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Preoperative diagnosis of gastric cancer and primary gastric lymphoma is

challenging and has important clinical significance. Inspired by the inductive

reasoning learning of the human brain, transfer learning can improve

diagnosis performance of target task by utilizing the knowledge learned from

the other domains (source domain). However, most studies focus on single-

source transfer learning and may lead to model performance degradation

when a large domain shift exists between the single-source domain and target

domain. By simulating the multi-modal information learning and transfer

mechanism of human brain, this study designed a multisource transfer

learning feature extraction and classification framework, which can enhance

the prediction performance of the target model by using multisource medical

data (domain). First, this manuscript designs a feature extraction network

that takes the maximum mean difference based on the Wasserstein distance

as an adaptive measure of probability distribution and extracts the domain-

specific invariant representations between source and target domain data.

Then, aiming at the random generation of parameters bringing uncertainties

to prediction accuracy and generalization ability of extreme learning machine

network, the 1-norm regularization is used to implement sparse constraints

of the output weight matrix and improve the robustness of the model. Finally,

some experiments are carried out on the data of two medical centers. The

experimental results show that the area under curves (AUCs) of the method

are 0.958 and 0.929 in the two validation cohorts, respectively. The method in

this manuscript can provide doctors with a better diagnostic reference, which

has certain practical significance.
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Introduction

Gastric cancer (GC) and primary gastric lymphoma (PGL)
are the two most common malignant gastric tumors. The
clinical manifestations of these two tumors are very similar
(Sun et al., 2021), while their treatment strategies are different.
Surgical resection remains the main treatment option for GC,
especially for patients who may be cured by radical resection.
However, the best PGL treatment options are chemotherapy
or radiotherapy. In addition, PGL lesions are generally located
in the submucosa of the gastric wall, which makes biopsy
testing unable to accurately locate lesions and leads to high
false-negative rates (Jung et al., 2016). Noninvasive computed
tomography (CT), widely used for differential and preoperative
diagnoses, therapeutic evaluation, and staging in patients with
gastric malignancies, can help find tumor lesions (Tsurumaru
et al., 2016). However, distinguishing GC and PGL by CT
signs of lesion distribution, irregular gastric wall thickness
and enhancement pattern is difficult (Park et al., 2010). Thus,
considering the differences in clinical management between
PGL and GC, it is of great value to differentiate PGL and GC
preoperatively, which may facilitate clinical decision-making.

Brain-like intelligent decision-making is a prevailing trend
in today’s world. Inspired by bionics and computer science,
the deep neural network has become one of the main means
to realize human-like decision-making and control, and is
a popular computer-aided diagnosis technology in medical
imaging diagnosis. Due to its excellent feature learning ability,
deep neural network has been continuously applied in the
classification and preoperative diagnosis of diseases (Tian et al.,
2019; Feng et al., 2020a,b; Kosaraju et al., 2020). However,
the training dataset size is crucial to building a robust model,
while obtaining large numbers of medical images is difficult
in clinical practice. Thus, developing a method to improve the
deep learning model performance is necessary. To improve the
model’s performance under small samples of medical datasets,
transfer learning technology has been widely used.

Transfer learning, which are inspired by the inductive
reasoning learning of the human brain, improves model
performance in target tasks by transferring features from
source tasks that have already been learned. Moreover, transfer
learning has been gradually applied in recent years to many
medical image analytical fields (e.g., image segmentation, lesion
localization, and lesion pattern recognition) (Van Opbroek
et al., 2015; Pan and Yang, 2020). Here, the paradigm of fine-
tuning parameters on the target data after pretraining based
on the ImageNet dataset is the most common (Romero et al.,
2020; Song et al., 2021). However, studies have shown that the
distribution similarity of the source and target domains is a key
factor in determining the effect of transfer (Kornblith et al.,
2018; Raghu et al., 2019). When there exists a large domain
shift between the source and target domains, transfer learning
based on the pretraining and fine-tuning paradigm may cause

negative transfer (Raghu et al., 2019). In addition, based on a
single-source domain, the model may learn the basic texture and
color features of natural images so that the discriminant ability
of the model tends to only single-source domain representation
(Li and Wang, 2022), and the generalization performance may
be poor.

