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Over the past 50 years, geneticists have made great strides in understanding
how our species’ evolutionary history gave rise to current patterns of human
genetic diversity classically summarized by Lewontin in his 1972 paper, ‘The
Apportionment of Human Diversity’. One evolutionary process that requires
special attention in both population genetics and statistical genetics is
admixture: gene flow between two or more previously separated source
populations to form a new admixed population. The admixture process
introduces ancestry-based structure into patterns of genetic variation
within and between populations, which in turn influences the inference of
demographic histories, identification of genetic targets of selection and
prediction of complex traits. In this review, we outline some challenges for
admixture population genetics, including limitations of applying methods
designed for populations without recent admixture to the study of admixed
populations. We highlight recent studies and methodological advances that
aim to overcome such challenges, leveraging genomic signatures of admix-
ture that occurred in the past tens of generations to gain insights into
human history, natural selection and complex trait architecture.

This article is part of the theme issue ‘Celebrating 50 years since
Lewontin’s apportionment of human diversity’.
1. Introduction
In his foundational 1972 study ‘The Apportionment of Human Diversity’,
Richard Lewontin demonstrated that the majority of human genetic diversity
at a single locus is contained within, rather than between, populations using
polymorphism data from a global sample [1]. The field continues to strive to
understand the evolutionary processes that shape this important empirical
observation. Notably, genomic data have revealed the extent to which one
such process—genetic admixture—has been ubiquitous throughout human his-
tory and can shape the distribution of human genetic diversity in ways different
from those predicted by classic population genetic models [2–5]. Here we focus
on admixture as a population-level process, whereby gene flow occurs between
previously diverged source populations, producing new populations with
ancestry from multiple source populations. We discuss how recent research
on genetic admixture has extended our understanding of the distribution of
human genetic variation.

Beyond the allele-frequency-based summaries of variation studied by Lewon-
tin [1], variation in admixed populations can be summarized based on ancestry
from source populations. These ancestry patterns may vary between admixed
populations formed by the same source populations, between individuals
within an admixed population, and across loci within an admixed individual
(figure 1). Population geneticists have long recognized that studying admixed
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Figure 1. Ancestry in admixed populations varies at multiple genetic scales, with variance among individuals and within individual genomes. We show examples of
global and local ancestry inferred from phased 1000 Genomes Project data for populations of the Americas and Caribbean. Global ancestry was estimated using
unsupervised ADMIXTURE analysis, including additional populations of European (Iberians(IBS) and Tuscans in Italy(TSI)) and West African (Esan(ESN), Mandin-
ka(GWD), Mende(MSL) and Yoruba(YRI)) ancestry for reference. We show (a) population-level and (b) individual-level estimates of global ancestry across
Mexican ancestry (MXL), Peruvian (PEL), Colombian (CLM), Puerto Rican (PUR), African ancestry (ASW) and Barbadian (ACB) populations; barplots illustrating
these estimates for K = 3 were made using pong [6]. (c) Local ancestry as inferred by RFMix [7] for two example individuals (HG01149 and NA19776) who
have similar global ancestry proportions, and belong to the CLM and MXL populations, respectively. For these analyses, we retained only SNPs marked ‘PASS’
and removed all individuals who were noted to have an up to third degree relative in the 1000 Genomes Project phase 3 pedigree file, leaving 998 individuals
for analysis. We then filtered SNPs for missingness (greater than 5%) and low minor allele frequency (less than 1%) across all populations, and Hardy–Weinberg
disequilibrium ( p-value < 0.000001) within populations. For our ADMIXTURE analyses, we also removed SNPs in linkage disequilibrium (using the PLINK command –
indep-pairwise 50 10 0.1), which left 698 408 SNPs for analysis. We ran the ADMIXTURE algorithm for K = 3 unsupervised using the default settings and a random
seed. Pong identified a single mode across 30 replicates. To estimate local ancestry, we used the missingness, minor allele frequency and Hardy–Weinberg filtered
phased genotype dataset. We designated individuals with high levels (over 99%) of global West African (AFR), Amerindigenous (AMR) and European (EUR) ancestry,
as determined by our ADMIXTURE analysis, as reference groups for those respective ancestries. We ran RFMix v. 2.03 for the target Colombian and Mexican ancestry
individuals using the HapMap GRCh37 genetic map lifted over to GRCh38, a maximum of two expectation-maximization iterations, and otherwise default
parameters. (Online version in colour.)
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Box 1. Defining admixed populations.

