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Abstract

The construction and analysis of networks is increasingly widespread in biological research. We have developed esyN (‘‘easy
networks’’) as a free and open source tool to facilitate the exchange of biological network models between researchers.
esyN acts as a searchable database of user-created networks from any field. We have developed a simple companion web
tool that enables users to view and edit networks using data from publicly available databases. Both normal interaction
networks (graphs) and Petri nets can be created. In addition to its basic tools, esyN contains a number of logical templates
that can be used to create models more easily. The ability to use previously published models as building blocks makes
esyN a powerful tool for the construction of models and network graphs. Users are able to save their own projects online
and share them either publicly or with a list of collaborators. The latter can be given the ability to edit the network
themselves, allowing online collaboration on network construction. esyN is designed to facilitate unrestricted exchange of
this increasingly important type of biological information. Ultimately, the aim of esyN is to bring the advantages of Open
Source software development to the construction of biological networks.
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Introduction

The advent of large data warehouses that contain interaction

data such as BioGRID [1], iRefIndex [2] and IntAct [3] databases

is facilitating the study of biological pathways and networks.

Building and modeling these networks is an increasingly valuable

tool in biological research, particularly as many complex diseases

are now thought to be the result of subtle dysregulation of many

biological pathways [4,5]. It is challenging, however, to identify

which interactions are relevant to a given biological question.

Although biological interaction networks are widely constructed

and published, network models are not readily exchanged. We

have developed esyN (easy networks, available at: www.esyn.org,

Fig. 1) to facilitate the exchange of network data and streamline

the process of collaborating on their construction. Unlike the

major repositories of biological pathways e.g. KEGG [6] or

Reactome [7], anybody is free to create a network and make it

publicly available within esyN. In addition, users can easily import

any public data, modify it and publish their version.

The large volume of interaction data that is currently available

has proven to be extremely valuable in understanding specific

processes such as the pathology of a disease. However, it is not

enough to simply include all interactions of every gene known to

be associated with the disease, mainly because interaction data are

typically collected under laboratory conditions, that are unlikely to

accurately represent the state of the cellular network in the

diseased state. In order to study the network of interactions related

to a disease, we need to build a ‘‘differential’’ network [8]; that is,

the network of interactions that differ between the healthy and the

disease states. Although efforts are under way to directly construct

such networks [9,10], there are no repositories of such differential

networks and this means that each researcher needs to start from

literature and/or raw data. With esyN, we intend to encourage

researchers from any field to share the networks that they have

constructed.

The rapidly increasing volume of biological data also aids the

development of quantitative, predictive models of biological

systems. One relatively straightforward method to generate such

a model is a Stochastic Petri Net (SPN) [11]. We have therefore

also developed a simple online tool to edit SPN models, which can

be shared in the same ways as interaction networks. Any user can

import a public model into their own project, thus esyN acts as a

repository of Petri Net ‘‘modules’’ that can be re-used elsewhere.

In practice, we intend esyN to deliver the equivalent advantages to

those of open-source software development to the network

modeling community, by enabling useful modules to be freely

redistributed and reused. Over time, this will reduce the need for

modeling effort to be duplicated within the research community.

esyN allows the building, viewing, sharing and publishing of two

types of networks: Graphs (simple directed or undirected graphs)

and Petri net models.
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Graphs

Graphs are the simplest way to visualize interaction data, in

which nodes represent biological entities (e.g. gene, protein,

molecule) and the interactions between them are represented by

edges connecting nodes.

One of the primary functions of esyN is to provide a public and

unrestricted repository for interaction networks. We have created

a companion web tool for the construction, viewing, and editing of

biological interaction network graphs using cytoscape.js, a java-

script library [12] that facilitates the development of graph-centric

web applications. To streamline the process of constructing

interaction networks, we have added integration with the

InterMine framework [13–15] using the imjs library [15]. This

allows interaction data to be retrieved for human [16], yeast [17]

and fruitfly [18] networks. In this way, users are able to

interactively build up interaction networks using data from public

resources. When edges are imported via InterMine databases, the

supporting references are also automatically associated with the

edge (references can also be added manually). In addition, users

can upload interaction data in spreadsheet format, or export data

from existing Cytoscape projects in JSON format [19].

