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Abstract: Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease. The disease is char-
acterized by activation and dysregulation of both the innate and the adaptive immune systems. The
autoimmune response targets self-molecules including cell nuclei, double stranded DNA and other
intra and extracellular structures. Multiple susceptibility genes within the immune system have been
identified, as well as disturbances in different immune pathways. SLE may affect different organs
and organ systems, and organ involvement is diverse among individuals. A universal understanding
of pathophysiological mechanism of the disease, as well as directed therapies, are still missing.
Cytokines are immunomodulating molecules produced by cells of the immune system. Interferons
(IFNs) are a broad group of cytokines, primarily produced by the innate immune system. The IFN
system has been observed to be dysregulated in SLE, and therefore IFNs have been extensively
studied with a hope to understand the disease mechanisms and identify novel targeted therapies. In
several autoimmune diseases identification and subsequent blockade of specific cytokines has led
to successful therapies, for example tumor necrosis factor-alpha (TNF-α) inhibition in rheumatoid
arthritis. Authors of this review have sought corresponding developments in SLE. In the current
review, we cover the actual knowledge on IFNs and other studied cytokines as biomarkers and
treatment targets in SLE.
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1. Introduction

Systemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease
with a hallmark of autoantibody production against cell nuclei (antinuclear antibodies
-ANA) and other intranuclear proteins including double stranded DNA (dsDNA). The
disease may affect different organs and organ systems including skin, joints, kidney, the
central and peripheral nervous systems. Hematological abnormalities, such as cytopenias
and coagulation disturbances with associated risk for thromboembolic events are also
common.

Activation of major components of the innate and adaptive immune systems are
observed in patients with SLE. Increased levels of a range of cytokines are observed during
the disease course [1]. Secreted cytokines can be observed in the circulation, saliva, urine
and also identified in the target organ tissues such as skin, kidney and synovia. The majority
of those cytokines have pro-inflammatory properties, but some have immunomodulatory
or anti-inflammatory roles. Since the pathogenesis of the disease is not well understood,
it is so far not clear if high levels of certain cytokines are driving the disease, or just an
epiphenomenon to the malfunctioning immune regulation and responses, cell death or
impaired clearance of unviable cell remnants.

A range of cytokines have been observed to correlate with SLE disease activity and
proposed as therapeutic candidates for active SLE [1–3]. Cytokine blockade targeting TNF-
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α and IL-6, have been successfully developed to treat rheumatoid arthritis, while barely any
anti-cytokine therapies have been successfully introduced into clinical practice as drugs
for SLE patients. The discussed pitfall in SLE clinical trials has been the recruitment of
heterogenous patient populations. It has therefore been suggested to stratify patients prior
to recruitment to trials in regard to clinical and genetic phenotypes or cytokine profiles [4,5].

A biomarker that aids the physician in decision making regarding diagnose and
treatment would be a handy tool. Some investigators have suggested a definition of an
ideal biomarker for SLE [6]. This biomarker should be specific, easy to detect, follow the
disease activity, useful in follow-up and reasonably priced.

In the current review we will focus on recent advances and on evidence for the use
of cytokines as biomarkers of SLE. If known, we will further discuss the role of cytokines
in certain organ involvement. If available, we will include information on the outcomes
of cytokine targeting therapies in clinical trials. The reviewed information on available
knowledge of cytokine expression, association with disease activity and target organ
involvement is presented in Table 1. The cells that are the main cytokine sources are
illustrated in Figure 1. In Table 2 we have summarized the data on recent clinical trials
targeting cytokines for treatment of SLE.

Table 1. Overview of the cytokine regulation in the circulation, their correlation to disease activity, as well as association
with and expression in the target organs of active SLE.

