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A B S T R A C T   

The coronavirus disease 2019 (COVID-19) pandemic has triggered a sudden global change in healthcare systems. 
Cancer patients have a higher risk of death from COVID-19 in comparison to patients without cancer. Many 
studies have stated that various factors, such as older age, frequent exposure to healthcare, and higher smoking 
rates are responsible for the complications of COVID-19. We hypothesize that side effects of chemotherapy, such 
as cellular senescence, could worsen COVID-19. Given this situation, in this review, we highlight the updated 
findings of research investigating the impact of cellular senescence on COVID-19 complications and explored 
potential therapeutic targets for eliminating senescent cells during the COVID-19 pandemic.   

Introduction 

Early studies of COVID-19 infected cancer patients reported that they 
showed a higher mortality rate in comparison to the general public [1, 
2]. Patients with thoracic cancer are considered to be at increased risk 
their age, smoking status, pre-existing comorbidities, and chemotherapy 
selection should be considered in the treatment of their disease [3,4]. 
Many chemotherapy drugs induce cellular senescence, which can trigger 
cancer metastasis and relapses and various adverse reactions to cancer 
treatments [5–7]. Thus, the COVID-19 pandemic has exposed and 
exacerbated the health system’s weaknesses around the world [8]. 

Cellular senescence is a physiological phenotype intended for the 
permanent arrest of the cell cycle and is morphologically identified as 
flattening, enlargement of the nucleus and nucleoli and the appearance 
of vacuoles in the cytoplasm [9,10]. We hypothesize that it will be 
necessary to clarify the possible association of cellular senescence with 
complications of COVID-19, which will challenge us to develop new 
therapeutic approaches to eliminate cellular senescence in cancer pa
tients during the COVID-19 pandemic. 

This review describes updated studies on the association between 
cellular senescence and COVID 19. This study also provides instructions 
for developing a promising treatment to clear senescent cells during the 
COVID-19 pandemic. 

The link between COVID-19 and cellular senescence: clinical and 
preclinical evidence 

SARS-CoV-2 is a novel coronavirus that infects the lower respiratory 

tract and which can cause coronavirus disease 2019 (COVID-19), a 
complex respiratory distress syndrome [11]. Cellular senescence, a sta
ble stunting state characterized by pro-inflammatory and pro-disease 
functions, may hypothetically contribute to the pathogenesis of 
COVID-19 and a potential pharmaceutical target for alleviating disease 
severity [12]. Many studies have revealed that cellular senescence may 
be related to the worsening of COVID-19 [12–14]; however, this link is 
still unclear. 

The measurement of cellular senescence bursts could hypothetically 
serve as a predictor of the severity of COVID-19. The targeting mecha
nisms associated with senescence before and after SARS-CoV-2 infection 
could have the potential to limit the range of severe harm and improve 
the effectiveness of vaccines [15]. Another study proposed that micro
dose lithium treatment could protect cells from senescence and the 
development of conditions related to aging [16]. The previous study also 
suggested the potential use of low-dose lithium in elderly patients in the 
"high-risk group" for COVID-19 [16]. Another study reported that aging 
plays a role in several infectious diseases, including SARS-CoV-2 infec
tion [17]. A previous study provided a novel direction that showed a 
crucial and interdependent association with different cellular pathways, 
e.g., mitochondrial, telomere, and cellular senescence in association 
with SARS-CoV-2 COVID-19 proteins [17]. Biasi et al. [18] stated that 
patients show significant increases in pro-inflammatory or 
anti-inflammatory cytokines, including T helper type-1 and type-2 cy
tokines, chemokines and galectins; their lymphocytes produce more 
tumor necrosis factor (TNF), interferon-γ, interleukin (IL) − 2 and IL-17, 
and the latest observation implies that blocking IL-17 could provide a 
new therapeutic strategy for COVID-19. Omarjee et al. [19] reported 

* Corresponding author. 
E-mail address: mohiuddin@med.kanazawa-u.ac.jp (M. Mohiuddin).  

Contents lists available at ScienceDirect 

Cancer Treatment and Research Communications 

journal homepage: www.sciencedirect.com/journal/cancer-treatment-and-research-communications 

https://doi.org/10.1016/j.ctarc.2021.100399    

mailto:mohiuddin@med.kanazawa-u.ac.jp
www.sciencedirect.com/science/journal/24682942
https://www.sciencedirect.com/journal/cancer-treatment-and-research-communications
https://doi.org/10.1016/j.ctarc.2021.100399
https://doi.org/10.1016/j.ctarc.2021.100399
https://doi.org/10.1016/j.ctarc.2021.100399
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ctarc.2021.100399&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cancer Treatment and Research Communications 28 (2021) 100399