Discussions of genetic admixture are, implicitly or explicitly, predicated on the idea that meaningful genetic differences exist
between discretized human groups. In practice, the term ‘admixed’ can vary to encompass a range of spatial and temporal
processes of gene flow between previously isolated groups. In this review, as noted in §1, we have focused on recent admix-
ture occurring within the past tens of generations. However, extensive gene flow between groups is a hallmark of recent
human evolution; when examined in enough detail, nearly all populations can be described as descended from a combi-
nation of multiple ancestries. Similar to other discussions on delineating population definitions and boundaries, because
there are no strict criteria that determine which populations should be considered admixed from a genetic perspective, classi-
fication of a population as admixed is often dependent on the context of the line of inquiry [11–14]. Additionally, while the
effects of genetic admixture can be observed in individual genomes, it is conceptualized as a demographic process that acts
on populations. For example, for a recent two-way admixture pulse between populations A and B, high variance in these
ancestry components across individuals is expected; under neutrality, there will be individuals in the admixed population
that derive 0%, and those that derive 100%, of their ancestry from population A (figure 1) [15,16]. As demonstrated in the
bottom panel of figure 1, any individual locus in a genome from an admixed population can only contribute partially to infer-
ence of the demographic history of the admixed group due to the substantial variance in how ancestral diversity is
distributed across genomes from an admixed population.

Methodological issues and patterns of genetic diversity are not the only factors shaping our understanding of genetic
admixture; a long record of societies’ and scientists’ use of largely superficial characteristics to classify human groups also
plays a role. Geneticists and anthropologists have long wrestled with the various field-specific and lay definitions of ‘popu-
lation’, ‘ancestry’, ‘ethnicity’ and ‘race’, which interact and intersect with each other in complicated ways [11–14,17]. In
discussions of human genetic admixture, it becomes especially important to emphasize that these categories do not map
onto each other one-to-one, and that race and ethnicity, in particular, describe classifications based on social phenomena.
The variation in ancestry within individuals in admixed populations, shown in figure 1, illustrates this and can be an effective
tool in illustrating the difference between genetic ancestry, phenotypes and self-identified race and/or ethnicity.
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humangroupsprovides opportunities to learnabout evolution-
ary forces [2,3]. Despite this early interest, inclusion of admixed
populations in genetic studies is variable by research goal.
Whereas the demographic and selective histories of admixed
populations are well-studied, phenotypic and medical studies
of admixed populations have lagged behind relative to studies
of single-ancestry populations. For example, admixed popu-
lations are underrepresented in biobank datasets [7,8]. The
lack of medical genomic samples and the frequent need for
admixture-specific methods lead to admixed populations
often being excluded from these studies [7–10]. Additionally,
in practice, defining admixture in humans is highly context
dependent, affected by social structures that influence popu-
lation or self identification, as well as methodological limits
on detecting admixture from genomic data (box 1).

Many population genetics methods and analytical results
are based on assumptions about populations that do not hold
under recent admixture. Under a model of isolation, metrics
of genomic diversity often have well-defined theoretical
expectations with respect to fundamental parameters of the
population’s evolutionary history. However, many of these
relationships are unclear, with admixture introducing blocks
of linked ancestral haplotypes each with potentially different
patterns of variation based on the history of their source
populations. That is, admixture changes both linkage struc-
ture and allele frequency distributions, which is often not
accounted for in traditional inference methods developed
without consideration of admixture.