Cytokine Immunity 1 Levels in
Circulation 2 DAS 3

SLE Target Organ Involvement 4
Where Cytokine Has

Been DetectedLN Arthritis CLE Serositis CNS

IFN Type I I ↑ + ↑ ↑ ↑ ↑ ↑ circulation

IFN Type II A ↑ + ↑ ↑ ↑ NN NN circulation

IFN Type III I ↑ + ↑ ↑ ↑ NN NN circulation, skin lesions

BAFF/APRIL I ↑ + ↑ ↑ NN NN ↑ circulation

IL-2 A NN NN ↑ NN NN NN NN renal tissue

IL-6 I ↑ + ↑ ↑ ↑ NN ↑ circulation, CSF, urine,
serum

IL-10 I ↑ + ↑ NN ↑ NN NN circulation

IL-16 A/I ↑ + ↑ NN ↑ NN NN circulation, urine, skin
lesions

IL-12, IL-23 A/I ↑ + ↑ NN ↑ NN NN circulation, kidney

IL-17 A ↑ + ↑ ↑ ↑ NN NN circulation, kidney, skin,
synovial fluid

IL-1 I ↑ NN ↑ ↑ ↑ NN NN circulation, skin

IL-18 I ↑ + ↑ NN ↑ NN NN circulation, skin lesions

IL-38 I ↑ + ↑ ↑ NN ↑ NN circulation

1—Describes the cytokine’s involvement in the immune system: I—the cytokine is a mediator of the innate immune system; A—the
cytokine is a mediator of the adaptive immune system; 2 ↑—upregulated cytokine levels in circulation; 3 DAS—disease activity score,
+—cytokine is shown to be associated with DAS (SLAM or SLEDAI (SLEDAI-2K)); 4 If known, we mention what active SLE manifestations
have been demonstrated to be associated with each cytokine; IL—interleukin, LN—lupus nephritis, CLE—cutaneous lupus erythematosus,
CNS—central nervous system, CSF—cerebrospinal fluid, BAFF—B cell activating factor, APRIL—a B cell proliferation-inducing ligand,
NN—not known or data is uncertain.
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Table 2. Overview over registered therapies and ongoing trials on substances targeting cytokines as
treatment targets for SLE (published or registered at www.clinicaltrials.gov, accessed on 10 October
2021. NCT number indicate registration number of clinical trial).

Cytokine Target Drug/Molecule and Results from Clinical Trials

IFN Type I

• Anifrolumab (MEDI 546), phase 3, primary endpoints met
NCT01753193, approved by FDA in 2021; and studied
post-registration NCT04877691.

• Lupuzor, IFNa kinoid (IFN-K), completed phase 2B
NCT01058343, secondary endpoints were met, ongoing
phase 3, NCT02665364

• Sifalimumab MEDI-545, completed phase 2b, primary
putcome not met, NCT00979654.

• JNJ-55920839, Anti-IFN-α/ω, phase 1 ongoing,
NCT02609789.

• Rontalizumab, primary endpoint was not met, phase 2
NCT00962832

IFN Type II
• AMG 811 (anti-IFN-gamma), primary endoint not met,

phase 2, NCT02291588, NCT00818948 [7].
• Emapalumab-Igsz (Gamifant), phase 3, has not started

recruitment

IFN Type III No trials identified

General IFN system: Target
plasmacytoid dendritic cells

• daxdilimab VIB7734, phase 1, completed, results awaited
VIB7734

• BIIB059, primary endpoints met in phase 2 NCT02847598).
Phase 3 ongoing, NCT04895241

TNF-α • Infliximab, considered risky, investigated in open label
NCT00368264 [8].

Blys/BAFF/APRIL

• Benlysta, approved, postregistration studies ongoing
• Ianalumab/OP0302 (VAY736) ongoing phase 2,

NCT03656562, results awaited.
• Rozibafusp alfa (AMG 570), results awaited, phase 2,

NCT04058028
• Tabalumab (LY 2127399), primary endpoints not met in

phase 3, NCT01196091
• Atacicept, primary endpoints not met in phase 3,

NCT00624338
• Blisibimod (AMG 623/A-623), primary endpoints not met,

phase 3, NCT02443506
• Telitacicept, RC18, Phase 2, NCT02885610

IL-2
• Recombinant Human Interleukin-2, positive results, Phase

2{He:2020cn} NCT02465580 and NCT02932137
• Several substances: NKTR-358 (LY3471851), ILT-101 and

more, Phase 1 and 2, NCT03556007, NCT04433585

www.clinicaltrials.gov
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Table 2. Cont.

Cytokine Target Drug/Molecule and Results from Clinical Trials

IL-6

• MRA 003 US Ongoing phase 1 NCT00046774
• Ala-Cpn10 Ongoing phase 1 and 2 NCT01838694
• Vobarilizumab (ALX-0061) Completed phase 2,

NCT02437890
• Sirukumab (CNTO 136) Completed phase 1, NCT01702740,

not further investigated
• PF 04236921, completed phase 2, primary endpoint not met,

NCT01405196

IL-10 BT 063, Phase 2 completed, results unavailable, NCT02554019

IL-16 Not identified

IL-17 Sekucinumab, Phase 3 recruiting, NCT04181762

IL-12, IL-23 Ustekinumab, primary endpoints met in phase 2a, NCT02349061.
Phase 3 is ongoing, NCT03517722

IL-21
• NNC0114-0006, Phase 1, NCT01689025
• BOS161721 (avizakimab). Completed phase 1 and 2, results

awaited NCT03371251

IL-1 Anakinra, only case reports

IL-18 Not identified

IL-38 Not identified

Figure 1. Cytokines associated with SLE pathogenesis are shown and arrows indicates the main producer or the main target cell.