2

that a decreased T-cell count, and functional depletion and cytokine 
release syndrome were identified as adverse factors in patients with 
severe SARS-CoV-2 infection. Therefore, severe COVID-19 can mimic a 
state of immune senescence [19]. A previous study claimed that pacli
taxel could be a promising cancer drug and could offer a new therapeutic 
strategy for gefitinib-resistant non-small cell lung cancer (NSCLC) dur
ing the COVID-19 pandemic [20]. The antiviral cyclic GMP-AMP syn
thase (cGAS)-stimulator of interferon genes (STING) signaling pathway 
has been newly proven to regulate senescence phenotypes [21]. Another 
study stated that prolonged exposure to IFN-γ and IL-6 were shown to 
induce senescence in normal cells, suggesting that infected—but not 
necessarily senescent—cells could trigger senescence in the surrounding 
environment [12]. A previous study reported that infected cells activate 
antiviral responses that include the release of type I and III interferons 
(IFNs) and other pro-inflammatory mediators [22]. Another study 
indicated that cellular senescence could be induced prematurely by viral 
infections through cellular or non-cellular autonomic mechanisms [23]. 
Some viruses can damage DNA or cell fusion and cause a state of cellular 
senescence [24–26]. SARS-CoV and SARS-CoV-2 trigger a "cytokine 
storm," releasing a series of inflammatory cytokines and chemokines, 
such as CXCL-10, CCL-2, IL-6 IL-8, IL-12, IL-1β, IFN-γ and TNF-α [27]. 
Many of these factors have the potential to induce "paracrine" senes
cence through prolonged cytokine signaling [27-29]. All preclinical and 
clinical studies have attempted to elucidate a possible connection be
tween cellular senescence and COVID-19. However, more studies are 
needed to fully establish this association. 

Potential therapeutic targets for eliminating cellular senescence 

Cellular senescence is considered a double-edged sword [30]. Se
nescent cells can promote chronic inflammation when senescent cells 
are retained [31], which can make COVID-19 worse [12]. Therefore, the 
targeted removal of senescent cells has emerged as a promising new 
opportunity for therapeutic interventions [32]. Currently, researchers 
have confirmed several molecular targets for the elimination of senes
cent cells (Fig. 1).  

• Mitogen-activated protein kinases (MAPKs) can detect changes in 
cellular conditions and, in turn, elicit adaptive responses, including 
cellular senescence [33]. MAPKs modulate the levels and functions 
of many proteins, including pro-inflammatory factors and factors in 
the p21/p53 and p16/Rb pathways, the primary regulatory axes of 
senescence [33]. Through these actions, MAPKs implement the key 
features of senescence: growth arrest, cell survival, and the secretory 
senescence-associated phenotype (SASP) [33]. The use of MAPK in
hibitors can help to eliminate cellular senescence [34].  

• The activation of AMPK is helpful for cellular homeostasis and the 
prevention of senescence [35]. However, the molecular events 
involved in AMPK activation are not well defined [35]. Another 
study claimed that AMPK reduced the expression of genes involved 
in cellular senescence in human lung epithelial cells [36]. Senescent 
cells are non-dormant cells that exhibit an increased inflammatory 
phenotype in response to stress [37]. Therefore, AMPK activation can 
assist in eliminating cellular senescence [38].  

• ROS results as a tightly regulated signaling process for the induction 
of cellular senescence [39]. High levels of ROS mediate p53 activa
tion, which induces the inhibition of autophagy [39]. This event 
generates mitochondrial dysfunction, which in turn causes cellular 
senescence [39]. Therefore, maintaining the correct balance of ROS 
in cells is crucial for relieving senescence [40].  

• mTOR goes far beyond proliferation and coordinates a metabolic 
program tailored to cells to control cell growth and many biological 
processes, including cell aging and senescence [41]. Interestingly, 
many senescence phenotypes are regulated by mTORC1 in various 
cell types [42]. The secretion of pro-inflammatory mediators by se
nescent cells contributes to aging and has been termed the 

senescence-associated secretory phenotype (SASP) [43]. Recent 
studies have identified an essential role for mTORC1 in the promo
tion of SASP [44,45]. Therefore, an mTOR inhibitor could eliminate 
cellular senescence [46].  

• SIRT1 (Sir2) is an NAD+-dependent deacetylase that plays a critical 
role in a wide range of biological events, including metabolism, the 
immune response, and aging [47]. Autophagy, a catabolic pathway 
of membrane trafficking that degrades cellular components via 
autophagosomes and lysosomes, mediates the downregulation of 
mammalian SIRT1 protein during senescence [48]. Upon senescence, 
nuclear SIRT1 is recognized as a substrate for autophagy and un
dergoes autophagosome-lysosome cytoplasmic degradation via 
autophagic protein LC3 [48]. Therefore, SIRT1 activation can pro
vide a new target to clear senescent cells [49].  