Generally, data from multisource domains with different
data distributions can be collected in practical application
scenarios. The knowledge and internal relationship learned
from multisource domains can be better used to assist the target
task (Fang et al., 2021). Therefore, transfer learning methods
with multisource domains should have more potential for the
prediction performance improvement of target tasks. Due to
this advantage and potential, multisource transfer learning has
gradually attracted the attention of researchers and has been
widely used in some classification tasks (Li et al., 2019b; Zhang
et al., 2021). However, for multisource transfer learning, it is
necessary to find a method for learning a discriminative model
in the presence of a domain shift between the multisource
and target domains to better make full use of multiple source
domains. For example, in Fang et al. (2021), a multisource
ensemble transfer learning framework (MultiLSTM-DANN)
was proposed, which measures the marginal probability
distribution between different domains by the maximum
mean discrepancy (MMD) and transfers the features with
less distribution difference to build a classification model. In
addition, some studies (Li et al., 2019a; Wang et al., 2019)
utilize joint probability adaptation (JDA) to further analyze
the marginal and conditional probability distributions of the
features to reduce the distribution differences between the
source and target domains. The above researches attempt to
map all source and target domain data into a common feature
space to reduce domain distribution shifts and learn common
domain-invariant representations. However, it is not easy to
learn domain-invariant representations, even for one single-
source and one target’s domain data (Zhu et al., 2019). Moreover,
only considering the single distribution of data makes it difficult
to meet the actual situation, and we should combine different
data characteristics to analyze the data distribution. Hence, we
attempt to use the adaptive distribution adaptation method to
analyze the difference between each pair of source and target
domains and extract domain-invariant representations.

Motivated by the above problems, we propose an extreme
learning machine based on adaptation multiple spaces
feature and L1-norm regularization (AMSF-L1ELM), and the
contributions of this manuscript are summarized as follows:

(1) Adaptation multisource transfer learning feature extraction
network. By simulating the multi-modal information
learning and transfer mechanism of human brain, we
propose a feature extraction network for gastric tumor CT
images that adaptively considers the difference between
the marginal distribution (related to the data generation
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mechanism) and conditional distribution (related to
specific downstream tasks) of multisource data. À The
network takes the maximum mean difference based on the
Wasserstein distance to adaptively evaluate the probability
distribution of each pair of source and target domains
and extracts the domain-specific invariant representations
between each pair of source and target domains. Á To
reduce the misclassification of target samples near domain-
specific decision boundaries, this study adopts an ensemble
learning classifier for the comprehensive evaluation of
target samples. Based on the network, deep learning
features fused with multisource domain information are
extracted to pave the way for classification tasks.

(2) Extreme learning machine based on L1-norm regularization.
To achieve the effective classification of deep features, this
study uses a lightweight neural network extreme learning
machine to build a classification model. Aiming at the
problems that the output of an extreme learning machine
is prone to random fluctuation and poor generalization
performance, L1-norm regularization is used to implement
sparse constraints of the output weight matrix and improve
the model robustness.

Materials and methods

The AMSF-L1ELM includes three parts: (1) training the
multisource transfer learning feature extraction network
based on feature distribution dynamic alignment, and
extracting the deep learning features, (2) feature classification
algorithm based on extreme learning machine with L1-norm
regularization, and (3) model validation and evaluation.
The overall structure of AMSF-L1ELM is shown in
Figure 1.

Multisource transfer learning feature
extraction network

Transfer learning has been widely studied for many years,
and its effectiveness has been verified by researchers. The
performance improvement of multisource transfer learning
largely depends on the data distribution between the source
and target domains, and some studies have shown that the
distribution similarity of the source and target domains is
a key factor in determining the effect of transfer (Kornblith
et al., 2018; Raghu et al., 2019). It is worth noting that the
distributions of the source and target domains are different
in practical application scenarios and may satisfy different
probability distributions. As shown in Figure 2, when the
overall distributions of source domain 1 and the target
domain are similar, the local conditional probability distribution
should be focused on. In contrast, the overall distributions

of source domain 2 and the target domain are different,
and the marginal distribution should be prioritized. Thus,
the key to successful transfer is to adaptively measure and
reduce the distribution divergence between the source and
target domains.

Considering clinical practice, doctors often need to use a
variety of means for disease diagnosis, such as lesion screening
based on multisequence CT images (such as arterial phase and
venous phase) and then pathological diagnosis based on WSI
images. Additionally, the effectiveness of the transfer learning
model, which was based on single-source domain WSI of gastric
tissue and WSI of lung tissue, was preliminarily validated
according to our previous work (Feng et al., 2021). Considering
the above observations, this manuscript plans to select the
gastric WSIs (source domain 1), lung WSIs (source domain 2)
and arterial phase CT images of gastric cancer (source domain 3)
as the source domain data, and proposes a multisource transfer
learning feature extraction network, as shown in Figure 3.
The goal of the feature extraction network framework is to
dynamically measure the marginal and conditional distributions
between the source and target domains to adaptively minimize
the distribution difference and extract more effective deep
learning features.

