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Abstract

Introduction: Dementia and cognitive loss impact a significant proportion of the global 

population and present almost insurmountable challenges for treatment since they stem from 

multifactorial etiologies. Innovative avenues for treatment are highly warranted.

Methods and results: Novel work with biological clock genes that oversee circadian rhythm 

may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin 

(mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) 

(SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin 

(EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately 

associated with autophagy that can maintain circadian rhythm, and have an intricate relationship 

that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and 

prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also 

have the potential to lead to devastating effects involving tumorigenesis in conjunction with 

pathways involving Wnt that oversee angiogenesis and stem cell proliferation.

Conclusions: Current work with biological clocks and circadian rhythm pathways provide 

exciting possibilities for the treating dementia and cognitive loss, but also provide powerful 

arguments to further comprehend the intimate and complex relationship among these pathways to 

fully potentiate desired clinical outcomes.
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2. Introduction

Neurodegenerative disorders pose a significant challenge for diagnosis, preventing disease 

progression, and providing treatment. Cognitive loss in relation to Alzheimer’s disease 

(AD) is an excellent example since diseases that include AD are the result of multiple 

underlying mechanisms [1–6] (Table 1). For example, many pathways may lead to memory 

loss and involve neuronal and vascular cell injury related to metabotropic receptors, lipid 

dysfunction, cellular metabolic dysfunction with diabetes mellitus (DM), astrocytic cell 

injury, β-amyloid (Aβ), heavy metal disease, loss of access to bright light, tau, mitochondrial 

damage, oxidative stress, acetylcholine loss, and excitotoxicity [1, 3, 6–30].

In addition, cognitive disorders raise significant financial concerns [1, 31–34]. Greater than 

800 billion United States dollars (USD) per year are required to treat dementia equaling 

approximately 2 percent of the global Gross Domestic Product. Social and medical services 

by the year 2030 may possibly equal 2 trillion USD per year in the United States. Currently, 

greater than 5 million patients have AD and it is estimated that 4 million receive care at a 

yearly cost of 3.8 billion USD. Furthermore, the market revenue to provide treatments for 

AD may not be fully appreciated, but at minimum it may be greater than 11 billion USD. 

Many new social and medical services will be necessary to meet this challenge such that 60 

million additional care workers will be needed [35–37]. These projections do not consider 

that all cases of dementia may not have been identified and diagnosed at this time [38, 39].

Cognitive loss impacts a large spectrum of the population. Dementia in the United States 

affects greater than 5 million people [4]. Many of these cases, 60 percent, are diagnosed 

as AD [4, 6, 17, 40–43]. Case of AD that are familial in origin comprise under 2% of all 

cases [4]. In familial AD that affects 200 families worldwide, mutations in the presenilin 

1 or 2 genes occurs and an autosomal dominant mutated amyloid precursor protein (APP) 

gene exists. In these familial AD patients, illness can present prior to 55 years of age 

[44–46]. Familial AD can be the result of mutations in chromosome 21 leading to changes 

in APP, mutations in chromosome 14 causing changes in presenilin 1, and mutations in 

chromosomes 1, 14, and 21 such that mutations in chromosome 1 lead to changes in 

presenilin However, it is the sporadic version of AD that leads to illness in patients over age 

65 and represents the cases of AD in ten percent of the population in the world. The ϵ4 allele 

of the apolipoprotein E (APOE) gene represents an additional risk of developing AD in the 

sporadic group.

3. Biological clocks and circadian rhythm pathways for dementia 

treatment

Current attempts to treat dementia such as with cholinesterase inhibitors may lead to a 

decrease in the presenting symptoms but ultimately do not block the progression of the 

disease, such as in AD [27, 45, 47, 48]. Other treatments for cognitive loss can focus on 

metabolic disorders, such as diabetes mellitus (DM) [1, 20, 27, 41, 49, 50], and on vascular 

disease [19, 45, 51–53]. Yet, there exist other risks for developing vascular cognitive 

loss that can affect the efficacy of treatments such as tobacco use, alcohol consumption, 

hypertension, and a low level of education [20, 39, 54–57]. With reference to metabolic 
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disease, tight glucose control in the serum in combination with early diagnosis of DM 

may assist to limit the progression of the disease, but complications from DM can still 

ensue [6, 58–69]. Given the need for novel strategies directed against memory loss and 

dementia, exciting new avenues of development are now focusing upon biological clock 

mechanisms and include the pathways of the mechanistic target of rapamycin (mTOR), its 

associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), the 

silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), 

mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), 

and the wingless pathway of Wnt pathway (Fig. 1).