We have used our online tool to create interaction networks for

genes related to Alzheimer’s disease, Parkinson’s disease, and

Amyotrophic Lateral Sclerosis. Starting from genes currently

linked to each disease, we built up each network including only

those edges related to the disease state (based on literature [20–

29]) rather than simply including all interactors, not all of which

will be relevant to the disease. The rationale for including or

excluding nodes is also given in the description field for the project.

By making these networks publicly accessible in the esyN database,

we have provided a starting point for any researchers wishing to

study the interaction networks of these diseases. Other researchers

are free to contribute their own versions of these networks, which

may differ from ours. It is our intention to promote and enable

Figure 1. Screenshot of the esyN Model-building tool. The left panel is the menu for the network building tool, with options e.g saving,
uploading and exporting projects. The central blue panel is the window in which the network is displayed, in this case a model. This window is used
for node and edge creation and selection. The right panel contains tools for editing individual nodes and edges. The lower yellow panel displays
options to create parent-child relationships for the selected node. The lower right panel is the interface to the supported InterMine databases,
allowing interaction data to be automatically retrieved for the selected node. The page layout is identical for the Graphs tool, which the exception of
the node hierarchy panel (yellow), which is absent for graphs.
doi:10.1371/journal.pone.0106035.g001

esyN: Network Building, Sharing and Publishing

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e106035



unrestricted sharing of any such network, encouraging more

widespread collaboration and exchange of information.

Petri Nets

Stochastic Petri Nets (SPN) represent a straightforward graph-

ical language to describe stochastic processes. We have chosen to

use SPN to build our models because of their relative simplicity,

which makes SPN the ideal formalism for creating complex

models using smaller ones as building blocks. In contrast to graphs,

Petri nets depict reactions in much more detail (Fig. 2), and

therefore it is not always straightforward to map protein - protein

interaction networks onto a Petri net model. Petri Net models

represent a mathematical model of a dynamic process, whereas

graphs are a static representation of interactions. Petri Nets require

much more parameterization than graphs (for example the

amount of each species and the stoichiometry of reactions), which

is often a major obstacle to their construction. The interactions

that make up graphs are routinely measured on a large scale for

many organisms, whereas the same is not possible for Petri Nets.

Importantly Petri nets can be converted into a series of matrices,

which can then be used for simulations in which a series of

transitions ‘‘fire’’, moving tokens between places. For simulations,

SPN models can be converted into matrices and downloaded in

JSON format. We have developed an R script for running

simulations using the Gillespie algorithm, of the Petri net models

created with esyN, and this can be found at: http://github.com/

esyN/esyN-simulation.

Just as is the case for network graphs, esyN provides a simple

web tool for viewing and editing Petri Nets. We used this tool to

construct a number of basic Petri net models of pathways using

data from Reactome [7] and from the literature [25,30–37]. We

have made these models public (accessible at http://www.esyn.

org/browse.php), thus enabling their use as ‘‘building blocks’’ for

the construction of other models. With time, the esyN collection of

pathways will grow allowing the user to build networks progres-

sively more easily.

In addition to these models, we have created a series of small

functional units (templates or modules) designed to speed up the

creation of Petri Net models by making frequently used structures

(e.g. simple logic gates) available for any user to quickly add to

their projects.

The ability to build network graphs using experimental

interaction data (both physical and genetic) retrieved from

InterMine is meant to facilitate and guide the construction of

the corresponding Petri net models which have a similar blueprint

but every interaction has to be modeled individually (Fig. 2). Each

transition node in the network can be associated with one or more

references, supporting its inclusion in the network, or the structure

of the edges connected to it.