Domain feature distribution alignment
Common feature extractor

The residual network (ResNet) (He et al., 2016) avoids
network degradation with the introduction of a skip
connection structure and has the advantage of optimizing
the fitting ability. Considering the computer equipment
and prediction task requirements, we use ResNet50 as the
common feature extraction subnetwork, which maps the
images from the original feature space into a common feature
space. To prevent overfitting the model, the parameters of the
network are initialized based on the model pretrained by the
ImageNet dataset.

Domain-specific feature extractor

Considering domain-invariant representations for each pair
of source and target domains is easier than extracting common
domain-invariant representations for all domains. Thus, we
map each pair of source and target domains into a specific
feature space for analysis. In a specific feature space, we aim to
adaptively eliminate distribution differences between source and
target domains and extract domain-invariant representations.
MMD is often used to construct two-sample tests and determine
whether the two data distributions are the same (Zhao et al.,
2021). Here, the MMD is used as the basic measure of the
feature distribution in the domain-specific feature space, and
we propose an adaptive MMD feature distribution alignment
algorithm based on the Wasserstein distance.

Maximum mean discrepancy is a kernel two-sample test that
rejects or accepts the null hypothesis p = q based on the observed
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FIGURE 1

The overall structure of adaptation multiple spaces feature and L1-norm regularization (AMSF-L1ELM). (A) Multisource transfer feature extraction
network framework. (B) Deep feature extractor. (C) Extreme learning machine for classification. (D) Model validation and evaluation.

FIGURE 2

Examples of two different source domains and the target domain during distribution adaptation. (A) The sample distribution of source domain 1.
(B) The sample distribution of source domain 2. (C) The sample distribution of target domain.

samples. The basic idea is that if the generating distributions are
identical, all the statistics are the same. Formally, MMD defines
the following difference measure:
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distribution q. Hdenoting the reproducing kernel Hilbert space
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| is the number of
samples for the target domain. φ(•) is the mapping function
from the original space to the RKHS, and satisfies the following

relation: < φ(x), φ(y) >H= k(x, y). k(x, y) is a Gaussian kernel
function, namely:

k(x, y) = exp(−||x− y||2
/

2σ2) (2)

where σ represents the size of the Gaussian kernel. Combining
Equations (1) and (2), the MMD between each source and target
domain is defined as:
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In clinical practice, the distribution of multisource medical
data may be different. For example, since CT and WSI are
generated by different mechanisms, their marginal probability
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FIGURE 3

Multisource transfer feature extraction network framework.

distributions may be different. In contrast, venous phase
images and arterial phase images were obtained from the same
patient at different scan times, and their local conditional
probability distributions may be more different. Based on the
above assumptions, this study takes MMD as the basic data
distribution measurement tool and introduces the probability
distribution adaptation factor µ to adaptively measure the
marginal and conditional distributions of the data, defined
as follows:

MMMD(Xs,Xt) = (1− µ)MH(p(Xs), q(Xt)))

+ µ
∑1

l=0 M
(l)
H (p(Ys(l)

|Xs(l)), q(Y t(l)
|Xt(l)))

(4)
where µ ∈ [0, 1] is the probability distribution adaptation
factor, and l ∈ {0, 1} denotes the sample class. p(Xs) and q(Xt)

represent the marginal distribution of source and target domain
data, and p(Ys

|Xs) and q(Y t
|Xt) represent the conditional

distribution of source and target domain data.
When µ→ 0, the difference in the global distribution

between the source and target domains is large, and the marginal
distribution adaptation is more important. When µ→ 1, it
indicates that the difference in the local distribution between
the source and target domain data is higher, and the conditional
distribution is more important. When µ→ 0.5, the marginal
and conditional distributions of the representation data are
equally important, and JDA studies this work. Inspired by but
different from JDA, MMD is used as the basic measure of feature

marginal and conditional distribution, and then Wasserstein
distance (Lichtenegger and Niedzialomski, 2019) is used to
calculate the probability adaptation factor µ for weighing
the importance of conditional and marginal distribution in
this study.