Biological clocks and circadian rhythm pathways are vital components in the onset of 

nervous system disorders, memory loss, and dementia [6, 34, 39, 70–76] (Table 1). Changes 

in the function of biological clock pathways can impact cellular metabolic homeostasis [6, 

76–85], cancer [6, 80, 81, 84, 86–89], energy metabolism and aging [70, 74, 77, 84, 90], 

mitochondrial energy maintenance [76, 81, 91, 92], renal disease [78, 86], and viral diseases 

[72, 93–101]. Circadian rhythm in mammals is controlled in a region over the optic chiasm 

that detects light with retinal photosensitive ganglion cells in the suprachiasmatic nucleus 

(SCN) [6, 84, 98]. With the exposure to external light, biological clock genes oversee 

biochemical cell transmissions, physiological process in the body, and changes in behavior. 

The SCN controls the temperature of the body, cortisol and melatonin release, and oxidative 

stress responses through a connected system among the hypothalamic nuclei, pineal gland, 

and vasoactive intestinal peptide [88, 102, 103]. As part of the biological clock gene group, 

members of the basic helix-loop-helix-PAS (Period-Arnt-Single-minded) transcription factor 

family, that include CLOCK and BMAL1 [104], control gene expression of Cryptochrome 
(Cry1 and Cry2) and Period (Per1, Per2, and Per3) [6, 78, 84, 86, 105–107]. Modulation of 

these pathways and auto-feedback interactions are controlled by PER:CRY heterodimers that 

block transcription during nuclear translocation promoted by CLOCK:BMAL1 complexes. 

Other regulatory pathways that can be activated by CLOCK:BMAL1 heterodimers include 

RORα and retinoic acid-related orphan nuclear receptors REV-ERBα, also termed NR1D1 

(nuclear receptor subfamily 1, group D, member 1). The REV-ERBα and RORα receptors 

attach to retinoic acid-related orphan receptor response elements (ROREs) that exist in the 

BMAL1 promoter to block and promote rhythmic transcription of BMAL1 by RORs and 

REV-ERBs, respectively. REV-ERBs can inhibit transcription to lead to circadian oscillation 

of BMAL1 [74, 105].

With neurodegeneration and aging studies, experimental studies with Parkinson’s disease 

(PD) using 6-hydroxydopamine (6-OHDA) during chronic treatment with levodopa show 

depressed levels of BMAL1 and RORα, indicating that memory loss in PD patients 

also may be a result of medication that alters circadian rhythm clock genes [106]. 

Cognitive impairment with memory loss and neuronal injury may occur as a result of 

sleep fragmentation during extended space flight which alters circadian rhythm [108, 109]. 

Changes in the DNA methylation of biological clock genes may foster memory loss and 

changes in behavior since rhythmic methylation of BMAL1 has been shown in the brains 

of individuals with AD [70]. In experimental studies AD using mice, significant alterations 

have been observed in RNA clock gene expression that may suggest a dysfunction in the 

clock pathways during cognitive loss [110].
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4. Circadian rhythm disruption and the wingless wnt pathway

Lifespan can be affected by biological clock genes. Lifespan in Drosophila melanogaster is 

decreased through three arrhythmic mutants involving ClkAR, cyc0 and tim0. In addition, 

mutations in ClkAR with increasing age can result in dysfunction with ambulation. Through 

the promotion of Clk function, the locomotor deficits in Drosophila were reversed. This 

loss of function appears linked to the absence of dopaminergic neurons instead of insults 

from oxidative stress [75]. Other studies in Drosophila also suggest negative effects 

with alterations in circadian rhythm [6, 80, 84] (Table 1). For example, TIMELESS, 

a mammalian homolog of Drosophila circadian rhythm gene, can lead to cell death 

and has increased expression in nasopharyngeal carcinoma. During increased TIMELESS 

expression, cell growth pathways are fostered that involve the wingless pathway of Wnt/β-

catenin and resistance against chemotherapy to lead to cell apoptosis, such as with cisplatin, 

is increased [89]. Wnt proteins are cysteine-rich glycosylated proteins that can affect 

development of neurons, immune system function, tissue fibrosis, angiogenesis, stem cell 

development, and cancer [111–114]. Yet, detrimental effects with Wnt pathways can result 

to promote increased vascular growth of tumors [111, 115, 116] and tumorigenesis [40, 