Studying the ancestry patterns of present-day admixed
groups has revealed information about the demographic his-
tories of their source populations, including those that are
uncommon in unadmixed form today [18,19]. For example,
high-resolution genetic maps have been constructed based on
the frequency of estimated local ancestry switchpoints
(i.e. where local ancestry changes from one source to another
along a single chromosome), which contains information
about recombination rates along the genome [20,21]. Admixed
genomes have also enabled the discoveryof variant–trait associ-
ations and improvements in genetic risk prediction models
beyond the associations identified and predictions that have
been made using the ancestral populations [22–26]. Recent
methodological improvements have increased the efficiency
and performance of local ancestry calling (i.e. the assignment
of genomic segments to their population of origin; some early
scalable algorithmic implementations are given in [7,27–29];
figure 1c). These advances have enabled the use of local ances-
try patterns in admixed populations to infer demographic
history, adaptation and the genetic bases of complex traits.

Here, we consider three inferential problems based on
studying patterns of genetic variation produced by admixture:
inference of population history, identifying adaptivemutations
and complex trait associations and prediction using admixed
genomes. We summarize recent progress in the field, highlight
as yet unresolved issues, and outline potential avenues of
future research on the genetics of admixed populations. We
focus on recent admixture between modern human popu-
lations, roughly corresponding to admixed populations
founded within the last tens of generations; Witt et al. in this
issue consider ancient admixture events with archaic humans
and their consequences for human genetic variation [31].
2. Estimating genetic diversity and ancestry in
admixed populations

Well before polymorphism data could be generated at a
genome-wide scale, several methods of measuring genetic
diversity had already been proposed, including heterozygosity
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and nucleotide diversity [32,33]. By connecting these to theor-
etical population genetics models, summaries of genetic
variation can provide insight into the evolutionary forces
acting on populations. However, inferring population history
from genetic data is highly dependent on how groups are
defined, a choice made by the researchers (box 1). Recent
admixture complicates the quantification and analysis of gen-
etic diversity, and can, therefore, affect traditional summaries
of diversity in unexpected ways.

In his 1972 paper, Lewontin discusses his choices of a
genetic diversity measure at some length, ultimately settling
on one that is analogous to heterozygosity [1]. Relevant to
genetic admixture, Lewontin specifically notes that:
Phil.Trans.
‘a collection of individuals made by pooling two populations
ought always to be more diverse than the average of their separ-
ate diversities, unless the two populations are identical in
composition’ (p. 338).
R.Soc.B
377:20200410
In this statement, Lewontin describes expectations of diversity
in a set of pooled haplotypes originating from individuals of
distinct ancestries, as might result from sampling schemes
that combine populations in genetic analysis. This quote also
gives insight into how admixture may impact the measures of
genetic variation that Lewontin considers. These ideas were
revisited in a recent study that explores patterns of heterozygos-
ity in admixed populations [34]. The authors theoretically
demonstrate that the heterozygosity of an admixed population
is predicted by the heterozygosities of its source populations,
the FST between them and the admixture contributions [34].
FST, which has taken the place of entropy partitioning statistics
that Lewontin [1] used, can also be informative about the par-
ameters of the admixture process, as Boca and Rosenberg
demonstrated [35]. These studies illustrate how traditional
measures of genetic diversity can be repurposed to improve
our understanding of the admixture process.

Beyond within- and between-population estimates of gen-
etic diversity and ancestry, admixed populations introduce
another class of summaries of genetic variation: tracts of the
genome within individuals that originate from each ancestry
source [15,17,36]. In figure 1, we illustrate three hierarchical
categories of genetic ancestry variation in admixed popu-
lations from the 1000 Genomes Project [37] from the
Americas, who have African, European and Amerindigenous
ancestry. First, given similar continental source ancestries,
admixed populations can vary in their average proportions
from each source (figure 1a). Second, individuals within an
admixed population may vary in their genome-wide, or
‘global’, ancestry proportions (figure 1b). Third, individuals
with similar source ancestry contributions and admixture
histories may vary by ‘local’ ancestry across genomic loci
(figure 1c). At each level, these patterns of diversity contain
information about admixture and post-admixture processes.