The Wasserstein distance is based on the optimal transport
theory and aims to adapt the difference between the data
probability distributions with minimum cost. It is defined
as follows:

W(Xs,Xt) = inf
ν∼
∏

(p,q)
E(x,y)∼ν[||x− y||] (5)

where
∏

(p, q) is the set of all possible joint distributions
combined by p and q distributions. For each possible joint
distribution ν, we can obtain a sample x and y from it and
calculate the distance between the two samples ||x− y||. Then,
we can calculate the expected value E(x,y)∼ν[||x− y||] of the
sample under the distribution ν. In all possible distributions,
the lower bound that can be taken for this expected value is the
Wasserstein distance.

Based on Eq. (5), we calculate the global Wasserstein
distance between the source and target domains as the weight
of the marginal probability, which is written as Wg . Inspired by
but different from Wang (Wang et al., 2017), the Wasserstein
distance of the l−th class from source domain Xs and
target domain Xt is the weight of the conditional probability
distribution, which is written as Wl =W(Xs(l),Xt(l)). Further
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calculation of the probability adaptation factor µ is shown in
the following formula:

µ =

∑1
l=0 Wl

Wg +
∑1

l=0 Wl
(6)

Combining Eqs (4) and (6), the final difference in the
probability distribution between the source and target domain
data is obtained as follows:

MMMD =
Wg

Wg +
∑1

l=0 Wl
MH +

∑1
l=0 Wl

Wg +
∑1

l=0 Wl

1∑
l=0

M(l)
H (7)

Finally, we use Eq. (7) as the estimate of the discrepancy
between each pair of source and target domains. The MMD loss
for three pairs of source and target domains is reformulated as:

lMMD =
1
3

3∑
i=1

{M(i)
MMD}i (8)

Deep learning feature extraction
For the domain-specific feature extractors, three groups

of target domain features are generated. To reduce the
misclassification of target samples near the domain-specific
decision boundary, this study adopts the idea of ensemble
learning, and we train three subpredictors {Cj}

3
j=1 based on

three group features of the target domain. Each predictor Cj is
a softmax classifier and receives the target domain-invariance
feature from the j−th domain-specific feature extractors. Then,
the features are input into multiple trained classifiers for
prediction, and the average of the predicted results for three
classifiers is the final prediction, as follows:

ŷ =
1
3

3∑
j=1

Cj(xj) (9)

where xj are target domain-invariance features from
thej−thdomain-specific feature extractor. After obtaining
the predictionŷand the corresponding truth label y, we have the
experience loss:

ltask = J(ŷ, y) (10)

whereJ(∗)represents the cross-entropy loss function.
Based on Eqs (8–10), the total loss function of the feature

extraction network can be obtained as follows:

ltotal = αlMMD+ltask (11)

where α is the hyperparameter that controls the
impact of MMD loss.

By minimizing Eq. (11), the feature extraction network
is trained (see section “Experimental parameters” for specific
training details). In this manuscript, the convolution kernel in
the feature extraction network is used as a feature extractor
to extract specific features. As shown in Figure 4, there are
21,440 features in total, including 19,136 from the common

feature extraction network and 2,304 from three domain-
specific feature extraction subnetworks. To reduce the feature
redundancy and improve the running speed of the classification
model, the maximum relevance and minimum redundancy
(mRMR) algorithm (Bugata and Drotar, 2020) is used to select
the top 10% features with higher relevance to the label for
classification.

Extreme learning machine based on
1-norm regularization

An extreme learning machine (ELM), which is an efficient
feedforward neural network with a single hidden layer,
has the characteristics of high learning speed and strong
global search ability (Shi et al., 2018). ForMtraining samples
{(xi, yi)}Mi=1, xi = [xi1, ..., xin]T ∈ Rn is the training sample
feature vector, and the label corresponding training sample xi
is yi = [yi1, ..., yim]T ∈ Rm. The expression of the ELM output
withLhidden layer neurons is:

f (x) =
L∑

i=1

ϕig(ωi • xi + bi) = yi, xi ∈ Rn, ωi ∈ Rn, ϕi ∈ Rm

(12)
where ωi is the weight vector of the input layer neurons, and bi
is the bias of i−th hidden layer neurons. ϕi is the output weight
vector, and ωi • xj represents the inner product of ωi and xj .
g(•) is the activation function of the hidden layer.