117–121]. As a result, these mechanisms may work in conjunction with TIMELESS. There 

also is evidence for sleep fragmentation and disruption of biological clock genes with shift 

work to indicate that these lighting and international travel are other examples that can 

lead to circadian rhythm disturbance [79]. Sleep deprivation affects circadian rhythm and 

can prevent the clearance of Aβ, α-synuclein, and tau that are tied to the progression of 

nervous system disorders that include AD and PD [34, 109]. Some work suggests that 

female healthcare workers with extended night shift work may be at enhanced risk for breast 

cancer [122]. The circadian gene hClock during increased expression also can lead to cancer 

and colorectal cancer metastatic disease through promotion genes that activate angiogenesis 

[123].

5. The mechanistic target of rapamycin (mTOR) and autophagy

Circadian clock genes rely upon pathways of both autophagy and the mechanistic target 

of rapamycin (mTOR) [6, 84, 124–126] (Table 1). Circadian rhythm dysfunction can 

lead to changes in the induction of autophagy especially during cognitive loss [72, 81, 

84, 92, 127–129]. Autophagy plays a vital role in multiple diseases of the nervous 

system and can sequester and remove intracellular deposits during AD [19, 41, 130, 

131], amyotrophic lateral sclerosis [48, 132, 133], Huntington’s disease (HD) [19, 134], 

traumatic brain injury [135–137], and PD [83, 130, 135, 138–140]. This removal of toxic 

intracellular substances may be important to maintain memory and cognition. As part of 

a programmed cell death pathway, autophagy is tied to oxidative stress [2, 29, 66, 67, 71, 

141–145]. Autophagy pathways can recycle cytoplasmic organelles and components for 

tissue remodeling [19, 146] and can eliminate non-functional organelles [6, 71, 142, 147]. 

Macroautophagy reuses organelles in cells and packages cytoplasmic proteins into cellular 

components termed autophagosomes. Once associated with lysosomes, the autophagosomes 

are degraded to begin another process for the recycling of organelles [19]. Microautophagy 

promotes invagination of lysosomal membranes to allow for the digestion of cell cytoplasm 
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components. Chaperone-mediated autophagy employs cytosolic chaperones to transport 

cytoplasmic cell components across lysosomal membranes.

Previous studies also suggest in experimental studies with AD that a baseline cyclic 

circadian rhythm that controls autophagy is necessary to reduce Aβ deposition and prevent 

memory loss [129, 148]. Alterations in environmental homeostasis [82, 129, 149] can alter 

circadian rhythm that results in loss of cognitive ability [2, 19, 49, 50, 84, 150]. Sleep 

fragmentation also can produce changes in hippocampal autophagy proteins and decrease 

memory function [4, 127, 151–154]. Cellular protection is dependent on the activation of 

autophagy with circadian clock proteins during insults with stroke, since loss in the function 

of the PER1 circadian clock protein can increase cerebral ischemia [128].

In regard to the mTOR pathway, mTOR is a 289-kDa serine/threonine protein kinase and 

is vital during nervous system disease and memory loss [2, 19, 20, 25, 49, 155–157]. 

mTOR is also known as the mammalian target of rapamycin and the FK506-binding 

protein 12-rapamycin complex-associated protein 1 [19, 85, 158, 159]. mTOR is the 

main component of the protein complexes mTOR Complex 1 (mTORC1) and mTOR 

Complex 2 (mTORC2) [160–162]. mTORC1 and mTORC2 are then divided into additional 

components [2, 107, 163–165]. mTORC1 is composed of Raptor, Deptor (DEP domain-

containing mTOR interacting protein), the proline rich Akt substrate 40 kDa (PRAS40), and 

mammalian lethal with Sec13 protein 8, termed mLST8 (mLST8) [20, 40, 166]. mTORC1 

activity is controlled through a number of pathways that includes PRAS40 by blocking the 

association of p70 ribosomal S6 kinase (p70S6K) and the eukaryotic initiation factor 4E 

