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Body mass index trajectories in 
the first two years and subsequent 
childhood cardio-metabolic 
outcomes: a prospective multi-
ethnic Asian cohort study
Izzuddin M. Aris  1, Ling-Wei Chen2, Mya Thway Tint  3, Wei Wei Pang3, Shu E. Soh1, Seang-
Mei Saw4, Lynette Pei-Chi Shek2, Kok-Hian Tan5, Peter D. Gluckman1,6, Yap-Seng Chong1,3, 
Fabian Yap7,8,9, Keith M. Godfrey10, Michael S. Kramer3,11 & Yung Seng Lee  1,2,12

We investigated body mass index (BMI) trajectories in the first 2 years of life in 1170 children from 
an Asian mother-offspring cohort in Singapore, and examined their predictors and associations 
with childhood cardio-metabolic risk measures at 5 years. Latent class growth mixture modelling 
analyses were performed to identify distinct BMI z-score (BMIz) trajectories. Four trajectories were 
identified: 73.2%(n = 857) of the children showed a normal BMIz trajectory, 13.2%(n = 155) a stable 
low-BMIz trajectory, 8.6%(n = 100) a stable high-BMIz trajectory and 5.0%(n = 58) a rapid BMIz gain 
after 3 months trajectory. Predictors of the stable high-BMIz and rapid BMIz gain trajectories were 
pre-pregnancy BMI, gestational weight gain, Malay and Indian ethnicity, while predictors of stable 
low-BMIz trajectory were preterm delivery and Indian ethnicity. At 5 years, children with stable high-
BMIz or rapid BMIz gain trajectories had increased waist-to-height ratios [B(95%CI) 0.02(0.01,0.03) 
and 0.03(0.02,0.04)], sum of skinfolds [0.42(0.19,0.65) and 0.70(0.36,1.03)SD units], fat-mass index 
[0.97(0.32,1.63)SD units] and risk of obesity [relative risk 3.22(1.73,6.05) and 2.56 (1.19,5.53)], but not 
higher blood pressure. BMIz trajectories were more predictive of adiposity at 5 years than was BMIz at 2 
years. Our findings on BMIz trajectories in the first 2 years suggest important ethnic-specific differences 
and impacts on later metabolic outcomes.

Childhood obesity is a major health concern worldwide1, because of its association with later cardio-metabolic 
outcomes such as coronary heart disease and Type 2 diabetes2, 3. These associations suggest that weight and body 
mass in early childhood may affect health risks in later life. Most epidemiological studies examining associations 
between childhood body mass index (BMI) and later cardio-metabolic outcomes have focused on BMI at only one 
time point4, 5. Childhood growth trajectory has recently been advocated as a predictor of future cardio-metabolic 
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risk6, 7. Trajectory patterns account for dynamic changes in size that vary over time during the child’s develop-
ment, providing an important dimension for consideration, in addition to just assessing size at one point in time.

Recent progress in statistical techniques makes it possible to study the potential heterogeneity of BMI changes 
in early childhood. Individual children may belong to distinct BMI trajectories8, 9 which may confer different 
risks towards the subsequent development of obesity or cardio-metabolic disease later in life. Techniques such as 
latent class growth mixture modelling (LCGMM) allow for estimation of such trajectories and their within-class 
variance, thereby allowing for greater heterogeneity in statistical model10, 11, unlike other trajectory models such 
as group-based trajectory modelling, which fix the within-class variation in each trajectory to zero8.

While many studies have prospectively explored BMI trajectories during childhood and adolescence12–16, few 
have examined BMI trajectories in the first 1000 days after conception (age 0 to 2 years)17, 18, which may be a 
sensitive window for the development (and hence potential prevention) of later obesity and cardio-metabolic 
disease19, 20. Even fewer studies have been conducted in Asian populations, whose susceptibility to metabolic 
disease often exceeds that in Western populations21. We are not aware of any accepted guidelines to identify 
clinically important weight gains22 or growth trajectories in children aged ≤2 years. Identifying groups of young 
children following trajectories associated with high risk of developing obesity or cardio-metabolic disease could 
potentially help in targeting early intervention. Using data from a prospective mother-offspring Asian cohort in 
Singapore, we aimed to identify distinct BMI trajectories in the first 2 years of life, and examine their predictors 
and their associations with cardio-metabolic risk measures at age 5 years. We also hypothesized that BMI trajec-
tories in the first 2 years may be more predictive than static BMI measurement at 2 years.