2. Interferons

Interferons (IFNs) are pro-inflammatory cytokines produced in response to infections,
as a part of the host defense by the innate immune system. In the human body, three types
of IFNs are known to be produced and all seem to have role in SLE: type I, II and III. The
type I IFNs include 17 subtypes of IFN-αs, also IFN-β, IFN-δ, IFN-ε, IFN-κ, IFN-τ,I FN-ω
and IFN-ζ [2].
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The IFN-αs are the major effector cytokines of this type and it is the most studied
in SLE. Knowledge on IFN-β and IFN-κ is also available, but other type I IFNs are less
studied and considered of less importance [3,9].

All IFN-αs and single IFN-β are ubiquitously expressed, while IFN-κ is more organ
specific [10]. The most potent type I IFNs producing cells are plasmacytoid dendritic
cells [1,4]. All type I IFNs signal via same receptor denoted IFNAR1/IFNAR2 [2].

There is only one type II IFN—namely, IFN-γ—which is mainly produced by CD4+ or
CD8+ Th1 lymphocytes, as well as NK and B cells, and also professional antigen presenting
cells. The IFN-γ signal is transmitted via receptor composed of two subunits IFNGR1 and
IFNGR2 [9].

Four molecules, which belong to the type III IFN family, have been identified: IFN-
λ1, -λ2, -λ3 and -λ4. The main producers of IFN-λ1 are antigen presenting cells, but also
epithelial cells [10]. Epithelial and mucosal surfaces are the main responders and expressers
of IFNλ-1R/IL10R [3].

2.1. Type I IFNs in SLE
2.1.1. IFN-α

It was described already in 1990 that administration of IFN-α as a therapy for other
diseases, can induce SLE [11]. Later on, upregulation of type I IFN signature has been
discovered in SLE patients [12]. Ever since, type I IFNs have been a major focus of
investigation as a diagnostic biomarker and therapeutic target for SLE [10,13].

Detection and reliable measurements of IFN-α have been challenging due to its
diversity, bio-degradability ex vivo and lack of specific detecting antibodies. Several
methods have been used to study IFN-α in SLE: reporter cell assays, dissociation-enhanced
lanthanide fluorescence immunoassay (DELFIA) [14], single-molecule-array (SIMOA) and
enzyme-linked immunosorbent assay (ELISA) [15–18]. Recently, conventional ELISA
techniques have been substantially improved and utilized in several studies [5,18].

The classical method to measure serum induced type I IFN activity is by reporter cell
assays (WISH cell line or healthy donor peripheral blood mononuclear cells (PBMCs)) [19].
These assays estimate how cells exposed to SLE patients’ serum in vitro respond by up-
regulating IFN regulated genes. The most commonly assessed genes are MX Dynamin
Like GTPase 1 (MX1), Protein kinase R (PKR) and Interferon Induced Protein With Tetratri-
copeptide Repeats 1 (IFIT1).

High serum induced type I IFN activity, as observed by WISH-reporter cell assay
(IFN-activity), is defined as a heritable risk factor to develop SLE later in life [19]. High IFN-
activity associate with SLE disease activity as observed in European and North American
cohorts [5,16,20]. A certain auto-antibody profile has been coupled with high IFN-activity,
including anti-dsDNA, anti-RNP, anti-Sm and anti-Ro autoAbs, rather than the antiphos-
pholipid antibody profile (aPL) [20–22]. In our Karolinska SLE cohort high functional
IFN-activity correlate positively with disease activity scores (both SLEDAI and SLAM) and,
also with certain organ active involvement: e.g., nephritis, arthritis, lymphadenopathy,
fatigue and weight loss [5]. The IFN-activity high group commonly have autoantibodies
against dsDNA, nucleosome, Sm, SmRNP and RNP68; as well as demonstrate higher ESR
and higher proteinuria, but lower hemoglobin, and WBC as well as PLT counts [5]. Photo-
sensitivity and high disease damage associate negatively. High IFN-activity seems to be a
feature of active younger patients early in the disease, since this parameter is associated
with younger age, shorter disease duration and negatively correlated with disease damage
index(SDI) in several studies [5].