Equation (12) is simplified and can be expressed as Eq. (13):

Gϕ = Y (13)

where G represents the output matrix of the hidden layer, ϕ

represents the weight matrix, and Y represents the expected
output matrix:

G =


gi(ω1 • x1 + b1) · · · gi(ωK • x1 + bL)

...
. . .

...

gi(ω1 • xN + b1) · · · gi(ωK • xN + bL)


N×L

(14)

ϕ =


ϕT

1
...

ϕT
K

,Y =


yT

1
...

yT
L

 (15)

When g(•) is infinitely differentiable, the ELM model
training process can be approximated as solving the least squares
solution of linear Gϕ = Y with random parameters ωi and bi, as
shown in Eq. (16):

ϕ̂ = G†Y (16)

where G† is the generalized inverse of the Moore-Penrose
pseudoinverse for the hidden layer output matrix G.

The traditional ELM theory is based on empirical risk
minimization theory, which have three basic steps: A random
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FIGURE 4

Deep learning feature extraction.

projection of the input space followed by some nonlinear
operation and finally a linear output layer of weights. The
basic ELM uses pseudo matrix inverse to estimate the output
layer weights which usually leads to over fitting and has
poor stability. To improve the model performance, structural
risk minimization theory (Hao et al., 2022) is adopted. Our
perspective to the output layer weight estimation in ELM
is approached from the feature selection point of view. The
random layer followed by the nonlinear activations maps the
feature space to another high dimensional linearly separable
space. Looking at the outputs of the hidden neurons as the
input features in this new space, and since many of the neurons
produce noisy outputs, the problem can be formulated as a
linear feature selection one. In the sense that, we would like to
find the minimum number of features (hidden neurons) such
that the linear classifier performance is optimized. Therefore,
L1-norm regularization is used to implement sparse constraints
of the output weight matrix to improve the performance of the
model. The specific expression is as follows:

min
ϕ
||Gϕ− Y|| + β||ϕ||1 (17)

Solve the above formula further:

ϕ̂ =

(
GTG+

1
β

I
)−1

GTY (18)

where β are the regularization parameters and I is the
identity matrix.

When the number of hidden layer nodes, regularization
parameters and activation function are set, ωi and bi are
randomly generated. Then, the output weight is solved based on
Eq. (18), and the predicted value of the model is calculated.

Experiments and evaluations

Data preparation

Source domain datasets
Source domain 1 (S1) is gastric cancer WSIs from the public

dataset of the MARS data science platform (45,797 images of
GC and 12,340 normal images). Source domain 2 (S2) is lung
WSIs from The Cancer Genome Atlas (TCGA) (290,558 lung
adenocarcinoma images, 285,995 lung squamous cell carcinoma
images), and source domain 3 (S3) is gastric artery phase CT
images from Jiangmen Central Hospital (including 2,465 images
of GC, 1,262 images of PGL).

Target domain datasets
The target domain data (T) for this study are gastric venous

phase CT images, which were collected from two medical
centers and include 184 patients from center 1 and 95 patients
from center 2. There were 110 patients in the training set (1,301
images of GC, 604 images of PGL), 74 patients in the internal
validation cohort (1,280 images of GC, 491 images of PGL) and
95 patients in the external validation cohort (4,976 images of
GC, 2,677 images of PGL).

Table 1 shows the dataset information.

Experimental parameters

The samples of the target domain were collected by Toshiba
Aquilion One 64-slice spiral CT. The scanning parameters were
as follows: tube voltage 120 kV, tube current automatic, detector
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TABLE 1 Basic information about multisource datasets.

Domain Domain name Domain description Data distribution

Source domain S1 Gastric WSIs 45,797 images of GC 12,340 normal images

S2 Lung WSIs 290,558 lung adenocarcinoma images 285,995 lung squamous cell carcinoma images

S3 Gastric artery phase CT images 2,465 images of GC 1,262 images of PGL

Target domain T: Center1 Gastric venous phase CT image 2,581 images of GC 1,095 images of PGL

T: Center2 Gastric venous phase CT image 4,976 images of GC 2,677 images of PGL

collimation 64 mm× 0.625 mm or 192 mm× 0.625 mm, field of
view 350 mm × 350 mm, pitch 0.656 or 0.7, matrix 512 × 512,
slice spacing 3 mm, slice thickness 3 mm, and reconstruction
slice thickness 3 mm. A plain scan was performed first, and then
a contrast medium (1.5 ml/kg, Ultravist, Bayer Schering) was
injected through the antecubital vein at a rate of 3.0–3.5 ml/s
with a high-pressure syringe. The arterial phase and venous
phase images were scanned at 30 and 60 s, respectively.

