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Abstract 

Background: In recent years, a lot of effort has been put in the enhancement of 
medical imaging using artificial intelligence. However, limited patient data in combina‑
tion with the unavailability of a ground truth often pose a challenge to a systematic 
validation of such methodologies. The goal of this work was to investigate a recently 
proposed method for an artificial intelligence‑based generation of synthetic SPECT 
projections, for acceleration of the image acquisition process based on a large dataset 
of realistic SPECT simulations.

Methods: A database of 10,000 SPECT projection datasets of heterogeneous activity 
distributions of randomly placed random shapes was simulated for a clinical SPECT/CT 
system using the SIMIND Monte Carlo program. Synthetic projections at fixed angular 
increments from a set of input projections at evenly distributed angles were generated 
by different u‑shaped convolutional neural networks (u‑nets). These u‑nets differed 
in noise realization used for the training data, number of input projections, projection 
angle increment, and number of training/validation datasets. Synthetic projections 
were generated for 500 test projection datasets for each u‑net, and a quantitative 
analysis was performed using statistical hypothesis tests based on structural similarity 
index measure and normalized root‑mean‑squared error. Additional simulations with 
varying detector orbits were performed on a subset of the dataset to study the effect 
of the detector orbit on the performance of the methodology. For verification of the 
results, the u‑nets were applied to Jaszczak and NEMA physical phantom data obtained 
on a clinical SPECT/CT system.

Results: No statistically significant differences were observed between u‑nets trained 
with different noise realizations. In contrast, a statistically significant deterioration was 
found for training with a small subset (400 datasets) of the 10,000 simulated projection 
datasets in comparison with using a large subset (9500 datasets) for training. A good 
agreement between synthetic (i.e., u‑net generated) and simulated projections before 
adding noise demonstrates a denoising effect. Finally, the physical phantom measure‑
ments show that our findings also apply for projections measured on a clinical SPECT/
CT system.

Conclusion: Our study shows the large potential of u‑nets for accelerating SPECT/CT 
imaging. In addition, our analysis numerically reveals a denoising effect when gener‑
ating synthetic projections with a u‑net. Clinically interesting, the methodology has 
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proven robust against camera orbit deviations in a clinically realistic range. Lastly, we 
found that a small number of training samples (e.g., ~ 400 datasets) may not be suf‑
ficient for reliable generalization of the u‑net.

Keywords: 177Lu, Monte Carlo, SPECT, Deep learning, Denoising

Introduction
Quantitative SPECT is the basis for patient-specific dosimetry in radionuclide ther-
apy (RNT), which, in turn, can be used for individualization of the treatment and for 
improved understanding of biological effects [1]. In order to increase patient comfort 
and reduce the risk of motion artifacts, there is a striving to shorten acquisition pro-
tocols while at the same time maintain a sufficient signal-to-noise ratio (SNR). This 
is particularly important when using multiple bed positions in order to cover a large 
axial field of view. Due to the recently reported therapeutic successes of 177Lu-based 
radiopharmaceuticals in the treatment of neuroendocrine tumors (177Lu-DOTA-
TATE, [2]) and castration-resistant prostate cancer (177Lu-PSMA, [3, 4]), quantitative 
SPECT of 177Lu plays an increasingly important role for planning and monitoring of 
RNTs.

With the advent of artificial intelligence (AI) and—more specifically—neural networks 
in the field of medical imaging, there have recently been attempts to acquire less signal 
(e.g., by reducing the acquisition time) and compensate for the resulting signal loss (i.e., 
the decreasing SNR) by applying convolutional neural networks trained either based on 
simulated or based on clinical SPECT data.

In a recent review article on the applications of AI in SPECT imaging [5], Arabi et al. 
divide AI-based solutions in this field into two groups: (i) techniques replacing current 
algorithms or frameworks due to their superior performance and (ii) approaches that 
enable tasks that are not solvable using conventional methods. Approaches of the first 
category directly compete with the existing methods, making them easy to assess. While 
the second category, into which the methodology investigated in this paper falls, does 
present new opportunities for improved SPECT imaging, such methods also require 
extensive validation using large clinical databases and a wide range of conditions. This 
far, AI-based approaches for acceleration of SPECT imaging have demonstrated an enor-
mous potential. However, more validation is required in order to justify a widespread 
clinical adoption of any of the presented techniques.

This study aims to generate a large as realistic as possible training dataset based on 
Monte Carlo (MC) simulations for a clinical SPECT setup. To systematically test the 
functionality of the proposed u-shaped convolutional neural network (u-net) presented 
by Rydén et al. [6], a database consisting of 10,000 MC simulated projection datasets of 
heterogeneous activity distributions was generated using the SIMIND MC program [7]. 
Using this database of projection datasets, various u-nets were trained to generate pro-
jections missing from a subset of the original projection datasets of 120 projections (e.g., 
every other projection was initially omitted and these projections were then generated 
using the u-net). To test how different factors influence the performance of the neural 
network, the amount of training data, number of input projections, and the noise reali-
zation were varied to create different versions of the trained u-net. Finally, our simula-
tion-based observations were validated for 177Lu SPECT/CT data of a Jaszczak cylinder 
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and an IEC NEMA body phantom (“NEMA phantom”) with a six-sphere insert, which 
had been acquired on a clinical SPECT/CT system.

Methods
Figure 1 shows an overview of the experimental setup used in this work. The individual 
steps will be explained in the following sections.