(eIF4E)-binding protein 1 (4EBP1) with Raptor [167, 168]. Rapamycin is an agent that can 

inhibit mTOR activity [164, 169–172]. Rapamycin blocks the activity of mTORC1 through 

its association with immunophilin FK-506-binding protein 12 (FKBP12) that attaches to 

the FKBP12 -rapamycin-binding domain (FRB) at the carboxy (C) -terminal of mTOR to 

impede the FRB domain of mTORC1 [4]. mTORC2 is composed of Rictor, Deptor, mLST8, 

the mammalian stress-activated protein kinase interacting protein (mSIN1), and the protein 

observed with Rictor-1 (Protor-1) [167, 173, 174]. mTORC2 oversees remodeling of the 

cytoskeleton through PKCα and the migration of cells through the Rac guanine nucleotide 

exchange factors P-Rex1 and P-Rex2 and through Rho signaling [175]. Cognitive decline 

can be associated with the loss of mTOR activity and altered circadian rhythm during 

extended space flight [108]. Ischemia in the brain that leads to stroke may be altered by 

alteration in circadian rhythm genes and fluctuations in the activity of mTOR [124, 128]. 

Other studies suggest that the absence of period2 (PER2), a mammalian circadian clock 

protein, can increase mTOR activity and chemotherapy drug resistance [125].

mTOR also maintains a relationship with the silent mating type information regulation 2 

homolog 1 (Saccharomyces cerevisiae) (SIRT1). SIRT1 maintains an inverse relationship 

with mTOR [19, 176–180]. SIRT1 can also affect pathways of autophagy [49, 65, 163, 178, 

181–186]. SIRT1 activity can lead to the expansion of neurites and promote the survival 

of neurons during conditions that limit nutrients that involves mTOR inhibition [187]. 

SIRT1 can foster growth of tumors during autophagy induction that requires the blockade 

of mTOR, indicating that autophagy and SIRT1 can be targeted to control tumorigenesis 

[183]. SIRT1 is necessary to foster autophagy and mTOR inhibition during oxidative stress 
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to preserve mitochondrial function in embryonic stem cells [188]. During periods of elevated 

serum glucose, SIRT1 can block mTOR to offer vascular cell protection [189]. SIRT1 with 

the blockade of mTOR activity can increase photoreceptor cell survival [177] and limit cell 

senescence [190]. It is also important to note that some pathways that lead to nerve cell 

injury require a relationship between mTOR and SIRT1 that is symbiotic. During the loss 

of dopaminergic neuronal cells, it has been observed that a balance in activities of SIRT1, 

mTOR, and forkhead transcription factors are required to promote neuronal cell survival 

[191]. It also has been demonstrated that SIRT1 and mTOR absence during obesity can 

suppress core circadian components CLOCK and BMAL1 and lead to loss of metabolic 

cellular homeostasis. The agent metformin, an inhibitor of mTOR activity [4, 65, 72], can 

prevent such processes during obesity in experimental mouse models and can reverse the 

loss of SIRT1 function during inhibition of the circadian components CLOCK and BMAL1 

[192].

6. The silent mating type information regulation 2 homolog 1 

(Saccharomyces cerevisiae) (SIRT1)

Biological clock pathways closely rely upon SIRT1 [6, 84, 85, 91, 193, 194] (Table 1). 

SIRT1 is a histone deacetylase that can transfer acetyl groups from ϵ-N-acetyl lysine amino 

acids to the histones of deoxyribonucleic acid (DNA) to control transcription [19, 45, 48, 84, 

85, 152, 195–200]. As noted above, SIRT1 plays a critical role in nervous system diseases 

[164, 199, 201, 202] that also are dependent upon autophagy regulation [113, 178, 185, 

186, 190, 203]. Other work focuses on SIRT1 to control the expression of clock genes 

through PER2 deacetylation [204]. SIRT1 its ability to control multiple biological clock 

gene pathways indicates that loss of SIRT can impact circadian rhythm cycles and result in 

memory loss and AD [110].

Through SIRT1 pathways, the coenzyme ß-nicotinamide adenine dinucleotide (NAD+) has 

an important function with clock genes that is linked to mTOR [20, 66, 72, 192, 205]. 

Control of circadian rhythm by SIRT1 and melatonin can impact glucose tolerance in 

cells [102]. Dementia onset can be dependent upon melatonin, a pineal hormone that 

controls circadian rhythm [81, 88, 95], as well as mTOR through autophagy induction 

[90, 206]. During the process of aging, circadian rhythm cycles involving melatonin can 

affect infection with coronavirus disease of 2019 (COVID-19) [94], cellular metabolism 

[90, 103], mitochondrial dysfunction [81], oxidative stress [207, 208], and inflammatory 

mediators [206, 209]. In addition, SIRT1 can affect biological clock rhythm through stem 

cell function [210] and inflammation during obesity [91] and neurodegeneration [209]. 