Importantly, IFN-activity correlate with serum/plasma measurements of IFN-α, IFN-γ
and IFN-λ. Therefore, we consider that IFN-activity could be an important, but less specific
marker of activation of several IFN types in an active patient [4,5].

Dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) is another
assay employed to measure the most the IFN-α subtypes (except IFN-α2b) [4]. This method
was used to measure IFN-αs in another Swedish cohort in 2000. The results demonstrated
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that all patients with rash, more than half of patients with lupus nephritis (LN) and two
thirds with arthritis had upregulated serum levels of IFN-α [16]. IFN-α measurements
were compared to serum induced IFN-activity in healthy donors (HD) PBMCs (SLE-HD-
IIF-activity). SLE-IIF-activity did not correlate with serum IFN-α measurements, and
only white blood cell counts, and thrombocyte counts correlated negatively with both
measurements [16]. Anti-dsDNA levels and decreasing complement levels correlated with
IFN-α levels (Delphia), but not with SLE-HD-IIF [14,16]. In later studies, SLE-HD-IIF
method has not been a method of choice.

A French group performed digital single-molecule-array (SIMOA) enzyme-linked
immunoorbent assay (ELISA) to study IFN-αs in SLE [17]. In this cohort, high IFN-α
levels associated with active disease which manifested as rash, low complement, and anti-
Sm autoantibodies, and numerically (but non-significantly) increased in active nephritis.
Interestingly, data demonstrated that the subgroup with active arthritis had significantly
lower levels of IFN-α [17].

We employed a pan-IFN-α ELISA, which detects all IFN-αs (but not IFN-α2a and IFN-
α12) to study IFN-α expression in Karolinska SLE cohort [5]. We found that in the cohort
high IFN-α concentrations associated with mucocutaneous involvement, lymphadenopa-
thy, low complement, positivity for Ro52/SSA, La/SSB, and lower occurrence of secondary
antiphospholipid antibody syndrome and vascular events [5]. Patients with active LN had
increased IFN-α levels which declined after therapy [23].

The available techniques for type I IFN detection are still relatively laborious and
costly, and non-sufficiently reproducible. A study comparing IFN-activity, DELPHIA,
SIMOA and ELISA methods in a substantial number of patients is needed in order to
compare and validate all the methods.

In summary, levels of circulating IFN-α have been demonstrated to correlate with
disease activity as estimated by SLEDAI, and anti-dsDNA levels and complement acti-
vation or consumption. Estimation of circulating IFN-α could potentially be used as a
disease biomarker. So far it does not seem to have much additive value in comparison
to traditionally assessed parameters such as SLEDAI, anti-ds-DNA or complement mea-
surements, which are relatively cheap and available methods in most parts of the world.
Therefore, these methods are mainly used in research. None of the type I IFN measuring
methods have so far been introduced in routine clinical care, neither for diagnostic nor for
prognostic purposes.

2.1.2. IFN-β

The majority of information on the role of IFN-β in SLE comes from gene expression
studies, where signatures of IFN-β and IFN-αs partially overlap [15,22]. Data indicate that
levels of IFN-β and IFN-α overlap [21]. Detailed knowledge on which SLE manifestations
or phenotypes, if any, are associated with high circulating IFN-β levels remain to be
studied. However, IFN-β signals through the IFN-α receptor (IFNAR), therefore anti-
IFNAR therapies could most possibly block effects mediated by IFN-β [22].

2.1.3. IFN-κ

IFN-κ is another member of the type I IFN-family, which is more limited to expression
in certain tissues, e.g., in epithelial cells [24,25]. IFN-κ has been demonstrated to be
upregulated in Cutaneous lupus erythematosus (CLE) lesions after skin exposure to UV-
radiation [26]. Thus, IFN-κ detection could be used by pathologists in lesion diagnostics,
but otherwise it is probably less suitable as disease biomarker for routine use since a skin
biopsy is needed in order to assess its expression. IFN-κ could potentially serve as a
treatment target for CLE, especially if a topical anti-IFN-κ treatment can be developed.