The training parameters of the multisource transfer learning
feature extraction network are as follows: the common feature
extractor is obtained by fine-tuning the ImageNet pretraining
network parameters based on ResNet50. A domain-specific
feature extraction subnetwork, including 1 × 1, 3 × 3, and
1× 1 convolution layers, is proposed to extract domain-specific
features. The whole network chooses the stochastic gradient
descent (SGD) algorithm with momentum as the optimizer
(momentum is 0.9, weight attenuation is 10−4, the initial
learning rate of the common feature extraction network is
0.001, and the initial learning rate of the domain-specific feature
extraction subnetwork is 0.01) to train, and the loss function is
cross entropy. The batch size is set to 32, and the training rounds
are 2,000. To suppress the image noise at the initial stage, the
regularization parameter α is selected based on the following
rules (Ganin and Lempitsky, 2015). α = 2

exp(−θ×iter) − 1, where
θ = 10, and iter represents the number of iterations. In this
manuscript, the PyTorch framework is used to implement the
proposed method, and the training is performed on an RTX
A6000 graphics card. In addition, After many experiments, the
regularization parameter β = 0.05of ELM.

Result evaluation index

To evaluate the performance of the diagnosis model, the
sensitivity (Sen), specificity (Spy), accuracy (Acc), precision
(Pre) and F1 value are measured (Bradley, 1997), and the
calculation equations are as follows:

Sen =
TP

TP+FN
Spe =

TN
TN+FP

Acc = TP+TN
TP+FN+TN+FP

Pre =
TP

TP+FP
F1 =2× Pre×Sen

Pre+Sen

(19)

where TP is the number of samples correctly classified as GC,
TN is the number of samples correctly classified as PGL, FP
is the number of samples misclassified as GC, and FN is the
number of samples misclassified classified as PGL.

In addition, the algorithm performance is evaluated
by the receiver operating characteristic curve (ROC)
(Bradley, 1997), and the area under curve (AUC) is usually
used to quantify the effect of the algorithm. The larger
the AUC (0 ≤ AUC ≤ 1), the better the classification
performance.

Results and analysis

Comparison with state-of-the-art
methods

To verify the superiority of the proposed AMSF-L1ELM,
several state-of-the-art methods are used for comparison
in two validation cohorts. Representative methods include
the classic radiomics signature (RS) (Feng et al., 2021)
based on radiomics features, a clinical model (CM) based
on subjective signs and clinical information (Feng et al.,
2021), Yu’s et al. (2019) transfer learning with a dynamic
adversarial adaptation network (DAAN), Cui’s et al.
(2020) batch nuclear-norm maximization (BNM), and
Zhu’s et al. (2021) deep subdomain adaptation network
(DSAN).

From these results in Table 2, we can obtain the following
insightful observations.

(1) Compared with RS, AMSF-L1ELM is based on a deep
learning framework, and specific features related to tumors
can be extracted in higher dimensions. The CM, which is
based on the patient’s clinical characteristics and CT signs,
is highly dependent on the experience of doctors.

(2) Dynamic adversarial adaptation network and BNM
learn a global domain shift, i.e., align the global
source and target distributions without considering
the relationships between two subdomains within
the same category of different domains, leading to
unsatisfactory transfer learning performance without
capturing fine-grained information.
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TABLE 2 Results of comparison with state-of-the-art methods.

Dataset Models AUC Sen Spe Acc Pre F1

Internal validation cohort CM 0.820 0.836 0.680 0.784 0.894 0.864

RS 0.837 0.735 0.962 0.813 0.824 0.777

DAAN 0.859 0.783 0.770 0.778 0.853 0.816

BNM 0.840 0.739 0.816 0.767 0.873 0.800

DSAN 0.783 0.844 0.557 0.738 0.765 0.803

AMSF-L1ELM 0.958 0.980 0.920 0.960 0.941 0.960

External validation cohort CM 0.717 0.942 0.512 0.747 0.890 0.915

RS 0.814 0.596 0.907 0.737 0.959 0.735

DAAN 0.822 0.772 0.664 0.706 0.588 0.667

BNM 0.789 0.802 0.596 0.675 0.551 0.653

DSAN 0.789 0.852 0.568 0.677 0.550 0.668

AMSF-L1ELM 0.929 0.885 0.814 0.853 0.973 0.927

The significance of bold values indicates the maximum value of the indicator in the internal and external validation cohort, respectively.