Cellular NAD+ pools fluctuate with circadian rhythmicity and with aging [72]. SIRT1 in 

connection with CLOCK:BMAL1 can control the circadian expression of nicotinamide 

phosphoribosyltransferase (NAMPT) that is required for NAD+ production. SIRT1 also 

through the NAMPT promoter can promote the circadian synthesis of its own coenzyme 

[211]. Yet, NAD+ cellular pools can become depleted during impairment of mitochondrial 

function to result in cell injury with cellular NAD+ pools oscillating with free nicotinamide 

levels and promoting cell injury, metabolic dysfunction, and loss of cognitive function [205].
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SIRT1 regulation of biological clock genes also can affect cognitive function though growth 

factors, such as EPO [161, 197, 212–214]. The EPO gene is present on chromosome 7 

and represents a single copy in a 5.4 kb region of the genomic DNA [215, 216]. The 

gene encodes for a polypeptide chain protein that has 193 amino acids [64, 217]. EPO 

later undergoes the removal of a carboxy-terminal arginine166 in the mature human and 

recombinant human EPO (rhEPO). A protein with a molecular weight of 30.4 kDa and 165 

amino acids is generated as the mature protein [218–221]. EPO expression occurs in the 

brain, uterus, and liver [64, 161, 164, 215, 216, 222, 223], but the principal site for the 

production and secretion of EPO is the peritubular interstitial cells of the kidney [216, 217, 

224–227]. It is important to note that expression of EPO is overseen by oxygen tension 

changes and not by the concentration of red blood cells [64, 228, 229].

In relation to SIRT1, EPO prevents metabolic dysfunction by modulating adipose energy 

homeostasis in adipocytes through the combined activation of peroxisome proliferator-

activated receptor-α (PPAR-α) and SIRT1 [213] (Table 1). EPO promotes vascular 

cell protection in the brain through SIRT1 nuclear subcellular trafficking and blocks 

mitochondrial depolarization, cytochrome c release, BCL2 associated agonist of cell death 

(Bad) activity, and caspase activation [212]. EPO can increase human cardiomyocyte 

survival through SIRT1 activation during chemotherapy toxicity [197] and prevent brain 

neuronal cell loss through the up-regulation of SIRT1 [214]. EPO can block memory 

loss during AD [5, 43], control metabolic pathways [230, 231], and block mitochondrial 

dysfunction [197, 216, 222, 232–234]. However, control of biological clock gene pathways 

appear to be necessary for EPO and SIRT1 to offer cellular protection. Some studies indicate 

that during hypoxia specific clock genes, that include BMAL1 and PER2, are required for 

the production of EPO [235].

EPO also relies upon mTOR to affect cellular survival. EPO employs mTOR to foster 

neuronal regeneration through autophagy and apoptotic pathways [20, 203, 236–239]. EPO 

prevents apoptosis during Aβ exposure with mTOR activation to prevent caspase activation 

[240]. EPO can increase the survival of microglia during oxidative stress through mTOR 

signaling pathways [241]. EPO oversees mTOR, protein kinase B (Akt) [232, 242, 243], 

and proline rich Akt substrate 40 kDa (PRAS40) to promote the survival of neurons during 

oxygen-glucose deprivation [244].

7. Mammalian forkhead transcription factors (FoxOs)

Mammalian FOXO proteins of the O class are transcription factors and play a significant 

role in the nervous system. FoxO family members include FOXO1, FOXO3, FOXO4, and 

FOXO6 [67, 164, 245–247] (Table 1). FoxO proteins bind to deoxyribonucleic acid (DNA) 

through the FoxO-recognized element in the C-terminal basic region of the forkhead DNA 

binding domain. With the binding to DNA by FoxOs, target gene expression is blocked or 

promoted through fourteen protein-DNA contacts with the primary recognition site located 

at α-helix H3. Phosphorylation or acetylation of FoxOs can change the binding of the 

C-terminal basic region to DNA to inhibit FoxO transcriptional activity [48, 152, 199, 

248]. FoxOs are intimately connected circadian rhythm since they are linked to SIRT1 [4, 