2.2. IFN Type II in SLE

It was described over thirty years ago that exogenously infused IFN-γ had the ability
to induce SLE or exacerbate SLE flares [24,27]. Focus on IFN-γ in SLE has been limited, but
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several recent reports have demonstrated the importance of this mediator in SLE [20,28].
Importantly, levels of IFN-γ increase in parallel to autoantibody development, years before
activation of type I IFNs and clinically manifest SLE [25]. Interest in IFN-γ increased
recently due to two reasons: unsuccessful clinical trials on type I IFN-blockade and also
demonstration that signature of type I, II and III IFNs overlap [25]. We and others have iden-
tified that levels of IFN-γ correlate with IFN-activity, as measured by cell reporter assays
in vitro. In the Karolinska SLE cohort, high IFN-γwas associated with high SLEDAI scores,
active arthritis, complement consumption and positivity for anti-Ro60/SSA [20,28]. Inter-
estingly, mycobacterium tuberculosis IFN-γ release assay (TB-IGRA) could demonstrate
spontaneous IFN-γ release (SIR) in the SLE cohort. Normalized TB-IGRA values correlated
with disease activity better than anti-dsDNA or complement levels, and were associated
with cutaneous disease, hypocomplementemia, fever and thrombocytopenia [29]. SIR
estimated by TB-IGRA test has been suggested as SLE biomarker by the investigators [29].

In summary, recent data indicate that IFN-γ levels incline before developing SLE
symptoms and high circulating levels are associated with more severe SLE. SIR, assessed
by TB-IGRA test, should be further explored as a disease biomarker. Direct or indirect
medications targeting IFN-γ pathway are of further interest in drug development.

2.3. IFN Type III in SLE

The role of type III IFNs, including four subtypes of IFN-λ1, -2, -3 and -4, has been
identified during the recent years. IFN-λs are easier to study since they may be detected in
circulation by conventional ELISAs or by immunohistochemistry. Levels of IFN-λ3 have
been reported to correlate with SLE disease activity, active LN and arthritis, and comple-
ment consumption [28,30,31]. IFN-λ1 is upregulated locally at the site of inflammation in
CLE skin and LN renal lesions [23,30,32]. Levels of IFN-α and IFN-λ1 were measured in
the Karolinska LN cohort before and after induction therapy for LN [23]. Overall levels
of IFN-αs decreased after therapy, but levels of IFN-λ1 decreased only in patients who
responded to therapy, while they remained high in histological non-responders. Data from
this study indicate that high IFN-λ1 levels in patients who did not respond to therapy
could be a biomarker of therapy resistant LN. However, this data should be replicated and
validated.

In our cohort, we also noted that high IFN-λ1 levels are a feature of patients with
cardiovascular events, secondary antiphospholipid syndrome (APS) and often associated
warfarin treatment. High IFN-λ1 with co-upregulation of Th17 cytokines identified patients
with renal damage [18].

3. IFNs as Treatment Targets in SLE
3.1. IFNs Type I Targeting Therapy

Blockade of type I IFNs has been suggested to be a promising treatment approach for
SLE. Treatment modalities included either blockade of circulating IFNs or blocking of the
IFN-α receptor.

Several pharmaceutical companies developed anti-type I IFN monoclonal antibodies
that have been tested in phase 2 and 3 clinical trials [22,33] (Table 2). The selected patient
groups were active SLE without life-threatening disease manifestations on stable “standard
of care” therapies and fixed steroid doses. The typical patient recruited for the studies
had a SLEDAI score of 6 or higher, was positive for anti-dsDNA antibodies and had low
complement levels. The clinical manifestations were dominated by cutaneous, articular or
hematological symptoms, or serological findings. However, none of the studies reached
primary endpoints [22,33].

Anifrolumab, a type I interferon receptor antagonist, was designed to block signaling
of all type I IFNs [22]. In clinical trials, anifrolumab treatment was demonstrated to
be beneficial in moderate to severe treatment resistant non-renal SLE, and furthermore
it neutralized the IFN-signature in those patients who were high at recruitment [34].
Anifrolumab has recently got approved by United States Food and Drug Administration
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(FDA) for treatment of moderately severe SLE and is further studied both in the trials and
real life [22,35].

3.2. IFN-γ Targeting Therapy

Anti-IFN-γ therapy was tested in SLE patients with or without nephritis and also
with a discoid form of cutaneous lupus erythematosus [7,36]. Unfortunately, effects of the
therapy were less pronounced and not sustained in the subjects. Also, a majority of the
patients reported adverse events [7,36]. Direct targeting of IFN-γ does not seem to be a
suitable treatment approach. Levels of IFN-γ can be modulated via other mechanisms.
Interestingly, in the Phase II clinical trial of ustekinumab in SLE, the responders had
declining IFN-γ levels, and this finding was suggested as a biomarker of response to anti
(IL-12)/IL-23 p40 therapy [37].