In practice, genetic ancestry of individuals from admixed
populations is not fully known and is inferred, often using
reference panels that are collated to represent the source popu-
lations [4,27–30,38]. In the following sections, we discuss
aspects of human evolution that are commonly inferred from
patterns of genetic variation in admixed populations, particu-
larly genetic ancestry. The performance of these methods is
predicated on accurate estimates of global and local ancestry.

The quality of ancestry estimates depends on a variety of
sampling and evolutionary scenarios [39]. A recent study of
the admixed Ashkenazi Jewish population noted that the
lack of differentiation between European and Middle Eastern
haplotypes made accurate local ancestry inference challenging,
reducing their power to infer the parameters of the admixture
process [40] and demonstrating the complexity in defining
admixed populations, as these populations are often not
considered admixed. The authors suggest that these issues
might be mitigated by incorporating uncertainty in local
ancestry estimates into complex demographic scenarios.
Lawson et al. [39] demonstrate multiple avenues for potential
over- or misinterpretation of global ancestry estimates from a
commonly used suite of model-based methods based on the
Pritchard–Stephens–Donnelly model of mixed membership
across latent clusters. For example, they found that multiple
qualitatively different evolutionary scenarios produced similar
global ancestry estimates in the admixed population, and
uneven sample sizes between populations may influence
ancestry estimates. Notably, many methods, especially for
local ancestry, rely on the use of reference panels of modern
populations as proxies for the source populations, which
may not fully represent the populations that existed at the
time of admixture, and have uneven global representation.
3. Inferring population history
The admixture history of a population, such as the timing and
source contribution levels, leaves predictable patterns of
genetic variation within and between individuals from the
admixed population [15,16,37,41–43]. Empirical genetic
analyses can, therefore, be used to infer the histories that
produced observed genetic variation.

Under a simple admixture scenario, the allele frequency
of a locus in the admixed population is expected to be the
average of the allele frequencies in source populations
weighted by their contribution levels [44–46]. That is, the
admixture contribution levels from the sources can be esti-
mated from the allele frequencies of the admixed and source
populations. Estimation of ancestry proportions under this
model of admixture often relies on identifying a subset of loci
with particularly large allele frequency differences between
the source populations, known as Ancestry Informative
Markers (AIMs) [47]. With further developments in genome
sequencing increasing the density of loci across genomes,
recent methods often incorporate linkage information or
model small allele frequency changes over many loci, produ-
cing estimates of global ancestry proportions, as well as local
ancestry along an admixed individual’s genome [4,27–30,38].
Mechanistic models of admixture complement empirical
studies to improve our intuition of admixture dynamics and
interpretation of empirical results [15,42,48–51]. Related
model-based inference frameworks have been developed to
estimate parameters of population history.

Patterns of global and local ancestry within and between
individuals are informative about admixture histories. For
example, over time, recombination tends to break up local
ancestry tracts; therefore, longer tracts generally indicate
more recent contributions from source populations to an
admixed population and may be used to infer the timing of
admixture [36,42,52–58]. Similarly, as random mating leads
to the averaging of ancestry proportions across individuals
as they produce the next generation, the variance in global
ancestry within the admixed population decreases over
time as well [15]. Summaries of variation that are not explicitly
based on local or global ancestry, such as linkage
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disequilibrium, can also be informative of the timing of admix-
ture as populations with differentiated allele frequencies mix.
With two-way admixture, high-frequency variants from each
source will be strongly correlated with each other in the first-
generation admixed population, regardless of their respective
locations in the genome and degree of physical linkage. Over
time, recombination will erode these correlations to generate
a pattern of non-random association of pairs of loci that
decay over genomic distance. Several methods leverage these
characteristic decay curves to estimate the age of a pulse of
admixture [4,59,60], and extensions of these methods infer
admixture parameters under models that include continuous
gene flow, multiple waves or assortative mating [61–63].