34, 48, 85, 248–252]. For example, insulin-phosphatidylinositol 3-kinase (PI3K) signaling 
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that occurs in the liver is overseen by FoxO3 control of circadian rhythmicity through 

modulation of Clock. Loss of FoxO3 impairs the circadian amplitude and rhythmicity 

[253]. Autophagy induction also is dependent on mammalian FOXO proteins of the O 

class [12, 164, 202, 254, 255]. FoxO1 transcription factors [256] oversee the myelination 

of nerves that requires oligodendrocyte progenitor cells and determine the progression of 

disorders that include multiple sclerosis [257]. Additional studies indicate that epigenetic 

changes in DNA methylation and genetic variations of FoxO3a and FoxO1 also can 

affect demyelinating disorders [258]. Yet, it is important to state that a fine balance in 

FoxO activity is necessary to lead to the protection of cells since activation of FoxOs 

with autophagy can be beneficial. Sequestering and clearance of detrimental intracellular 

accumulations by FoxOs and autophagy can lead to increased survival of neurons [246, 259, 

260].

In regard to SIRT1, blockade of the activity of FoxOs by SIRT1 can promote cell survival 

[19, 67, 249–251]. However, FoxOs can attach to the SIRT1 promoter region to further 

change forkhead transcription [181]. This mechanism permits FoxOs to use auto-feedback 

mechanisms to regulate the activity of SIRT1. FoxO proteins, including FoxO1, can oversee 

SIRT1 transcription and increase the expression of SIRT1 [261]. These studies suggest 

an intimate relationship between SIRT1 and FoxOs. Interestingly, SIRT1 and FoxOs can 

synergistically increase cell survival. SIRT1 and FoxO3a can work in unison to block 

memory loss and Aβ brain toxicity, mitochondrial dysfunction, and oxidative stress [5, 152, 

262, 263].

8. Future perspectives

Neurodegenerative disorders that involve cognitive loss and dementia impact a significant 

proportion of the world’s population and lead to a large financial burden for all nations. 

Adding to these concerns is the knowledge that cognitive disorders present almost 

insurmountable challenges for treatment since they are multifactorial in origin and can result 

from multiple pathways that involve Aβ, tau, metabotropic receptors, excitotoxicity, lipid 

dysfunction, mitochondrial damage, astrocyte injury, loss of access to bright light, heavy 

metal disease, acetylcholine loss, oxidative stress, and metabolic dysfunction that involves 

DM. Novel new therapeutic strategies are desperately warranted. New investigations may 

meet this need with work that highlights biological clock genes that oversee circadian 

rhythm and involve the pathways of mTOR, SIRT1, FoxOs, EPO, and the Wnt/β-catenin 

pathway (Fig. 1). These pathways are complex in nature and intimately tied to autophagy 

induction that can sequester intracellular accumulations and potentially reduce cognitive 

loss under some conditions. Dysfunctional changes in biological clock genes and circadian 

rhythm can result in motor deficits, memory impairment, and the progression of dementia. 

Even chronic treatment regimens that occur during PD can alter circadian rhythm function 

and foster dementia. The pathways of autophagy may be one mechanism to oversee 

circadian rhythm homeostasis that can become lost during conditions of chronic sleep 

fragmentation.

The pathways that impact circadian rhythm have an intricate relationship that can lead to 

both beneficial as well as detrimental clinical effects. For example, blockade of mTOR 
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activity can change circadian rhythm, affect memory function, and increase neuronal cell 

injury such as during stroke. SIRT1 can oversee the production of NAD+ pools that have 

been tied to circadian rhythmicity and if these cellular pools become depleted, cell injury 

and metabolic dysfunction can ensue with cognitive loss. Furthermore, without circadian 

rhythm control, the protective capability of EPO and SIRT1 may become absent and lead 

to mitochondrial dysfunction and the loss of cognition. In regard to FoxOs, SIRT1 and 

FoxOs may be required to work in unison to limit cognitive loss, mitochondrial dysfunction, 

and oxidative stress. Yet, it is important to remember that Wnt pathways that function in 

conjunction with circadian clock gene pathways, such as TIMELESS, may promote new 

angiogenesis and tumorigenesis. In addition, other circadian genes that include hClock also 

may promote metastatic colorectal cancer through the promotion of angiogenesis-related 

gene activity and vascular cell growth.