Generation of a training dataset of simulated SPECT projections

Three-dimensional (3D) activity distributions of randomly arranged random shapes 
were generated as a basis to create a large database of projection datasets for train-
ing and assessment of different neural networks (Fig. 2). These voxelized 3D shapes 
were constructed with a random shape generator based on (i) a sphere perturbed with 
spherical harmonics [8], (ii) a 3D implementation of the super-formula [9], or (iii) 
volumetric Perlin noise with randomized parameters [10]. For each simulation, 10 to 
25 of these shapes with volumes ranging from 8 to 64 voxels (voxel size 2.4 × 2.4 × 2.4 
 mm3) were chosen, randomly rotated in 3D, and then placed in a cylindrical water 
phantom (Jaszczak without inserts, diameter 21.6  cm, length 18.6  cm, volume 6.8 

Fig. 1 Schematic representation of the experimental setup and analysis
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L). The result was a 256 × 256 × 256 binary activity mask that described the pres-
ence of activity in each voxel (0: no activity, 1: activity). An illustration of the genera-
tion of the binary activity masks is shown in Fig. 1. While the majority of the mask 
dataset (7500) consisted of these random activity distributions, a few special cases 
(2500) were added to further expand the diversity of the dataset, as further specified 
in Table  1. An illustration of the activity mask dataset is shown in Fig.  3. In addi-
tion, the graph in the lower right of Fig. 3 shows the distribution of the volumes of all 
10,000 activity masks (solid blue curve). To generate realistic projections of the activ-
ity masks, MC-based SPECT simulations were performed using the SIMIND MC pro-
gram [7]. The simulated system was a Siemens Intevo Bold SPECT/CT system with 
a 9.5-mm crystal, medium-energy collimator (Siemens medium-energy low penetra-
tion, MELP), and 9% energy resolution.

To increase the realism of the simulated SPECT projections, the binary activity 
masks were transformed into heterogeneous activity distributions by a voxel-by-voxel 
multiplication with a spatially contiguous, non-uniform pattern. This function F(x, y, 
z) was constructed as Fourier series according to

Fig. 2 Illustration of the creation of the binary activity masks. For each binary activity mask, a set of random 
shapes of different sizes is generated. Afterwards, a random 3D rotation is performed for each shape and it is 
placed at a random location inside the Jaszczak phantom

Table 1 Composition of the activity mask dataset (total of 10,000 masks)

Before inclusion in the mask, all objects were randomly rotated in the three spatial dimensions (exception: NEMA phantom, 
random two‑dimensional rotation in the transversal plane)

Name of mask Description Sample size

Random shapes Voxelized random shapes 7500

Hot Jaszczak with cold 
random shapes

Inverted version of Random shapes masks. Here, the entire Jaszczak 
cylinder with the exception of the random shapes is filled with activity

2000

Chessboard pattern Randomly sized squares placed on a randomly sized isotropic 3D grid 100

Rod pattern Rods with randomly large cross sections placed perpendicular to the 
transverse plane on a randomly sized isotropic 2D grid

100

Cross pattern Randomly sized cross extended along the axial direction 100

Stripe pattern Seven stripes with a thickness varying between 2.4 and 16.8 mm 
placed perpendicular to the transverse plane

100

NEMA phantom spheres Voxelized activity distribution of the NEMA phantom (six fillable 
spheres with inner diameters 10/13/17/22/28/37 mm)

100
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where gk ,j,l is a random Gaussian distributed number (mean = 0, SD = 1), ϕk ,l,j is a ran-
dom phase between −π and π , and (x, y, z) is the position of the voxel [11]. Here, the 
parameter β determines how quickly higher frequencies are attenuated, p is the period 
of F  , and M is the spatial cutoff frequency. To create a realistic activity distribution 
within a reasonable calculation time, the following parameters were empirically chosen: 
β was set to 0.9 according to [11], M was set to 8 to achieve a complex surface in a rea-
sonable calculation time, and the period p was set to 50 voxels, so that the dimension of 
the activity distribution covered the dimension of the Jaszczak cylinder. After applying 
this function to the binary activity masks, the results were rescaled to integers between 0 
and 100 (100: highest activity concentration, 0: no activity).

The resulting activity distributions served as input for the SPECT simulations with 
an analytical water-filled cylinder (Jaszczak dimensions) as attenuating and scattering 
medium. The simulations mimicked a SPECT acquisition with 120 projections of 22 s 
each, matrix size 128 × 128, pixel size 4.79 × 4.79  mm2, and a 20% main energy window 

(1)F x, y, z =

M

k=−M

M

j=−M

M

l=−M

gk ,j,l

cos
2π(kx+jy+lz)