3.3. IFN-λ Targeting Therapy

No studies directly targeting IFN-λ were registered at www.clinicaltrial.gov (accessed
on 10 May 2021).

4. TNF-α

Tumor necrosis factor α (TNF-α) is a major cytokine secreted by macrophages upon
the cell encountering a pathogen. Abnormally high TNF-α production is observed in
several autoimmune diseases including SLE. TNF-α can either promote or modulate
autoimmunity [38]. TNF-α has been shown to be upregulated in SLE patients compared to
healthy controls and circulating levels of TNF-α have been shown to correlate with disease
activity [39–41]. High levels of circulating TNF-α associate with active renal, articular,
and neuropsychiatric manifestations such as mood and anxiety disorders, but was not
significantly different with regard to active CLE [41,42]. However, TNF-α is upregulated
in CLE lesions and its expression levels in the tissue correlate with the development and
healing of UV-induced lesions [42,43].

In our Karolinska SLE cohort we found that ratio of TNF-α and serum albumin levels
were the best discriminators between patients and controls, in particular those with renal
involvement [40]. There is now a consensus that high levels of circulating TNF-α are
associated with SLE and might be a useful biomarker [13].

Attempts to block TNF-α in SLE were not as successful as in rheumatoid arthritis
and resulted in exacerbations of the disease as reviewed by De Bandt [44]. Therefore,
the rationale and evidence for TNF-blockade in SLE were reviewed as a double-edged
sword [8]. Some authors consider that TNF blockade might still be beneficial in a subset of
patients. According to the case reports, anti-TNF therapy seems to have a positive effect in
targeting lupus arthritis, and it seems not to induce nephritis, but rather autoantibodies and
rash [8]. Interestingly, data show that the mode of action of the commonly used antimalarial
drugs is partly via suppressing both TNF-α and IFN-α levels [45,46]. Today, the use of
TNF-blockade in SLE is still limited and not recommended as treatment due to risks.

5. BAFF/APRIL

B cell activating factor (BAFF), also known as B lymphocyte stimulator (BLyS), and A
proliferation-inducing ligand (APRIL) are members of the TNF superfamily and the role
of the BAFF/APRIL system in SLE has been reviewed in detail before [47,48]. BAFF are
increased in patients with SLE and have been reported to predict flares [49]. Several, but
not all studies demonstrated correlation between serum levels of BAFF/APRIL and disease
activity, as measured by the British Isles Lupus Assessment Group (BILAG) index [50] and
SLEDAI [47,48]. Possibly high levels of BAFF/APRIL are more strongly linked to specific
organ involvements, such as arthritis, neurologic manifestations or renal disease [48].
Studies of these biomarkers in urine are limited, although elevated levels of BAFF in urine
have been detected in a fraction of patients with lupus nephritis [51].

www.clinicaltrial.gov
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Belimumab, a BAFF inhibitor, was approved for SLE indication in 2011. It is the
only biological drug approved for treatment of SLE patients so far [52]. Belimumab is a
monoclonal antibody that inhibits BAFF and it has been demonstrated to reduce disease
activity and prevent organ damage in SLE [53,54]. Novel treatment approaches of SLE
have recently been reviewed, and while Belimumab is approved, Atacicept, a combined
BAFF/APRIL inhibitor [55], is being further studied in phase II/III clinical trials [56].

Serum levels of both BAFF and APRIL have been suggested as biomarkers for treat-
ment response to atacicept [57]. However, levels of circulating BAFF and APRIL could be
affected differently by immunosuppressive drugs, e.g., APRIL can decrease while BAFF
can be unchanged during treatment [58]. This discrepancy should be further explored.

6. IL-2

Interleukin-2 is a pleiotropic cytokine that plays multiple functions in T cell homeosta-
sis and differentiation. It is mainly produced by activated CD4+ and CD8+ cells. IL-2 has a
role in T cell pathogen recognition and discrimination between “foreign and self” [59].

Impaired production of IL-2 has been observed in SLE, and IL-2 deficiency was
associated with renal impairment [60]. Interestingly, SLE patients may produce anti-IL-2
autoantibodies, which have been associated with disease activity [61].

Low dose treatment with IL-2 has been tested as a therapy for active SLE in a limited
number of patients. The trial did not meet the primary endpoint, i.e., did not reduce disease
activity; however, significantly more nephritis patients reached remission in the IL-2, as
compared to the placebo arm [62]. Further studies are needed to investigate potential
benefit of IL-2 reconstitution in SLE.