Comparison to Other Tools

The esyN web tools for constructing networks are not designed

to replace existing tools such as Cytoscape [38] or Snoopy [39];

rather, they are designed to complement these much more

extensive tools, providing a fast and convenient interface to the

network repository. We encourage users wishing to perform more

extensive analyses to download the network data and use an

established tool such as Cytoscape. For this reason, we allow all

network data to be downloaded in standard formats (comma-

separated values for interaction networks, JSON format matrices

for Petri net models).

There is a large variety of repositories of biological pathways

and models (e.g. Kegg [6], Reactome [7], BioCarta [40],

BioModels [41]). esyN is intended to be complementary to these

databases, allowing fast, unrestricted exchange of users’ networks

that have been constructed using data from a variety of sources.

Figure 2. Schematic representation of Kinase-Substrate interaction in a graph (left) and Petri Net (right). Additional nodes and edges
are required to represent the process in the Petri Net framework.
doi:10.1371/journal.pone.0106035.g002
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Importantly, once published these networks can be copied and re-

used freely by the community in a similar fashion to Open Source

software.

In short esyN is a unique tool as it integrates tools for the

creation of network models with an open repository that stores

them. This allows public models to be used as building blocks for

further models. In Table S1 we have listed a more complete list of

comparable tools with their relative features.

Methods

Software and Libraries
esyN is primarily written in the javascript language, using the

following libraries: cytoscape.js [12], intermine [13], jQuery [42],

angularJS [43], underscore.js [44]. The network database uses

MySQL. Hosting is provided by the University of Cambridge. All

source code is available under the LGPL license at: https://github.

com/esyN/code.

Requirements
esyN has been tested on Google Chrome (version 34), Mozilla

Firefox (version 29), Safari (version 7.0.3), Internet Explorer

(version 11) and Opera (version 20). esyN requires a modern web

browser. To save projects online, publish projects, and collaborate

on projects, users must log in. Registration is free and only requires

an email address. We use persona [45] for authentication,

meaning we do not store users’ passwords. No other features of

esyN require users to log in.

Constructing Graphs
Graphs consist of nodes connected by edges, which can be

directed or undirected. Each edge can also have a type (e.g.

‘‘genetic’’ or ‘‘physical’’). Nodes in a graph may represent physical

entities such as genes or proteins, or may themselves contain a

nested network. Interaction data can be automatically imported

from FlyMine [18], YeastMine [17] and MetabolicMine [16].

Graphs can be created from interaction data uploaded as comma-

separated values, or as JSON [19] data exported from Cytoscape.

Constructing Petri nets
Petri Net models are bipartite directed graphs. For an in-depth

background on Petri nets, see [46]. Briefly, nodes can be either

‘‘places’’ representing entities that can be quantified (by the

number of tokens they contain), or ‘‘transitions’’ representing

actions that act on the places to change their quantities. Places

may represent real physical entities, or they can themselves

contain other places (these are called ‘‘coarse places’’). Edges

connecting coarse places to transitions represent a process that

happens to every one of the contained places. Transitions can

contain nested networks as a way to hierarchically organize a large

project. Related nodes can be found using FlyMine [18],

YeastMine [17] and MetabolicMine [16] to find interacting genes

or proteins. Models can also be uploaded from an existing project

created using Snoopy.

Collaboration
From their own home page (www.esyn.org/home.php), users

can set the properties of each of their projects. There are two

different types of collaborator: 1) ‘‘Viewers’’ are able to open and

view a project, but cannot make changes (unless they save their

own copy). Viewers can only see the most recent version of a

project. 2) ‘‘Editors’’ are able to make changes to a project.

Collaborators are added by email address, which must be the

address used to log in.