p + ϕk ,l,j

k2 + j2 + l2
β

,

Fig. 3 Illustration of the activity mask dataset. For each activity mask, the transversal (top) and sagittal 
sections (bottom) are shown. First row from left to right: hot Jaszczak with cold random shapes, chessboard 
pattern, rod pattern, cross pattern, stripe pattern, NEMA phantom spheres. Second row from left to right: 
example random shape, example Fourier series F(x, y, z), random shape with non‑uniform activity distribution. 
The plot shows the distribution of the maximum activity concentration (orange, bottom and left axes) and 
volumes (blue, top and left axes) of the activity distributions contained in the dataset. The dashed green 
curve represents the distribution of the maximum activity concentration of 104 peritherapeutic 177Lu SPECT/
CT examinations (bottom and right axes)
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at 208  keV following a non-circular orbit based on the one from a physical phantom 
measurement of the NEMA phantom. An analytical expression was used for modeling 
the MELP collimator using the specifications provided by the manufacturer [12], thereby 
excluding penetration and scattering in the collimator from the simulation. The simula-
tions of all 10,000 projection sets were performed on a local high-performance com-
puting cluster (High Performance Computing Cluster, University of Würzburg). The 
SIMIND MC program uses a number of variance reduction techniques to speed up 
simulations [13]. As a consequence, the MC noise in the simulated projections is not 
representative of the noise of the corresponding physical measurement. Hence, the nor-
mal mode of operation is to use a large number of histories in the simulations in order 
to achieve essentially noise-free projections (i.e., residual MC noise negligible compared 
with noise in a real measurement), which are then scaled to the desired projection time 
and activity before adding Poisson-distributed noise. The simulated SPECT projections 
before and after the addition of Poisson noise will be referred to as noise-free and noisy 
projections, respectively. The output of the simulations was scaled to maximum activity 
concentrations between 0.2 MBq/mL and 14 MBq/mL. This distribution was based on 
the maximum activity concentration of 104 peritherapeutic SPECT/CT examinations, 
which had been performed as part of 177Lu-PSMA-based endoradiotherapy at University 
Hospital Würzburg (DICOM Tag (0028,0107): Largest Image Pixel Value). The distribu-
tions of maximum activity concentrations of patients (dashed green curve) and hetero-
geneous activity distributions (solid orange curve) are illustrated in the graph in Fig. 3.

U‑net architecture

A u-shaped 3D convolutional neural network (u-net) design was used to generate “syn-
thetic” SPECT projections (output) based on “original” SPECT projections (input). 
Technically, the u-net was trained to calculate intermediate projections at shifted pro-
jection angles (e.g., shifts of 3°, 6°, or 9° for a circular arch of 12° between two projec-
tions in the input dataset, used to generate 3 × 30 projections from an input dataset of 
30 projections) with respect to the original projections. For better readability, the techni-
cally imprecise terms “rotation of the projections” and “rotated projections” will be used 
when referring to these intermediate projections. As an example, u-net U1 was trained 
to rotate 60 original projections by 3° to generate 60 synthetic projections (0°, 6°, …, 
354° → 3°, 9°, …, 357°).

The u-nets were based on the fastMRI architecture [14] and were implemented 
using the PyTorch library [15]. The network consists of two main components: a 
down-sampling path that compresses image information and acts as an encoder, and 
an up-sampling path that reconstructs the image from the compressed data and thus 
acts as a decoder. Both paths consist of four convolutional blocks, each executing 
two 3 × 3 × 3 3D convolutions with instance normalization and leaky rectified linear 
unit (leaky ReLU) activation function. In the encoder path, the number of channels 
is doubled after each convolutional block, whereas in the decoder path, the number 
of channels is halved. Skip connections between opposing blocks of the two paths 
ensure that the decoder can reconstruct an image using fine-grained features learned 
in the encoder phase. After each convolutional block, the image size in each spatial 
dimension is halved using a max-pool operation with stride 2 in the encoder phase. 
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In contrast, the image size in each spatial dimension is doubled after each convo-
lutional block in the decoder phase using transposed convolutions with kernel size 
2 × 2 × 2 and stride 2. At the end of the up-sampling path, two 1 × 1 × 1 convolutions 
with ReLU activation function are performed to reduce the number of channels to 
one while maintaining the size of the image. An illustration of the u-net’s architecture 
can be found in Additional file 1.

Generation of a set of u‑nets trained with different parameters

To understand the underlying mechanisms of the generation of synthetic projections 
by the u-net (with and without rotation), seven different u-nets were trained (U1–
U7). Their properties such as the number of input and output projections, the size of 
the training and validation datasets, the Poisson noise realization used, and by which 
angle θ the output projections were rotated relative to the input projections are listed 
in Table 2. As an example, u-net U1 was trained after adding Poisson noise realization 
A to 9,500 noise-free datasets. As described above, training was performed based on 
60 input and output projections with a rotation of 3° between each input and output. 
To force a cyclical projection dataset, the first and last projections were added to the 
back and the front of the projection series, respectively, until the integer power of 2 
was reached (e.g., the first 2 and the last 2 of 60 available projections [1, 2, …, 59, 60] 
were added at the front and at the back, respectively, to reach a total of 64 projections 
[59, 60, 1, 2, …, 59, 60, 1, 2]). This was done to ensure that there is an original pro-
jection on both sides of all intermediate projections to be generated, thereby avoid-
ing extrapolation. Prior to being used as input for the u-net, each projection dataset 
was normalized to an interval between 0 and 1 by dividing each voxel by the maxi-
mum voxel value of the respective input projections. After applying the u-net, the 
projections were rescaled with the same value. The dataset was then separated into 
training and validation datasets of sizes 9000 and 500, respectively. Training was per-
formed for 60 epochs using an Adam optimizer [16], a mini-batch size of 5 and an L1 
loss function. The initial learning rate was set to 7 ×  10−5, which was halved every 20 
epochs. After every epoch, the mean L1 loss on the validation dataset was calculated 
and the network weights with the lowest validation loss were saved.