Similarly, sociocultural practices that governmate choice or
sex-specific contributions from the source populations will
leave signatures in patterns of genetic ancestry. Individual
behaviours such asmating preferences or long-rangemigration
can exhibit ancestry biases in which the ancestry patterns in
the subset of the population that migrates are not representa-
tive of the whole admixed population, potentially driven by
correlations between ancestry and visible traits like skin
pigmentation or socioeconomic differences [64–69]. Simple
models of admixture often assume that individuals mate
randomly; however, admixed human populations show
evidence of positive assortative mating, with mating pairs
often correlated in global ancestry proportion [67,70–72].
Recent methods have sought to test for ancestry-based assorta-
tive mating by developing frameworks to infer parental
ancestries from phased haplotypes within a single individual
[73–75]. When not accounted for, nonrandom mating patterns
can bias inference of admixture parameters [62,76].

Additionally, based on the sex-specific inheritance of the
X chromosome (where females inherit two copies, one from
each parent, while males inherit one X chromosome mater-
nally and their Y chromosome paternally), comparisons of
X-chromosomal and autosomal ancestry proportions have
been used to infer sex-biased admixture in ancient and
modern human populations [49,50,77–80]. These differences
in female and male contribution levels from the sources
may be indicative of complex social interactions that govern
mating behaviors between the admixing human populations,
such as dominance structures associated with colonization.

Differences in ancestry proportion across the geographical
span of a population or populations with shared ancestry
components have been used to infer ancestry-biased migration
patterns, which may be driven by social cues. For example,
ancestry-biased migration, often combined with other mating
dynamics, has been proposed as a process shaping regional
variation in African ancestry proportions across the USA
[65,81,82]. Similarly, temporal changes in ancestry proportion
within a population may be caused by time-varying social
dynamics. Spear et al. [69] found a significant increase inAmer-
indigenous ancestry in Mexican American populations over
time, potentially owing to differences in ancestry in the
migrating population over time and fecundity correlated
with ancestry.

Sufficiently accounting for these spatial and temporal
dynamics of the admixture process presents an exciting
challenge. One solution to address admixture processes that
vary over space or time involves simulation-based demo-
graphic inference frameworks, such as approximate Bayesian
computation and machine learning-based approaches. For
example, MetHis is an approximate Bayesian computation-
based approach for inference under complex two-way
admixture models [48,83]. An advantage of simulation-based
demographic inference methods over models that use a
likelihood is that they can handle arbitrarily complicated
admixture scenarios, accommodate any calculable feature
of genomic data (such as tracts that are identical by descent
(IBD) and runs of homozygosity (ROH)), and even conduct
summary-statistic-free inference [84]. Continued work to
extend these methods will enable disentangling the myriad
of historical, evolutionary and socio-cultural factors
contributing to human admixture processes.

Studying the genomes of admixed populations can also
provide insight into the genetic origins and demographic his-
tories of their founding populations, particularly for source
ancestries that are no longer commonly represented by an
extant single-ancestry population [18,19]. An increasingly
popular approach is to first estimate local ancestry, then sep-
arately apply classic single-population methods on the
subsets of the genome that are inferred to be from each
source. This is exemplified by the ancestry-specific PCA
(ASPCA) method, which performs PCA separately for each
contributing source ancestry, as identified by local ancestry
inference methods. This approach has revealed previously
unappreciated variation in the European and Amerindigen-
ous ancestry sources of admixed Latinos across Mexico [85],
the Caribbean [86] and South America [87].

Local ancestry inference can also be used to unravel
source-specific historical population size dynamics. The pro-
cess of admixture often involves bottlenecks at the time of
founding, the timing and strength of which Browning et al.
[88] demonstrated can be inferred using ancestry-specific
IBD. This approach combines estimates of local ancestry
and IBD for admixed groups to estimate the past effective
population sizes of each of the source ancestries. They
found ancestry-specific population size changes, including
variable bottleneck severity .