7. IL-6

Interleukin-6 is a pro-inflammatory cytokine upregulated in several systemic autoim-
mune diseases including SLE [63]. Some studies demonstrated that plasma levels of IL-6
correlate to SLE disease activity, but other investigators could not confirm these findings.
Interleukin-6 reflects the cytokine-mediated inflammation, which is not always followed
by activation of complement. The latter is an important item in several measures of SLE
disease activity, including SLEDAI [64]. Upregulated plasma levels of IL-6 have been
observed in patients with kidney damage [39,40]. In a recent review, IL-6 was suggested as
an important mediator in lupus nephritis [65], and urinary IL-6 has also been suggested as
a marker for it [53,54].

Tocilizumab is a monoclonal antibody that inhibits IL-6 signaling and its efficacy in
SLE patients was first evaluated in 2010 [66]. Tocilizumab therapy may be efficient in
subgroups of patients with high inflammatory activity, although cautions must be taken
since high doses may result in immunosuppression [67]. So far, no IL-6 targeting therapies
have been approved for treatment of SLE.

8. IL-10

IL-10 is an anti-inflammatory cytokine, but it also has pro-inflammatory properties
that might be mediated by type I IFNs [68]. Its role in the pathogenesis of SLE is complex.
Variations in IL-10 gene are associated with risk for SLE [13,69]. Plasma levels of IL-10 are
increased in SLE patients compared to controls [40], and some studies show correlation to
disease activity or to levels of anti-dsDNA antibodies [51,60,61].

A trial with anti-IL-10 monoclonal antibody demonstrated reduced disease activity in
SLE patients, although patients developed anti-drug antibodies and long-term treatment
must be further studied [70]. A phase IIa clinical trial of an anti-IL-10 monoclonal antibody
(BT063) the primary endpoint was achieved according to the company 2020 [71].

9. IL-16

Interleukin-16 is a cytokine, produced by T cells, epithelial cells and Langerhans cells.
IL-16 is produced as a precursor molecule, which must be cleaved by caspase-3 to become
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activated. Interestingly, this mechanism, despite caspase-3 activation, does not necessarily
induce cell apoptosis [72]. The generated product is a mature secretory IL-16 and has CD4
and CD9 as ligands. The secreted IL-16 mediates CD4+ T cell chemotaxis and functions
as T cell growth factor, while cleaved pro-IL-16 mediates cell functions within the cell
nuclei and inhibits cell cycle progression [73]. Interleukin-16 has been demonstrated as a
promoting mediator of several cancers [73].

High levels of IL-16 in active SLE patients were described over 20 years ago [74].
Recently, our group reported results from a Mesoscale Discovery (MSD) multiplex anal-
ysis of circulating cytokines in SLE patients [40]. Among 30 tested cytokines, IL-16 was
identified among the top five and increased concentrations in the circulation were found in
patients with active nephritis. Also, in another unbiased analysis of cutaneous proteome of
CLE lesions, IL-16 was identified as the only cytokine differentially upregulated in CLE in
comparison to dermatomyositis (DM) [75]. These findings encourage further studies on
the IL-16 role in SLE.

10. IL-12, IL-17 and IL-23

Interleukin-12 is a bridging cytokine between innate and adaptive immune systems,
composed of a dimer entitled p40 and p70 and is secreted mainly by dendritic cells upon
their stimulation by microbial antigens. Importantly, the p40 subunit is shared with IL-23.
Interleukin-12 in parallel to IFN-γ divert T cell development towards Th1 response. SLE
patients have increased levels circulating of IL-12p40 subunit, which correlate positively to
disease activity and associate negatively with complement C3 levels [6,71].

Interleukin-23 is the cytokine produced by antigen presenting cells which diverts
CD4+ cell development towards Th17 phenotype. Interleukin-23 is comprised of p19 and
p40, the latter shared with IL-12. The IL-17 cytokine family consists of six related proteins
IL-17A, B, C, D, E and F. IL-17 is mainly produced by Th17 cells, but also by, γδ-T cells,
some natural killer T (NKT) cells and TCRβ+ or so called ‘natural’ Th17 cells [76]. The
major biological role of IL-17 is protection against fungal and bacterial infections, but it also
has a protective role in intestinal barrier integrity. Interestingly, besides IL-17, Th-17 cells
also produce IFN- λ1, and together these molecules provide protection from pathogens
on the skin surface [77]. Several studies reported that the majority of SLE patients have
increased levels of IL-17A and IL-17F [78,79].