Table 2 Overview over all u‑nets trained in this study

Abbreviation Poisson noise 
realization

Number of input/
output projections

Cyclical 
expansion

Rotation shift Size of training/
validation 
dataset

U1 A 60 64 3° 9000/500

U2 B 60 64 3° 9000/500

U3 A 60 64 3° 400/40

U4 A 30 32 3° 9000/500

U5 A 30 32 6° 9000/500

U6 A 30 32 9° 9000/500

U7 A 120 120 0° 9000/500
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Influence of noise

To investigate the influence of noise on the u-net performance, two different u-nets 
U1 and U2 with different Poisson noise realizations A and B, created by using differ-
ent seeds for the random number generator, were trained (Table 2).

Influence of the size of the training dataset

To examine the effect of the amount of training data on the performance of the u-net, 
a third u-net, U3, was trained (Table  2), where the sizes of the training/validation 
datasets were similar to the training/validation dataset size of 352/37 used by Rydén 
et  al. [6]. This was achieved by selecting 400/40 projection datasets from the train-
ing/validation datasets of u-net U1. The proportions of the different types of activity 
masks (Table 1) were retained. To ensure convergence of the training, the number of 
epochs was increased to 200 and a linearly decreasing learning rate from 1.2 ×  10−5 to 
0.8 ×  10−5, as described in [6], was selected.

Influence of the number of input projections and rotation angle

To assess whether the number of input projections has an impact on the performance 
of the methodology, three additional u-nets were trained (U4, U5, and U6). Each of 
these u-nets generates 30 intermediate projections at differently shifted projection 
angles (3°, 6°, and − 3°) with respect to the 30 input projections.

Analysis of the u‑net for denoising the projections

To determine whether and to what extent the synthetically created projections of 
u-nets U1 to U6 are denoised, an additional u-net U7 was trained. This network was 
trained to create 120 noise-free output projections from 120 noisy input projections, 
i.e., without shifting the projection angles between input and output (“no rotation”).

Evaluation criteria for quantifying the u‑net performance

For all trained u-nets, a quantitative analysis was performed based on the same 
test dataset consisting of 500 projection sets with noise realization A. To deter-
mine the agreement between synthetic (e.g., projections for 3°, 9°, …, 357° for u-net 
U1) and ground-truth projections (i.e., acquired for the same angles as the output 
projections), the structural similarity index measure (SSIM) [17] and normalized 
root-mean-squared error (NRMSE) were calculated for all test data. The synthetic 
projections (i.e., generated by the u-net) were compared to both the noise-free and 
the noisy projections to assess and quantify the denoising effect of the methodology. 
Each comparison was made based on statistical hypothesis tests between the SSIM 
or NRMSE values of two u-nets to be compared. Since the NRMSE values are nor-
mally distributed (Shapiro–Wilk test), a paired two-sided t test was performed. For 
the non-normally distributed SSIM values, a paired two-sided Wilcoxon signed-rank 
test was performed. The following sections describe the aspects investigated with the 
various u-nets (see Table 2).
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Influence of the detector orbit

All projection data used for training the u-nets were simulated with identical detec-
tor orbits. Therefore, it could be suspected that the generation of synthetic projec-
tions works only for SPECT images with that specific detector orbit. To determine 
the impact of the detector orbit on the performance of the u-nets, four additional 
MC simulations were run for each activity distribution in the test dataset. For these 
simulations, the distance of the detector at all angular positions was increased by 
2 cm, 4 cm, 8 cm, and 16 cm, respectively, compared to the original NEMA detector 
orbit. To get an impression of the extent of detector orbit variations in real patient 
examinations, the orbits of a total of 436 177Lu-PSMA-based SPECT/CT examina-
tions performed at University Hospital Würzburg were analyzed. For each angle, both 
the mean and the maximum distance of the gamma camera to the center were deter-
mined. The results are shown in Fig. 4 together with the NEMA detector orbit and its 
expanded versions (4 cm and 16 cm). The mean and maximum patient detector orbits 
have similar projection distances as the NEMA orbit enlarged by 4  cm and 16  cm, 
respectively.

Based on each of these four new detector orbits, synthetic projections were generated 
using u-net U1, which had been trained with data from the original orbit (i.e., without 
radial expansion). These synthetic projections were compared with the corresponding 
ground-truth projections (i.e., noisy simulations for the respective detector orbit).

Physical phantom‑based verification of the simulation‑based findings

Two phantom measurements were performed with the same clinical SPECT/CT system 
that had been used as template for the MC simulations. In the first measurement, a large 
Jaszczak cylinder without inserts was filled with a uniform 177Lu stock solution (activ-
ity concentration 59.9  kBq/mL). The second measurement was a water-filled NEMA 
phantom equipped with six 177Lu-filled spheres (activity concentration 1.99 MBq/mL). 
Both experiments were performed using a MELP collimator, 180° head configuration, 
auto-contouring, continuous mode, 60 views, 30 s per view, 128 × 128 matrix, and a 20% 
energy window around the 208 keV photopeak. After each SPECT acquisition, two low-
dose CT scans were acquired (tube voltage 130 kV, 26–30 mAs, 1.0 × 1.0  mm2 in-plane 

Fig. 4 CT of NEMA body phantom placed on patient bed with different gamma camera orbits. The 
orange contour illustrates the original NEMA detector orbit, which is used for the simulations of all activity 
distributions in the dataset. The green and the red contours represent two expanded versions of the NEMA 
detector orbit, used for analyzing the influence of deviations in detector orbit between training and input 
data on the u‑net performance. The blue and purple contours represent the mean and the maximum 
(maximum distance for every angle) patient detector orbits for all 436 SPECT/CT scans
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pixel size, 1.5 pitch): in addition to a standard low-dose CT acquisition for attenuation 
correction (3.0 mm slice thickness), a high-resolution low-dose CT (1.0 mm slice thick-
ness) was acquired for determining the phantom positioning.