Publishing
Any user can make any project public at any time. When a

project is made public, it is copied into a separate database. This

allows the user to continue working on their own project without

affecting the version they made public. Indeed, nobody is able to

directly edit public projects. Any user is free to import any public

project into their own workspace, where they are able to modify

their copy and, if they choose to, make their version public.

Supporting Information

Table S1 List of tools comparable to esyN and their
relative features.

(XLS)

Acknowledgments

We thank Marta Vergnano and the whole Oliver Group for helpful

discussions. We also thank Carlo Pirchio for his help with the esyN logo.

Author Contributions

Conceived and designed the experiments: DMB JH LF GM SGO GF.

Analyzed the data: DMB JH LF GF. Contributed to the writing of the

manuscript: DMB GM SGO GF.

References

1. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, et al.

(2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:

D816–823.

2. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein

interaction database with provenance. BMC Bioinformatics 9: 405.

3. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, et al. (2013) The

MIntAct project–IntAct as a common curation platform for 11 molecular

interaction databases. Nucleic Acids Res.

4. Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents

an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad

Sci U S A 106: 14914–14919.

5. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for

disease intervention. Science 319: 916–919.

6. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res 28: 27–30.

7. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, et al. (2014) The Reactome

pathway knowledgebase. Nucleic Acids Res 42: D472–477.

8. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8: 565.

9. Altay G, Asim M, Markowetz F, Neal DE (2011) Differential C3NET reveals

disease networks of direct physical interactions. BMC Bioinformatics 12: 296.

10. Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, et al. (2010)

Rewiring of genetic networks in response to DNA damage. Science 330: 1385–

1389.

11. Goss PJ, Peccoud J (1998) Quantitative modeling of stochastic systems in

molecular biology by using stochastic Petri nets. Proc Natl Acad Sci U S A 95:

6750–6755.

12. Cytoscape.js website. Available: http://cytoscape.github.io/cytoscape.js/. Ac-

cessed 2014 Jul 15.

13. Contrino S, Smith RN, Butano D, Carr A, Hu F, et al. (2012) modMine: flexible

access to modENCODE data. Nucleic Acids Res 40: D1082–1088.

14. Smith RN, Aleksic J, Butano D, Carr A, Contrino S, et al. (2012) InterMine: a

flexible data warehouse system for the integration and analysis of heterogeneous

biological data. Bioinformatics 28: 3163–3165.

15. Kalderimis A IMJS Library.

16. Lyne M, Smith RN, Lyne R, Aleksic J, Hu F, et al. (2013) metabolicMine: an

integrated genomics, genetics and proteomics data warehouse for common

metabolic disease research. Database (Oxford) 2013: bat060.

17. Balakrishnan R, Park J, Karra K, Hitz BC, Binkley G, et al. (2012) YeastMine–

an integrated data warehouse for Saccharomyces cerevisiae data as a

multipurpose tool-kit. Database (Oxford) 2012: bar062.

esyN: Network Building, Sharing and Publishing

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e106035

https://github.com/esyN/code
https://github.com/esyN/code
www.esyn.org/home.php
http://cytoscape.github.io/cytoscape.js/


18. Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, et al. (2007) FlyMine:

an integrated database for Drosophila and Anopheles genomics. Genome Biol 8:
R129.

19. JSON website. Available: http://json.org/. Accessed 2014 Jul 15.

20. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, et al. (2014) Rare coding
variants in the phospholipase D3 gene confer risk for Alzheimer’s disease.

Nature 505: 550–554.
21. Forabosco P, Ramasamy A, Trabzuni D, Walker R, Smith C, et al. (2013)

Insights into TREM2 biology by network analysis of human brain gene

expression data. Neurobiol Aging 34: 2699–2714.
22. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, et al. (2009)

Genome-wide association study identifies variants at CLU and PICALM
associated with Alzheimer’s disease. Nature genetics 41: 1088–1093.