Levels of circulating IL-17A have been found to correlate with the Cutaneous Lupus
Erythematosus activity and damage score index (CLASI) score [79], and high IL-17A
expression has been demonstrated in the cellular infiltrates of the skin tissue of CLE
lesions [80], as well as in kidneys affected by lupus nephritis (LN) [48]. High IL-17A levels
at baseline predicted poor response to LN therapy [78] and deteriorating kidney function,
if paralleled by INF-λ1 and IL-23 [18]. Also, persistently high levels of IL-23 were detected
in non-responding lupus nephritis patients [78]. Increased levels of IL-17A in parallel to
high IL-6 expression were found in synovial fluid derived from patients with active lupus
arthritis, the same cells, when stimulated, could produce high amounts of IFN-γ [81].

Several investigators suggested that targeting IL-12, IL-23, and IL-17 could be a thera-
peutic option in SLE, since modulation of this pathway may also have regulatory effect on
the IFN system via indirect mechanisms [82]. This hypothesis is under investigation. Ustek-
inumab, antagonist of p40, shared by IL-12 and IL-23, was studied in a phase 2 trial as an
add-on therapy to standard of care. The study has demonstrated positive effects on clinical
and laboratory parameters of SLE—namely, cutaneous and articular manifestations—with
a good safety profile. The responders had declining IFN-γ levels [83]. The results of
long-term outcomes are awaited.

11. IL-1, IL-18 and IL-38

The interleukin-1 cytokine superfamily includes several molecules: IL-1α, IL-1β, IL-18,
IL-33 and IL-38. The IL-1 system is a part of the innate immune system and operates via
inflammasome as a primary response of pathogen recognition. Several investigators found
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that peripheral levels of IL-1α were in the same range as in controls. In the Karolinska
SLE cohort, however, high IL-1α levels were observed in patients with renal and articular
manifestations [40]. Increased levels of tissue IL-1β were found in the skin of photopro-
voked developing CLE lesions. This was accompanied by increased TNF-α and HMGB1
expression [42].

Interleukin-18 is a cytokine secreted mainly by macrophages and has an effect on
IFN-γ production by Th1 cells and splenocytes, and may act in synergy with IL-12, another
IFN-γ-inducible cytokine [84]. High serum levels of IL-18 are found in SLE patients, and
particularly patients with active renal disease who were prone to develop renal damage at
the follow-up [85]. High IL-18 expression is also observed in CLE lesions [86]. A recent
metanalysis proposed IL-18 as a biomarker for active SLE [87]. In mouse models, blockade
of IL-18 delays onset of the SLE-like autoimmunity and this approach is worth further
exploration in humans [84].

IL-38 has been relatively recently studied in SLE. The levels of this cytokine were
higher in active patients and associated with multiple clinical and laboratory parameters
including arthritis, pericarditis, haematuria, proteinuria, pyuria and anti-dsDNA. Correla-
tion analysis indicated that plasma IL-38 correlated positively with SLEDAI and negatively
with C3 and C4 levels [88].

12. IL-21

Interleukin-21 (IL-21) is an autocrine cytokine mainly produced by follicular helper
T (Tfh) and T helper 17 (Th17) cells. It has a role in the development of Tfh and Th17
cells, but also differentiation of B cells into plasma cells mediated by several biological
pathways, including JAK/STAT [89]. Single-nucleotide polymorphisms in IL-21 and its
receptor (IL-21R) have been associated with susceptibility to SLE. Increased amounts of
IL-21 positive cells were reported in SLE patient circulation [90]. Other investigators found
reduced levels of circulating IL-21 in SLE patients [91]. Data indicate that locally secreted
IL-21 could facilitate development of autoreactive B-cells [92]. Molecules targeting IL-21
are currently tested in clinical trials for treatment of SLE (Table 2).

13. Conclusions

To conclude, available data demonstrate that SLE is a complex autoimmune disease
and details of the underlying disease mechanisms remain to be understood. Multiple
cytokines from different cytokine networks are elevated in SLE. However, data indicate
that different manifestations or SLE phenotypes are associated with different cytokine
networks and patterns. Thus, no single perfect disease biomarker has been identified so far.
Benefits of the available cytokine targeting therapies are still limited. Available evidence
indicates that different SLE phenotypes are associated with diverse cytokine networks
and patient subgroups will require tailored therapies. More detailed disease phenotyping
would be helpful when planning therapeutic trials and tailoring personalized treatment.
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