The measurements were replicated in SIMIND as follows: The centers of the spheres 
of the NEMA phantom and the filled Jaszczak cylinder were determined using the high-
resolution CT. Two simulations were then performed in SIMIND using the known 
dimensions of both phantoms (diameter of the NEMA spheres: 10, 13, 17, 22, 28, 37 mm; 
height and diameter of the Jaszczak cylinder: 186 and 216 mm). Attenuation and scatter 
were simulated based on the CT images of the physical phantom measurements: First, 
the attenuation CT was scaled by linear interpolation to the standard resolution of the 
simulations performed (256 × 256 matrix, 2.4 × 2.4 × 2.4  mm3 voxel size). Hounsfield 
units were then converted to mass density using a two-segment linear function accord-
ing to Schneider et al. [18]. SIMIND simulations of both activity distributions were per-
formed as described before, with the detector orbit adjusted to the actual non-circular 
orbits of the physical phantom measurements.

All SPECT/CT reconstruction in this work was performed based on 120 projections 
using OS-EM with 6 iterations and 8 subsets, employing compensation for attenua-
tion and scatter using the ESSE method [19]. To convert the reconstructed counts into 
activity concentration, an image calibration factor (unit: counts-per-second-per-Meg-
abecquerel) was determined as described in [20] based on the physical SPECT/CT meas-
urement of the Jaszczak phantom described above. For these reconstructions, additional 
metrics were used to quantify the image quality. For the reconstructions of the Jaszczak 
phantom, the signal-to-noise ratio (SNR) was calculated in a cubic VOI (1519 mL) inside 
the cylinder:

where A is the mean activity concentration in the VOI and σA is the standard devia-
tion of the voxel-to-voxel activity concentrations within the VOI. For the reconstruc-
tions of the NEMA phantom, the recovery, defined as the SPECT-derived activity in the 
spheres divided by the activity derived at phantom preparation, was calculated for all six 
spheres. The SPECT-based activity in each sphere was calculated by multiplying inter-
polated SPECT/CT reconstructions (nearest-neighbor interpolation, 256 × 256 matrix) 
with a binary mask (256 × 256 matrix), which was created using the known positions 
and dimensions of the spheres inside the phantom.

Results
Influence of noise

Table  3 summarizes the quantitative performance analysis of the u-nets. For each 
activity distribution (total of 500) in the test dataset, the mean SSIM and the mean 
NRMSE were calculated over all synthetic projections (e.g., 60 projections for U1, 30 
projections for U4, and 120 projections for U7). Then, the mean over these means was 
calculated for all 500 test datasets. For u-nets U1 and U2, the synthetic projections 
show no significant difference in SSIM (p = 0.18 and p = 0.69, paired two-sided Wil-
coxon signed-rank test) and NRMSE (p = 0.15 and p = 0.68, paired two-sided t test) to 

(2)SNR =
A

σA
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noise-free and noisy projections; this is also highlighted by the Bland–Altman plots in 
Fig. 5 (both upper graphs). For both networks, however, the difference between syn-
thetic and noise-free projections was significantly smaller than the difference between 
synthetic and noisy projections (p < 0.001). Moreover, the Bland–Altman plots show 
that there is no difference in the performance for both the u-nets trained with differ-
ent noise realizations visible. When comparing the performance of the u-nets U1 and 
U3, it becomes apparent that using a larger training data set results in better SSIM 
and NRMSE values. Furthermore, in the Bland–Altman plots the noise-free projec-
tions (orange) demonstrate a smaller NRMSE and an SSIM closer to unity than the 
noisy projections (blue).

Table 3 Analysis of the u‑net performance

Mean SSIM and NRMSE values between synthetic projections and noisy/noise‑free projections, respectively. Data in 
parentheses are standard deviations

Abbreviation Synthetic versus noisy projections Synthetic versus noise‑free 
projections

SSIM NRMSE SSIM NRMSE

U1 0.979 (0.025) 2.45% (1.18%) 0.995 (0.011) 1.19% (0.75%)

U2 0.979 (0.026) 2.44% (1.19%) 0.995 (0.011) 1.19% (0.79%)

U3 0.973 (0.033) 2.79% (1.29%) 0.989 (0.022) 1.85% (1.17%)

U4 0.978 (0.024) 2.52% (1.25%) 0.994 (0.007) 1.29% (0.75%)

U5 0.978 (0.024) 2.53% (1.20%) 0.994(0.008) 1.32% (0.68%)

U6 0.978 (0.025) 2.56% (1.53%) 0.994 (0.009) 1.37% (0.75%)

U7 0.982 (0.018) 2.24% (1.10%) 0.997 (0.006) 1.04% (0.61%)

Fig. 5 Bland–Altman plots illustrating the performance of u‑nets U2 and U3 in comparison with U1. Bland–
Altman plots for the differences in SSIM and NRMSE between synthetic projections of u‑net U1 and U2 (top) 
and U3 (bottom). Blue circles depict the differences for the noisy projections, while the orange circles depict 
the differences for the noise‑free projections. The magenta lines indicate the mean difference of the values 
for the noisy projections, and the green lines indicate the 95% confidence interval
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Influence of the size of the training dataset on the u‑net performance

Based on NRMSE and SSIM, u-net U3, which is based on a considerably smaller train-
ing dataset than the other u-nets, produced significantly worse synthetic projections 
than the networks trained with larger datasets (p < 0.001 when compared against U1 or 
U2). This observation is underlined numerically by the mean SSIM (smallest value for 
U3) and NRMSE (highest value for U3) values given in Table 3 as well as visually by the 
increased difference between the results of U1 and U3 in Fig. 5.