TABLE 3 Diagnostic performance of different structural models.

Dataset Models AUC Sen Spe Acc Pre F1

Internal validation cohort ResNet50 0.816 0.837 0.760 0.811 0.654 0.734

AMSF 0.917 0.833 0.838 0.835 0.898 0.864

AMSF-L1ELMens 0.898 0.878 0.800 0.851 0.896 0.887

AMSF-L1ELMmmd 0.929 0.959 0.840 0.919 0.922 0.940

AMSF-ELM 0.820 0.878 0.720 0.824 0.856 0.867

AMSF-L1ELM 0.958 0.980 0.920 0.960 0.960 0.970

External validation cohort ResNet50 0.780 0.731 0.721 0.726 0.955 0.828

AMSF 0.756 0.585 0.739 0.661 0.700 0.637

AMSF-L1ELMens 0.869 0.865 0.791 0.832 0.834 0.849

AMSF-L1ELMmmd 0.902 0.750 0.907 0.821 0.907 0.821

AMSF-ELM 0.813 0.808 0.744 0.779 0.792 0.800

AMSF-L1ELM 0.929 0.885 0.814 0.853 0.852 0.868

The significance of bold values indicates the maximum value of the indicator in the internal and external validation cohort, respectively.

TABLE 4 Effect of different source domains on the algorithm.

Dataset Models AUC (95% CI) Sen Spe Acc Pre F1

Internal validation cohort S1→ T 0.824 0.959 0.600 0.838 0.890 0.923

S2→ T 0.822 0.694 0.840 0.743 0.896 0.782

S3→ T 0.857 0.978 0.720 0.892 0.811 0.887

S1, S2→ T 0.921 0.980 0.880 0.946 0.941 0.960

S1, S3→ T 0.931 0.857 0.920 0.878 0.954 0.903

S2, S3→ T 0.863 0.816 0.800 0.811 0.889 0.851

S1, S2, S3→ T 0.958 0.980 0.920 0.960 0.960 0.970

External validation cohort S1→ T 0.818 0.808 0.744 0.779 0.810 0.809

S2→ T 0.805 0.731 0.814 0.768 0.827 0.776

S3→ T 0.841 0.692 0.977 0.821 0.948 0.800

S1, S2→ T 0.890 0.808 0.884 0.842 0.895 0.849

S1, S3→ T 0.900 0.846 0.861 0.853 0.881 0.863

S2, S3→ T 0.856 0.885 0.698 0.800 0.780 0.829

S1, S2, S3→ T 0.929 0.885 0.814 0.853 0.852 0.868

The significance of bold values indicates the maximum value of the indicator in the internal and external validation cohort, respectively.
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FIGURE 5

Sample distribution under different model features. (A) The baseline model ResNet50. (B) The model without considering the maximum mean
discrepancy (MMD) loss. (C) The model without considering the ensemble learning classifier. (D) The method of this manuscript. GC, gastric
cancer; PGL, primary gastric lymphoma.

FIGURE 6

Visualization of the probability adaptation factor µ.

(3) Compared with the proposed AMSF-L1ELM, the DSAN
learns a transfer network by aligning the relevant
subdomain distributions based on a local maximum
mean discrepancy, and it matches distributions without
considering domain-specific decision boundaries
between classes.

(4) The proposed AMSF-L1ELM method obtains the best
prediction results on the GC and PGL classification tasks,
verifying its effectiveness and superiority.

Ablation experiment

To verify the effectiveness of the algorithm, ablation
experiments are carried out for the following model: (1)
ResNet50, the baseline model; (2) AMSF, the end-to-end
multisource transfer learning feature classification model;
(3) AMSF-L1ELMens, without considering the MMD loss;
(4) AMSF-L1ELMmmd, without considering the ensemble
learning classifier; (5) AMSF-ELM, without considering the
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FIGURE 7

Comparison of probability density functions before and after probability distribution alignment. Panels (A–C) are the distribution differences
before probability distribution alignment; panels (D–F) are the distribution differences after probability distribution alignment.

L1-norm regularization; and (6) AMSF-L1ELM, the method of
this manuscript.