• The JAK pathway is more activated in senescent cells than in non- 
senescent cells [50]. The inhibition of the JAK pathway suppresses 
SASP in senescent cells and alleviates age-related tissue dysfunction 
[50]. A previous study reported that the JAK pathway is activated in 
adipose tissue with aging, and SASP can be suppressed by inhibiting 
the JAK pathway in senescent cells [51]. Therefore, the inhibition of 
the JAK pathway could remove cellular senescence [52]. 

Fig. 1. Various therapeutic targets to remove cellular senescence. The elimi
nation of cellular senescence generated by senescent cells is considered thera
peutically beneficial. However, if senescent cell elimination does not occur, this 
can worsen COVID-19 in cancer patients. MAPK, Mitogen-activated protein 
kinase; NF-κB, Nuclear factor kappa light chain enhancer of activated B cells; 
AMPK, AMP-activated protein kinase; ROS, Reactive oxygen species; mTOR, 
Mammalian target of rapamycin; SIRT1, Sirtuin-1; JAK, Janus kinase; ROCK, 
Rho-associated protein kinase; IKK,  IκB kinase; Rb, Retinoblastoma protein. 
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• Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors 
that control key aspects of the actin cytoskeleton; however, their role 
in proliferation and cancer initiation or progression is unknown [53]. 
Additionally, ROCK1 and ROCK2 act redundantly to maintain acto
myosin contractility and cell proliferation, and their loss leads to cell 
cycle arrest and cell senescence [53]. This phenotype results from the 
downregulation of the essential cell cycle proteins Cyclin A, CKS1 
and CDK1 [53]. Therefore, ROCK inhibition could open up a new 
spectrum for the removal of cellular senescence [32,54,55].  

• The NF-κB system is an evolutionarily conserved signaling pathway 
triggered by immune activation and various external and internal 
warning signs associated with senescence and the aging process, such 
as oxidative and genotoxic stress [56]. Activation of the NF-κB sys
tem is linked to several pattern recognition receptor pathways, for 
example, TLRs and inflammasomes, and the signaling of many up
stream kinase cascades via canonical and IKKα/β and NIK 
non-canonical pathways are the most critical upstream kinases [57, 
58]. However, various kinases can directly regulate the transcrip
tional capacity of NF-κB factors [59]. While many studies have 
shown the antitumor and pro-survival role of NF-κB in cancer cells, 
recent findings raise the possibility that NF-κB participates in a 
senescence-associated cytokine response, suggesting a 
tumor-limiting role of NF-κB [60,61]. Therefore, inhibition of the 
IKK/NF-κB pathway could be a promising target to reduce cellular 
senescence [34,62].  

• The accumulation of progerin and prelamine A are hallmarks of a 
group of premature aging diseases [63]. They have also been found 
during normal cellular aging, strongly suggesting similar mecha
nisms between healthy aging and LMNA-related progeroid syn
dromes [63]. It is not clear how this toxic buildup contributes to 
aging (physiological or pathological) [63]. A previous study reported 
that the accumulation of progerin in HGPS cells leads to aberrant 
nuclear morphology, genetic instability, and p53-dependent pre
mature senescence [64]. Progerin and prelamine A inhibition may 
provide potential therapeutic approaches to the removal of cellular 
senescence [65,66].  

• Numerous studies have shown that p53/p21 pathway is involved in 
regulating cellular senescence [67-69]. p16-mediated senescence 
acts through the retinoblastoma (Rb) pathway, inhibiting the action 
of cyclin-dependent kinases that lead to the arrest of the G1 cell cycle 
[70]. Rb is maintained in a hypophosphorylated state, resulting in 
the inhibition of the transcription factor E2F1 [71,72]. Therefore, 
inhibition of the p53/p21 and p16/Rb pathways represents a 
promising target for the elimination of cellular senescence [73,74]. 

Conclusion 

Senescent cells cause several age-related diseases, accounting for a 
high percentage of all causes of death worldwide and expanding 
morbidity. Cellular senescence could worsen the COVID-19 pandemic; 
however, due to the pandemic, the data available to support this asso
ciation are limited and further study is required. We expect that there 
will be increased efforts to explore the impact of cellular senescence on 
COVID-19. In the future, clinical trials focused on eliminating senescent 
cells to determine specific treatments and markers to evaluate thera
peutic efficacy will be imperative. This brief review attempted to 
describe updated studies focused on the elucidation of the impact of 
cellular senescence in the COVID-19 pandemic. The present study 
highlighted some of the molecular biomarkers and pathways responsible 
for cellular senescence, which can be explored as potential targets for 
overcoming cellular senescence. 
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