Influence of the number of input projections and rotation angle

No significant differences in NRMSE and SSIM values were observed between u-nets 
U4, U5, and U6, which perform a 3°, 6°, and − 3° rotation, respectively, for 32 input pro-
jections (SSIM and NRMSE, p > 0.05 for u-nets U4, U5, and U6 noisy and noise-free pro-
jections). When comparing the synthetic projections generated based on networks U1/
U2 (64 input/output projections) to the synthetic projections of U4/U5/U6 (32 input/
output projections), the u-nets with a higher number of input projections perform 

Fig. 6 Comparison of simulated noisy and noise‑free projections with synthetically generated projections. 
The synthetic projections were generated by u‑nets U1 (magenta) and U4 (green), respectively. From top to 
bottom, the projections of the following activity distributions are shown: random shape, hot Jaszczak with 
cold random shapes, stripe pattern. The graphs on the right show cross sections through the projections 
along the colored lines
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significantly better than the u-nets with a lower number of input projections (p < 0.001). 
Figure 6 shows synthetic projections created by u-nets U1 and U4. The synthetic projec-
tions created by both u-nets (green and magenta) show a high visual similarity to the 
noise-free projections (gray).

Analysis of the u‑net for denoising the projections

The SSIM and NRMSE for U7, which was trained only to denoise the 120 input pro-
jections, are shown in Table 3. This u-net achieves significantly higher SSIM and lower 
NRMSE values than the other u-nets when compared to both the noisy and the noise-
free projections.

Influence of the detector orbit

Table 4 shows the mean SSIMs and NRMSEs between the synthetic projections and the 
noisy projections for the original and the four radially expanded detector orbits. While 
there are no significant differences in the u-net’s performance for small deviations of the 
detector orbit (2 cm and 4 cm radial expansion compared to the original detector orbit; 
2  cm: SSIM, p = 0.47; NRMSE, p = 0.95; 4  cm: SSIM, p = 0.19; NRMSE, p = 0.10), the 
u-net performs significantly worse for larger radial expansions (SSIM/NRMSE, p < 0.01 
for 8 cm and 16 cm). As expected, the largest expansion also has the lowest SSIM and 
the highest NRMSE values, respectively.

Comparison between simulated and physical phantom measurements

Example projections of the simulated and the physical phantom measurements of the 
Jaszczak phantom, together with the corresponding synthetic projections, are shown in 
Fig. 7. The corresponding results for the NEMA Phantom can be found in Additional 
file 1. The related SSIM and NRMSE values between the projections are given in Tables 5 
(differences to measured projections) and 6 (differences to simulated noisy projections). 
For both phantoms, there is a good agreement between measured and simulated pro-
jections (Jaszczak: SSIM, 0.965; NRMSE, 3.40%; NEMA SSIM, 0.990; NRMSE 0.93%). 
This shows that MC simulations can generate realistic SPECT projections. The synthetic 
projections of both u-nets are visually and numerically more similar to the noise-free 
simulated projections than to the measured or noisy simulated projections for both 
phantoms. This statement is supported by the higher SSIM and lower NRMSE values in 
Tables 5 and 6. Moreover, in Fig. 7, it can be seen that the synthetic projections are visu-
ally more similar to the noise-free projections than to the noisy projections.

Figure 8 shows SPECT/CT reconstructions of the phantom measurements. To imitate 
a SPECT acquisition accelerated by factors of 2 and 4, two u-net-based reconstructions 
were performed using only 60 (every other) and 30 (every fourth) measured projections, 

Table 4 Analysis of detector orbit deviations

Mean SSIM and NRMSE values between synthetic projections and noisy projections for trajectories of increasing deviations. 
Data in parentheses are standard deviations

Original orbit Orbit + 2 cm Orbit + 4 cm Orbit + 8 cm Orbit + 16 cm

SSIM 0.979 (0.025) 0.980 (0.024) 0.979 (0.026) 0.978 (0.026) 0.976 (0.030)

NRMSE 2.45% (1.18%) 2.43% (1.21%) 2.46% (1.23%) 2.50% (1.22%) 2.63% (1.26%)
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Fig. 7 Comparison of measured and simulated projections of a filled Jaszczak cylinder with synthetic 
projections. The synthetic projections were generated by u‑nets U1 (magenta) and U4 (green), respectively. 
The right graphs each show the cross section through the projections along the colored lines, where the 
solid curves represent the simulations and the dashed curves represent the measurements. The cross section 
through the noise‑free (simulated) projection is also shown for both the measured and the simulated 
projections (solid gray curve)

Table 5 Analysis of physical phantom measurements

SSIM and NRMSE values between synthetic projections generated based on measured projections and simulated noise‑free 
and measured projections, respectively

Projections Synthetic 64 U1 Synthetic 32 U4 Measured

SSIM NRMSE (%) SSIM NRMSE (%) SSIM NRMSE (%)

