methanobrevibacter smithii, studied in
twins. Proc. Natl Acad. Sci. USA, 108(Suppl. 1), 4599–4606.

29. Peterson,J., Garges,S., Giovanni,M., McInnes,P., Wang,L.,
Schloss,J.A., Bonazzi,V., McEwen,J.E., Wetterstrand,K.A.,
Deal,C. et al. (2009) The NIH Human Microbiome Project.
Genome Res., 19, 2317–2323.

30. Nelson,T.A., Holmes,S., Alekseyenko,A.V., Shenoy,M.,
Desantis,T., Wu,C.H., Andersen,G.L., Winston,J., Sonnenburg,J.,
Pasricha,P.J. et al. (2011) PhyloChip microarray analysis reveals
altered gastrointestinal microbial communities in a rat model of
colonic hypersensitivity. Neurogastroenterol Motil., 23, 169–177,
e141–e162.

31. Breitbart,M., Hewson,I., Felts,B., Mahaffy,J.M., Nulton,J.,
Salamon,P. and Rohwer,F. (2003) Metagenomic analyses of an
uncultured viral community from human feces. J. Bacteriol., 185,
6220–6223.

32. Leser,T.D., Amenuvor,J.Z., Jensen,T.K., Lindecrona,R.H.,
Boye,M. and Moller,K. (2002) Culture-independent analysis of
gut bacteria: the pig gastrointestinal tract microbiota revisited.
Appl. Environ. Microbiol., 68, 673–690.

33. Flint,H.J., Bayer,E.A., Rincon,M.T., Lamed,R. and White,B.A.
(2008) Polysaccharide utilization by gut bacteria: potential for new
insights from genomic analysis. Nat. Rev. Microbiol., 6, 121–131.

34. Powell,S., Szklarczyk,D., Trachana,K., Roth,A., Kuhn,M.,
Muller,J., Arnold,R., Rattei,T., Letunic,I., Doerks,T. et al. (2012)
eggNOG v3.0: orthologous groups covering 1133 organisms at 41
different taxonomic ranges. Nucleic Acids Res., 40, D284–D289.

35. Zuo,G., Xu,Z., Yu,H. and Hao,B. Jackknife and bootstrap tests
of the composition vector trees. Genomics Proteomics
Bioinformatics, 8, 262–267.

e3 Nucleic Acids Research, 2013, Vol. 41, No. 1 PAGE 10 OF 10