Based on the same parameters and datasets, the above
models are compared and analyzed (Table 3). With the
introduction of probability distribution adaptation and
ensemble learning classifiers, the results of the proposed
method (AMSF-L1ELM) are improved to different degrees. The
results showed that the dynamic adaptation of the marginal
probability distribution and the conditional probability
distribution has a certain effect, and the ensemble learning
classifier focuses on punishing the misjudgment of the class
boundary samples. In addition, compared with the AMSF-ELM
model, AMSF-L1ELM with L1-norm regularization improves
the AUCs of the classifier by 0.138 and 0.116 in the internal and
external validation cohorts, respectively.

Effect of different source domains on
the algorithm

Studies have shown that when the source domain data are
more similar to the target domain data, the effect of transfer
learning is better. This study analyzed the impact of different
source domains, and the comparison models are shown in
Table 4. This manuscript analyzes the single-source domain,
double-source domain and three-source domain.

For the single-source domain, the results show that the
model based on S3 is superior to the prediction results based
on S1 and S2, and the AUCs in the two validation cohorts
were 0.857 and 0.841, respectively. The main reason is that

S3 and T are homologous images, and the overall distribution
between S3 and T is more similar. The comparative analysis
of a single-source domain proves again that the similarity
between the source and target domains contributes to the
improvement of the transfer effect. Furthermore, this study
analyzes the diagnostic performance of the model under the
double-source domain. S1, which reflects the gastric tumor
information of local lesions from a micro level, may be relevant
to the task. The results show that the model (S1, S3 → T)
fuses the information of arterial phase CT and WSI of GC,
and it achieves good prediction performance in both validation
cohorts (AUC = 0.931 and 0.900).

Notably, although S2 is the WSI of the lung and is a different
organ than the stomach, S2 and T are both medical images,
and they may contain some basic medical features. Thus, with
the introduction of S2, the AUCs of AMSF-L1ELM (S1, S2,
S3 → T) in the two validation cohorts were best (0.958 and
0.929, respectively).

Visualization analysis of parameters
and features

In Figure 5, we visualize the latent representations for
ResNet50, AMSF-L1ELMens, AMSF-L1ELMmmd, and AMSF-
L1ELM by using the t-SNE algorithm (Liu et al., 2020).

In Figure 5, we can observe that (1) the results in
Figures 5B–D are better than one in Figure 5A, which shows
that we can benefit from considering more source domains; (2)
the result in Figure 5D is better than those in Figures 5B,C
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and which again validates the effectiveness of our model to
adaptively evaluate the probability distribution and ensemble
learning classifier.

In addition, we evaluate the effectiveness of the probability
adaptation factor µ, as shown in Figure 6. The average
probability adaptation factors for S1, S2, and S3 are 0.481,
0.438, and 0.485, respectively. When µ→ 0, the difference
in the global distribution between the source and target
domains is large, and the marginal distribution adaptation
is more important. When µ→ 1, it indicates that the
difference in the local distribution between the source and
target domains is higher, and the conditional distribution
is more important. Because the S3 and target domains are
homologous CT images, the global similarity (µ = 0.485)
of the two images is higher, and it is necessary to focus
on adapting their conditional distribution. Similarly, since
S2 is a WSI image of the lung, it is quite different
from the target domain in terms of the data generation
mechanism and downstream tasks. Thus, it is necessary
to focus on its global marginal probability distribution
(µ = 0.438).

Furthermore, this manuscript uses kernel density estimation
(KDE) (Dai et al., 2020), which is a nonparametric estimation
method of the probability density function, to analyze the
difference in the joint probability distribution between the
source and target domains before and after alignment, as
shown in Figure 7. The introduction of the adaptive probability
distribution alignment strategy reduces the distribution
difference between the source and target domains, and the
change between S3 and the target domain is more obvious.
The above results preliminarily verify the effectiveness of the
adaptive alignment strategy, while the difference in S1 and S2
after alignment is still large. Thus, more effective difference
measurement methods need to be introduced in future work.

Conclusion

Aiming at the problem of preoperative diagnosis of GC
and PGL under small samples, this manuscript proposes
an ELM based on adaptation multiple spaces feature and
L1-norm regularization (AMSF-L1ELM). From clinical
practice, AMSF-L1ELM can learn the multiple source
domain representation by performing dynamic distribution
alignment between different source and target domains. We
tested this on datasets from two centers, and the results
demonstrate the superiority of AMSF-L1ELM over other
state-of-the-art methods. However, there is still room for
improvement in the performance of the proposed method,
and more effective adaptation algorithms should be further
studied in future work.
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