Jaszczak Simulated noise‑free 0.993 3.14 0.989 3.74 0.973 7.11

Measured 0.979 5.85 0.978 5.71 1 0

NEMA Simulated noise‑free 0.992 0.49 0.992 0.50 0.986 0.72

Measured 0.987 0.59 0.989 0.58 1 0

Table 6 Analysis of the simulations of the physical phantom measurements

SSIM and NRMSE values between synthetic projections generated based on simulated noisy projections and simulated 
noise‑free and noisy projections, respectively

Projections Synthetic 64 U1 Synthetic 32 U4 Simulated noisy

SSIM NRMSE (%) SSIM NRMSE (%) SSIM NRMSE (%)

Jaszczak Simulated noise‑free 0.998 1.94 0.998 2.20 0.973 7.70

Simulated noisy 0.975 7.70 0.975 7.56 1 0

NEMA Simulated noise‑free 0.997 0.43 0.995 0.49 0.990 0.93

Simulated noisy 0.987 0.94 0.985 1.05 1 0
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respectively. In order to compensate for the lost information, the missing projections were 
replaced by synthetic projections generated using u-nets U1 (60 synthetic projections) 
and U4–U6 (30 synthetic projections each, 90 in total), respectively. The reconstructions 
based on this mixed dataset of synthetic and measured projections are referred to as Recon 
60 + 60 and Recon 30 + 90 for convenience. For the Jaszczak phantom reconstructions, the 
same observations as for the underlying projections can be made: The synthetic projections 
feature reduced noise, which is visually evident from higher signal-to-noise ratios (SNRs) 
for Recon 60 + 60 (about 30% increase) and Recon 30 + 90 (about 50% increase) when com-
pared to the original SPECT. Interestingly, the SNR increases if more synthetic projections 
are included in the reconstruction (e.g., when comparing Recon 60 + 60 to Recon 30 + 90). 
The findings for the NEMA phantom are similar. For the reconstructions, the recovery of 
the two largest spheres is higher using synthetic projections than using the original projec-
tions only. For the smallest spheres, the reconstruction using the noise-free simulated pro-
jections yielded the best recovery. It should be noted that no resolution recovery was used 
for the reconstruction and thus lower recovery values are to be expected.

Discussion
In this study, a large dataset of SPECT projections was produced by Monte Carlo simula-
tions to analyze the performance of a methodology for AI-based generation of synthetic 
projections. By the use of rotated and randomly arranged random shapes in combination 

Fig. 8 Analysis of physical phantom measurements. Left: Transversal slices of SPECT/CT reconstructions of 
the filled Jaszczak (top) and the NEMA phantom (bottom) using 120 projections. For the sake of clarity, only 
a section containing the two largest spheres are shown for the NEMA phantom. The missing projections 
for Recon 60 + 60 (magenta) and Recon 30 + 90 (green) were generated using u‑nets U1 and U4–U6, 
respectively. The white numbers in the upper left panel are the signal‑to‑noise ratios calculated in the white 
boxes. For the Jaszczak phantom, the cross section of the activity distribution along the colored lines is 
shown on the right. For the NEMA phantom, the recovery of the spheres is shown on the right
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with a method for generating activity heterogeneity, a wide range of activity distributions 
in a clinically relevant range was generated and used as input to the MC simulations.

By using the simulated data, the problem of sparsity of clinical dataset for training 
of the u-net was circumvented. In this regard, the comparison of the performance of 
u-nets U1 (trained with 9,500 SPECT simulations) and U3 (trained with 400 SPECT 
simulations) showed a significant improvement if a larger training dataset was used. This 
indicates that results from previous studies [6, 21, 22] could be improved with a larger 
training set. As shown here, such an expanded dataset could, for example, be achieved 
based on MC simulated data rather than only relying on the typically small number 
of clinically available images. Although several previous studies applied large training 
datasets for deep learning-based improvement in SPECT imaging, these datasets were 
not realistic enough to be transferred to clinical SPECT systems. For example, Shao 
et al. [23, 24] and Chrysostomou et al. [25] each used a large dataset consisting of ana-
lytically derived digital phantoms that showed limited physical effects such as photon 
scatter, attenuation, and non-perfect collimation. (Shao et al. includes attenuation and 
non-perfect resolution in 2D.) In contrast, these physical effects are taken into account 
in our MC simulations, resulting in much more realistic projections. This statement is 
supported by the good agreement between simulations and measurements of the two 
physical phantoms. Another disadvantage of most training datasets published so far is 
that although some of them consisted of different shapes, the activity concentration of 
each of these shapes was uniform. In contrast, the dataset used in this study features 
a heterogeneous activity concentration distribution, making it much more realistic and 
comparable to clinical SPECT data.

Despite the significant improvement, there are still some limitations and simplifica-
tions in the simulated training dataset presented in this work that need to be adjusted 
before a potential clinical application: First, the localization of the activity in the input 
data is restricted to the region of the Jaszczak cylinder. Therefore, there could be devia-
tions and artifacts for input activity distributions exceeding the cylinder dimensions. 
Another shortcoming is that photon attenuation in all simulations was based on the uni-
formly water-filled cylinder, which may differ from the clinical situation, e.g., imaging of 
the thorax region. Another aspect that might be looked at in more detail in the future is 
the influence of the detector orbit, which can strongly differ from the orbit of the NEMA 
phantom in clinical situations. In our small, NEMA orbit-based, sub-study, however, 
there was no significant difference in u-net performance for small orbit variations (radial 
expansion by 2  cm and 4  cm). For larger expansions (8  cm and 16  cm), however, we 
found an increasing impact on the u-net performance. Because the mean patient detec-
tor orbit is similar to the NEMA trajectory radially expanded by 4 cm (Fig. 5), this issue 
is not expected to be a major problem for the average patient. However, for patients of 
very large body sizes or in the event that auxiliary equipment is located near the patient, 
large deviations in detector orbit can potentially affect the performance of the u-net.