23. Kauwe JS, Cruchaga C, Karch CM, Sadler B, Lee M, et al. (2011) Fine
mapping of genetic variants in BIN1, CLU, CR1 and PICALM for association

with cerebrospinal fluid biomarkers for Alzheimer’s disease. PLoS One 6:

e15918.
24. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, et al. (2013)

Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
Alzheimer’s disease. Nat Genet 45: 1452–1458.

25. Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in

ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79: 416–438.
26. Rhinn H, Fujita R, Qiang L, Cheng R, Lee JH, et al. (2013) Integrative

genomics identifies APOE epsilon4 effectors in Alzheimer’s disease. Nature 500:
45–50.

27. Shang H, Liu G, Jiang Y, Fu J, Zhang B, et al. (2014) Pathway Analysis of Two
Amyotrophic Lateral Sclerosis GWAS Highlights Shared Genetic Signals with

Alzheimer’s Disease and Parkinson’s Disease. Mol Neurobiol.

28. Vasquez JB, Fardo DW, Estus S (2013) ABCA7 expression is associated with
Alzheimer’s disease polymorphism and disease status. Neurosci Lett 556: 58–62.

29. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, et al. (2013) Integrated
systems approach identifies genetic nodes and networks in late-onset Alzheimer’s

disease. Cell 153: 707–720.

30. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to
homeostatic regulation. Science 334: 1081–1086.

31. Uzunalic N, Zenciroglu A, Beken S, Piras R, Dilli D, et al. (2013) Crisponi

syndrome: a new mutation in CRLF1 gene associated with moderate outcome.

Genet Couns 24: 161–166.

32. Crisponi L, Crisponi G, Meloni A, Toliat MR, Nurnberg G, et al. (2007)

Crisponi syndrome is caused by mutations in the CRLF1 gene and is allelic to

cold-induced sweating syndrome type 1. Am J Hum Genet 80: 971–981.

33. Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in

Alzheimer’s disease. Mol Brain 4: 3.

34. Khwaja A (1999) Akt is more than just a Bad kinase. Nature 401: 33–34.

35. Ogishima S, Mizuno S, Kikuchi M, Miyashita A, Kuwano R, et al. (2013) A

map of Alzheimer’s disease-signaling pathways: a hope for drug target discovery.

Clinical pharmacology and therapeutics 93: 399–401.

36. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, et al. (2013)

Variant of TREM2 associated with the risk of Alzheimer’s disease. The New

England journal of medicine 368: 107–116.

37. Hernandez F, Lucas JJ, Avila J (2013) GSK3 and tau: two convergence points in

Alzheimer’s disease. Journal of Alzheimer’s disease : JAD 33 Suppl 1: S141–144.

38. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8:

new features for data integration and network visualization. Bioinformatics 27:

431–432.

39. Rohr C, Marwan W, Heiner M (2010) Snoopy–a unifying Petri net framework

to investigate biomolecular networks. Bioinformatics 26: 974–975.

40. Nishimura D (2001) BioCarta. Biotech Software & Internet Report 2: 117–120.

41. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, et al. (2010) BioModels

Database: An enhanced, curated and annotated resource for published

quantitative kinetic models. BMC Syst Biol 4: 92.

42. jQuery website. Available: http://jquery.com/. Accessed 2014 July 15.

43. Angularjs website. Available: https://angularjs.org/. Accessed 2014 Jul 15.

44. Underscore.js website. Available: http://underscorejs.org/. Accessed 2014 Jul

15.

45. Mozilla Persona website. Available: http://www.mozilla.org/en-US/persona/

Accessed: 2014 Jul 15.

46. Murata (1989) Petri Nets: Properties, Analysis and Applications. Proceedings of

the IEEE 77: 541–580.

esyN: Network Building, Sharing and Publishing

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e106035

http://json.org/
http://jquery.com/
https://angularjs.org/
http://underscorejs.org/
http://www.mozilla.org/en-US/persona/Accessed
http://www.mozilla.org/en-US/persona/Accessed