Moving forward, combining ancestry-based inference with
patterns of homozygosity and IBD may help elucidate these
complex and dynamic population histories. For example,
homozygosity and IBD are shaped by the relationships between
mating pairs, which are in turn influenced by sociocultural
processes [65,67,86,89,90]. However, we lack theoretical expec-
tations for the distributions of ROH and IBD segments after
admixture,whichmay break up local patterns of homozygosity
while also involving major changes in genome-wide variation
due to the mixing of previously isolated populations. Recent
empirical explorations suggest that, in particular, ROH in
admixed populations reflect both contributions from source
populations and post-admixture population dynamics.
4. Detecting selection
Adaptation to biotic and abiotic environments leaves signa-
tures in patterns of human genetic variation that can be
used to identify adaptive loci and infer their selection history
[91–94]. However, admixture can confound this inferential
process and obscure the detection of genomic targets of selec-
tion by producing genetic signatures that are classically
interpreted as signatures of selection [95–98]. Additionally,
the long-range geographical movement of people associated
with recent admixture may introduce novel selective press-
ures. Under certain scenarios, selection may indeed be
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Figure 2. Ancestry outlier tests for post-admixture selection are underpowered
when source differentiation is low. We examine how FST between two source
populations at a selected locus affects the power of a local ancestry outlier
approach to detect selection. Whole-genome simulations were conducted in
SLiM [114]. We simulated 50 sets of 10 000 individuals under a two-way admix-
ture model with equal contributions from the sources, with Population A
contributing an allele that is under strong selection (s = 0.05) in the admixed
population for 12 generations. For increasing values of FST along the x axis, we
plot (a) the proportion of simulations in which the selected locus would be
classified as an ‘outlier’ in local ancestry frequency from Population A for mul-
tiple genome-wide thresholds, and (b) the rank of the selected locus among all
loci genome-wide for ancestry from Population A. Even with relatively strong
selection and complete differentiation between source ancestries (i.e. FST = 1)
at the selected locus, it frequently failed to appear as a Population A ancestry
outlier, potentially because selection had not had long enough to act, resulting
in other loci having higher local ancestry frequencies in the population by
chance. Similarly, the rank (with all loci ordered by frequency of local ancestry
from Population A) of the selected locus increases with increasing differentiation
between source populations at the locus. We simulated 6 diploid individuals per
source population, and use the (potentially multiple) allele frequency combi-
nations that produce the five values of FST plotted, specifying that Population
A’s frequency was equal to or higher than Population B’s. From these, we ran-
domly chose a starting allele frequency combination for the source populations
for each of the 50 simulations. (Online version in colour.)
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easier to detect in admixed populations than in single-ances-
try populations with the additional information provided by
ancestry patterns [99–102]. That is, inferring selection from
admixed genomes poses unique challenges, but also opportu-
nities for new insights into human adaptation.

As described previously, admixed populations are often
considered as a linear combination of their sources such
that the expected allele frequency of a locus is an average
of the allele frequencies in each source population at that
locus weighted by their proportional contribution to the
admixed population. Loci that dramatically differ from this
expectation are candidates for loci under selection (reviewed
in Adams & Ward [45], and Chakraborty [3]).

Outlier methods have been used to detect selection with a
variety of summary statistics in single-ancestry populations,
including early work by Lewontin and Krakauer [103], and
more recently, IBD or ROH. However, non-equilibrium demo-
graphic processes such as bottlenecks and gene flow can
change the distribution of these statistics across the genome,
leading to false positives or complicating interpretation of
these outlier methods [104–107]. When using methods not
specifically developed for admixed populations, admixture
can lead to both increased false-positive rates and decreased
power to detect both pre-admixture selection (i.e. selection
that happened in the source populations) and post-admixture
selection [96].