Since no significant differences in SSIM and NRMSE values were found between 
u-nets U1 and U2, we conclude that the noise realization of the training datasets only 
has a negligible effect on the u-net performance. The fact that all synthetic projections 
were more similar to the noise-free projections than to the noisy projections indicates 
that the u-net has a denoising effect in addition to the rotation. This effect can also be 
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identified visually based on the good agreement between the magenta and green curves 
(synthetic projections generated by U1 and U4) and the gray curve (noise-free projec-
tion) in Fig. 6. This denoising effect of u-nets has also been described in the literature. 
For example, Ulyanov et al. showed that u-nets tend to amplify the signal and suppress 
noise [26]. In this study, we were able to show that this also applies to the Poisson noise 
of SPECT projections and that the projections denoised by the u-net are very similar to 
the noise-free projections obtained directly from the simulations.

Furthermore, the u-net performance decreased with a decreasing number of input 
projections. This might lead to the conclusion that it may be advantageous to acquire 
more projections with a lower measurement time per projection. However, the effect 
is most likely caused by the larger total signal when acquiring more projections for a 
constant projection time. Hence, it might be of interest to also study the performance 
of u-nets for a varying number of input projections, but for a constant total acquisition 
time, to get a more fair comparison with respect to total acquired signal. However, such 
aspects were not pursued in the current study. Another option for a future improvement 
in the methodology is the training of u-nets with an unbalanced number of input versus 
output projections (e.g., 30–90 or 15–105). Although initial attempts showed promis-
ing results, further analysis will be required, because the use of fewer input projections 
might increase the negative impact of trajectory differences.

The denoising effect is further illustrated by the best agreement between the u-net 
output and the noise-free initial projections, which was obtained for u-net U7, which 
is designed solely for denoising the projections (i.e., without any rotation). This leads to 
the conclusion that the rotation additionally performed by u-nets U1 to U6 introduces 
additional deviations between the ground-truth projections and the u-net output that 
cannot perfectly be corrected by the u-net. This rotation is not applied in case of u-net 
U7, however, resulting in the best performance of all networks.

Visually, the u-net performance becomes worse as the feature size approaches the res-
olution of the imaging system. This can be seen from the projection of the stripe pattern 
phantom in Fig. 6. A smoothing of the signal for the synthetic projections can be seen 
for the smallest stripes.

The analysis of the phantom measurements shows that, despite having been trained 
with SPECT simulations only, these u-nets can be applied to generate realistic synthetic 
projections for physical phantom SPECT/CT measurements. This, in combination 
with the good agreement between simulated and measured projections demonstrated 
in Fig.  7, indicates that the level of realism of the simulations using the SIMIND MC 
program was sufficient. Based on the good agreement between the synthetically gen-
erated and measured projections, it was shown that u-nets trained on simulated data 
can also be used for measured data. However, it should also be noted that the activity 
distribution in our dataset is limited to a Jaszczak cylinder. In cases where activity is pre-
sent outside the Jaszczak dimensions, errors in the synthetic projections may occur. For 
application to clinical data, the diversity of the dataset may have to be further increased 
(e.g., by using differently shaped scatter media). Alternatively, the trained networks can 
also serve as a basis for training patient data using transfer learning. In general, while 
most published u-nets are made available with suggested parameter settings, a large 
number of hyperparameters can be tuned in the process of setting up and optimizing 
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the performance of convolutional neural networks. Instead, the focus of this work lied 
primarily on various aspects of the SPECT imaging part of the methodology (e.g., noise, 
number of input data, and detector orbit). Tuning of hyperparameters or the deploy-
ment of entirely different network architectures might lead to an additional improve-
ment in the network performance.

In summary, we show that realistic MC SPECT simulations can and should be applied 
to assess the performance of u-nets trained to generate SPECT projections. Moreover, 
simulated data could also be added to the typically small clinical datasets (e.g., using 
transfer learning) to improve the performance of such u-nets. It should be added, how-
ever, that a prerequisite for this is that the simulations are replicated with adequate 
accuracy in modeling the clinical system (e.g., energy resolution, collimator) and meas-
urement conditions (e.g., the detector orbit).

Conclusion
In this study, a large dataset of simulated SPECT projections of heterogeneous random 
shapes for evaluation of a deep learning-based generation method of SPECT projections 
was generated using the Monte Carlo simulation program SIMIND. We found that the 
size of the training dataset has a significant impact on the u-net performance for genera-
tion of intermediate projections in SPECT. In addition, a denoising effect by the u-net 
could be numerically shown in addition to the rotation. Here, the noise representation of 
the training datasets had no significant influence on the u-net performance. Regarding 
the detector orbit, small deviations did not show a significant deterioration in u-net per-
formance. Most importantly, the u-nets trained solely based on MC simulated SPECT 
data could successfully be applied to physical phantom measurements, which could con-
siderably increase the amount of available training data in future applications.
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