These observations serve to form a strong foundation for the further investigation of 

biological clock genes and circadian rhythm in regards to their significant role in 

neurodegenerative disorders such as dementia. The circadian pathways involving mTOR, 

SIRT1, FoxOs, EPO, and the Wnt can offer considerable potential for the understanding and 

treatment of memory loss and neurodegnerative disorders. Yet, it is the intimate and complex 

relationship among these pathways that is most intriguing and potentially offers the greatest 

insight to harness this knowledge for the innovative treatment of dementia.
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Abbreviations:

AD Alzheimer’s disease

DM diabetes mellitus

EPO erythropoietin

FoxOs mammalian forkhead transcription factors

HD Huntington’s disease

NCDs non-communicable diseases

mTOR the mechanistic target of rapamycin

mTORC1 mTOR Complex 1

mTORC2 mTOR Complex 2

PER2 period2
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PRAS40 proline rich Akt substrate 40 kDa

SIRT1 the silent mating type information regulation 2 homolog 1 

(Saccharomyces cerevisiae)

US United States

USD United States Dollars

Wnt wingless
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Fig. 1. Biological Clock Pathways Are Complex and May Yield Variable Outcomes.
The circadian biological clock gene pathways are intricately related but complex in nature. 

The pathways of the mechanistic target of rapamycin (mTOR), the silent mating type 

information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian 

forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the 

wingless Wnt/β-catenin pathway can lead to beneficial outcomes and employ autophagy 

induction that may provide cellular protection, metabolic homeostasis, and prevent dementia 

and cognitive loss. Yet, biological clocks and alterations in circadian rhythm, such as 

during sleep disruption and fragmentation, also have the potential to lead to devastating 

effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee 

angiogenesis and stem cell proliferation. Circadian rhythm disruption can result from shift 

work, exposure to artificial lighting, and from sleep fragmentation. A fine balance in 

the oversight of circadian biological clock gene pathways is required to foster safe and 

efficacious clinical outcomes for the treatment of dementia and cognitive loss.
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Table 1:

Highlights

Neurodegeneration and Dementia: Circadian Rhythm Biological Clock Gene Pathways

• Cognitive loss in relation to Alzheimer’s disease is an excellent example of complex disorders that are multi-factorial in origin and 
may involve several mechanisms as etiologies that include cellular injury from β-amyloid, tau, metabotropic receptors, excitotoxicity, lipid 
dysfunction, mitochondrial damage, loss of access to bright light, acetylcholine loss, oxidative stress, and metabolic dysfunction with diabetes 
mellitus.

• Current strategies to treat cognitive loss are limited and do not adequately address disease onset and progression. Innovative work with 
biological clock genes that oversee circadian rhythm can offer new strategies for the treatment of dementia that employ the pathways of the 
mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), 
mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt/β-catenin pathway.

• Autophagy in combination with biological clock gene pathways are dependent upon mTOR. Studies suggest that a basal circadian rhythm 
that modulates autophagy and mTOR pathways involving mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) may be necessary 
to prevent cognitive decline and cellular toxicity with amyloid deposition. mTOR also holds an inverse relationship with SIRT1 and these 
pathways may be necessary to support core circadian components CLOCK and BMAL1 and prevent cellular metabolic dysfunction.

• SIRT1,a histone deacetylase, regulates ß-nicotinamide adenine dinucleotide (NAD+) cellular NAD+ pools that fluctuate with circadian 
rhythmicity and can impact cell function, metabolism, and loss of cognitive function. Oversight with SIRT1 of circadian rhythm pathways may 
be required for growth factor EPO cellular production and protection.

• FoxOs that can control circadian rhythmicity, such as through the modulation of Clock, can also bind to SIRT1 promoter regions to function 
through autofeedback mechanisms to regulate SIRT1 activity. SIRT1 and FoxOs can work in unison to block cognitive loss and prevent amyloid 
toxicity, mitochondrial dysfunction, and oxidative stress injury.

• Wnt proteins are cysteine-rich glycosylated proteins that can affect neuronal development, immunity, tissue fibrosis, angiogenesis, stem 
cell proliferation, and cancer. Wnt pathways that function in conjunction with circadian clock gene pathways, such as TIMELESS, may 
promote new angiogenesis and tumorigenesis. Furthermore, disruption of circadian rhythms with sleep fragmentation may increase the risk for 
developing cancer and other circadian genes that include hClock also may promote the metastasis of colorectal cancer through the enhanced 
expression of angiogenesis-related genes.
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