Recent methods often leverage ancestry information to
detect post-admixture adaptation, independently based on
ancestry distributions, or in combination with other classic
summary statistics [99–102,108–110].When selective pressures
are shared between admixed populations and one of their
sources, admixture-mediated adaptation may occur through
contributions of an adaptive allele from that source popu-
lation. This may be a particularly rapid mode of adaptation
because the allele is often introduced into the admixed
population at intermediate to high frequency (proportional
to the admixture contribution from that source), decreasing
stochastic loss. If the adaptive allele is common in one
source population but rare in the other(s), then as that allele
rises in frequency in the admixed population, so will the
corresponding local ancestry at that locus. This observation
has led to a common method to detect post-admixture selec-
tion: scanning for outliers in local ancestry compared to
genome-wide ancestry.

Empirical studies have identified numerous candidate
regions under selection post-admixture using ancestry outlier
methods [108,110–112]; however, this approach has several
limitations. The distribution of local ancestry within a popu-
lation is influenced by a complex interplay of selective and
demographic histories, and current theoretical understanding
is limited, making the choice of cutoff for identifying outliers
somewhat arbitrary [113]. More fundamentally, an ancestry-
outlier approach is only suitable in situations where the allele
frequencies in the source populations differ substantially,
which couples allele frequency changes with a single source’s
ancestry. In figure 2 we demonstrate this coupling by simulat-
ing admixture with equal contributions from two sources,
followed by 12 generations of strong selection (s = 0.05) at the
adaptive locus; the proportion of simulations in which the
adaptive locus is an outlier increases with increasing FST
between the sources. Additionally, the power of outlier
approaches to localize adaptive loci depends on the length of
the admixture tract containing the locus, and therefore the
selection history. Finally, while useful for identifying adaptive
loci, these methods must be combined with other information
or simulations to infer parameters of the population’s history
such as the strength or timing of selection.



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20200410

7
Ongoing work extends initial implementations of
ancestry-outlier approaches to study post-admixture selection,
and often uses simulations to improve interpretation and test
power [99–102,115,116]. These methods have recovered classic
examples of selected loci from the genomes of admixed popu-
lations and inferred the timing, strength and repeatability of
selection under different scenarios. For example, our work in
Hamid et al. [100] found signatures of adaptation to malaria
via the DARC gene in the admixed population of Cabo
Verde based on long, high frequency African ancestry tracts.
Hamid et al. [100] further used simulation-based inference to
infer the strength of selection. This study’s findings reinforced
others that have identified post-admixture selection pressure
to retain African ancestry at DARC, a known malaria suscep-
tibility locus, in multiple admixed populations on multiple
timescales [99,112,117–119]. It also provides an example of
combining ancestry-specific summary statistics with simu-
lations to both localize selection and infer parameters of the
selection history.

While these recent studies using empirically driven sum-
mary statistics have proven informative in certain scenarios,
more work is needed to develop expectations of the distri-
butions of ancestry under models of selection with
admixture. Indeed, recent work has suggested perhaps unex-
pected relationships between ancestry tract lengths, allele
frequencies and selection history, emphasizing the need for
additional theory [120].
5. Understanding complex trait architecture and
predicting genetic traits

For decades, human genetics research has aspired to make
personalized medical therapies a reality by improving the pre-
diction of traits from genetic data; while progress has been
made on the genetic prediction of traits in recent years, its
potential for making personalized medicine a reality may
only be currently applicable to individuals of European ances-
try [121]. Genome-wide association studies (GWAS) have been
the standard framework for studying the genetic basis of com-
plex traits for over 15 years, in which variants across the
genome are tested individually for statistical association with
a trait of interest. GWAS studies have also formed the
statistical foundation for polygenic scores (PGS), inwhich com-
plex quantitative traits (e.g. height or cholesterol level) are
predicted under Fisher’s infinitesimal model using the
sum of an individual’s observed genotypes weighted by
GWAS-inferred effect sizes.

Admixture complicates the identification of genetic
underpinnings of complex traits. For example, GWAS gener-
ally assume that there are no systematic differences in the
genetic variation of the study cohort except in those variants
that underlie the trait of interest. Yet patterns of ancestry vary
widely across individuals within an admixed population,
both at the genome-wide level and within regions of the
genome, as shown in figure 1. Local ancestry block structures
induced by admixture processes cannot be controlled for using
genome-wide ancestry (e.g. principal components) as covari-
ates, as is standard practice in GWAS, and as a result GWAS
of admixed populations may have inflated error rates
[10,22,122,123]. That is, admixture introduces complex popu-
lation structure and linkage blocks that, if unaccounted for,
can identify false-positive variant–trait associations. Recent
research has shown that variant-level effect sizes on a given
trait estimated from GWAS tend to be ancestry- or even
study-specific [124–127]. This severely limits the ability to use
effect sizes estimated in a sample from one ancestry to predict
trait levels in a sample from a different ancestry, which gener-
ally results in poor trait prediction accuracy for individuals
who were not part of the discovery GWAS, even if from the
same ancestry [69,124,126,128].

Increasingly, research suggests that by excluding individ-
uals from admixed populations (as well as from non-admixed
minority populations), geneticists are discarding a rich source
of genomic information [26]. PGS accuracy could be improved
with more comprehensive sequencing of cohorts of non-
European ancestry [7,125,129,130], but must be coupled with
newmethods tailored to admixed populations and the patterns
of linkage disequilibrium patterns and allele frequency vari-
ation that arise from their population histories (see also Fish et
al. [131]). Furthermore, source ancestry contributions to
admixed populations and their dynamics within admixed
populations can change over time, leading to temporal vari-
ation in effect size estimates [69]. All of these factors can
contribute to a loss of predictive power in individuals
of admixed ancestry, even when accounting for local ancestry
and using high-quality effect size estimates for all source
ancestries [132,133].

In an effort to address these challenges for predicting
traits in admixed populations, new frameworks are being
developed to improve the performance of PGS in individuals
from admixed populations, such as including local ancestry-
based principal components to correct for heterogeneous
patterns of population structure along the genome or subdi-
viding the cohort by genome-wide ancestry and taking a
meta-analysis approach [121].
6. Conclusion
Though itwas not the focus of his paper, Lewontin [1] acknowl-
edged the role of admixture in shaping distributions of genetic
variation and included admixed populations in his analyses
(see also box 1). In the intervening fifty years, population
genetics research has continued to shed light on the importance
of admixture processes for genetic variation and complex
trait architectures. In certain scenarios, studying admixed
populations may provide insight into general human evol-
utionary processes (for example, recombination as in [20,21])
and history beyond admixture itself because of the added
information from ancestry-based statistics.

Multiple future directions in research on admixture will
extend our understanding of human evolution and the distri-
bution of human genetic variation. First, there is a need for
more theory regarding how natural selection interacts with
admixed population histories (but see [120]). Figure 2, as well
as multiple recent studies [101,102], show that common
summary statistics to detect selection in admixed populations
have variable power and often unclear interpretations.
Moving beyond simple implementations of ancestry-outlier
approaches, which provide a list of candidate loci, may also
be useful for developing methods to infer the selective history
of adaptive loci. Second, the study of admixed populations is
often based on contrasting genetic variation in admixed popu-
lations against that of reference populations for source
ancestries, even if accurate references are not available.
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Reference-free methods have proven useful for estimating
global ancestry, for example in unsupervised implementations
of ADMIXTURE and STRUCTURE, yet remain rare for local
ancestry assignment (but see [134]). Finally, methods have
thus far focused on positive selection primarily at single loci,
and more work is needed to study other directions or genetic
architectures under selection, such as background and poly-
genic selection. An important step for interpreting signals
of adaptation is understanding the genetic basis of traits.
Towards this goal, multiple recent studies have focused on
methods for predicting quantitative traits in admixed popu-
lations [69,125,128,129,135], and offer new insight into how
admixture linkage disequilibrium specifically confounds the
identification of shared genetic associations. Prioritization of
sampling from admixed populations for association studies
would increase power to accurately estimate effect sizes for
these groups rather than relying on GWAS results from proxies
for their ancestral sources [121,122,129].
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