Methods
Study population. The Growing Up in Singapore Towards healthy Outcomes (GUSTO) study has been pre-
viously described in detail23. Briefly, pregnant women were recruited in their first trimester at two major public 
hospitals in Singapore with obstetric services (KK Women’s and Children’s Hospital and the National University 
Hospital) between June 2009 and September 2010. Eligible women were Singapore citizens or permanent resi-
dents who were of Chinese, Malay, or Indian ethnicity with homogeneous parental ethnic backgrounds, and did 
not receive chemotherapy or psychotropic drugs and did not have diabetes mellitus. Of 3751 women approached, 
2034 were eligible, 1247 were recruited and 1170 had singleton deliveries (Supplemental Fig. 1). The reasons of 
ineligibility have been previously described in detail23. Informed written consent was obtained from the women, 
and the study was approved by the National Healthcare Group Domain Specific Review Board and SingHealth 
Centralized Institutional Review Board. All methods were performed in accordance with the relevant guidelines 
and regulations, and ethical approval was granted by the National Healthcare Group Domain Specific Review 
Board and SingHealth Centralized Institutional Review Board.

Maternal data. Socio-demographic data (age, self-reported ethnicity, educational attainment, income level 
and parity) were obtained at recruitment. Pregnant women underwent a 2-hour, 75-gram oral glucose toler-
ance test after an overnight fast at 26–28 weeks of gestation, as detailed previously24; those diagnosed with ges-
tational diabetes based on World Health Organization’s (WHO) criteria [FPG ≥ 7.0 mmol/L or 2-hour glucose 
≥7.8 mmol/L] were placed on a diet or treated with insulin. Gestational age (GA) was assessed by trained ultraso-
nographers at the first dating scan after recruitment and was reported in completed weeks.

Maternal pre-pregnancy weight was self-reported at study enrolment. Measurements of weight and height for 
mothers during pregnancy were obtained using SECA 803 Weighing Scale and SECA 213 Stadiometer (SECA 
Corp, Hamburg, Germany). These measurements were used to calculate body mass index (BMI) in kg/m2. 
Gestational weight gain (GWG) was calculated as the difference between last measured weight before delivery 
(between 35–37 weeks of gestation) and pre-pregnancy weight, and was corrected for gestational duration using 
maternal weight-gain-for-gestational age z-score charts by Hutcheon et al.25. Maternal blood pressure (BP) at 
26–28 weeks of gestation was taken by trained research coordinators with an oscillometric device (MC3100, 
HealthSTATS International Pte Ltd, Singapore).

Infant feeding. Mothers were asked about infant milk feeding using interviewer-administered question-
naires at home visits when the infants were 3, 6, 9, and 12 months of age. Feeding practices were classified into 
exclusive, predominant, and partial breastfeeding at each of those ages. Both direct breastfeeding and expressed 
breast milk intakes were classified as breastfeeding. Infants were defined as having low, intermediate or high 
breastfeeding, as detailed previously26.

Child anthropometric measurements. Measurements of child weight and length/height were obtained at 
birth, 3, 6, 9, 12, 15 and 18 months and 2 years and 5 years of age, as detailed previously27, 28. At 5 years, we meas-
ured waist circumference, four skinfold thicknesses (triceps, biceps, subscapular and suprailiac), fat and lean mass 
[in a subset of children (n = 274) whose parents provided written consent] based on quantitative magnetic reso-
nance imaging, as detailed previously29. These measurements were used to calculate BMI, sum of skinfolds (SSF), 
waist-to-height ratio (WHtR), fat mass index (FMI) and lean mass index (LMI) (calculated as fat or lean mass 
divided by square of height). Age- and sex-specific BMI z-scores (BMIz) were calculated using WHO refs 30, 31.  
Child obesity at 5 years was defined as age- and sex-specific BMIz two standard deviations higher than the 
median of the WHO ref. 31.

Based on standardized protocols32, child BP at 5 years was measured by trained research coordinators using a 
Dinamap CARESCAPE V100 (GE Healthcare, Milwaukee, WI), with the arm resting at the chest level. An average 
of two blood pressure readings were calculated if the difference between readings was <10 mmHg; otherwise, a 
third reading was taken and the average of the three readings used instead. Child prehypertension was defined 
as systolic (SBP) or diastolic (DBP) BP above the 90th percentile for the child’s sex, age and height. As there is 
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currently no reference for blood pressure percentiles in the Singapore population, we utilized reference values 
published by the American Academy of Pediatrics33.

Statistical analysis. Stage 1: Modelling BMIz trajectories in the first 2 years using LCGMM. We analyzed 
child BMIz trajectories in the first 2 years of life using LCGMM10, 11. LCGMM is a longitudinal technique based 
on structural equation modelling that incorporates both continuous and categorical latent (unobserved) varia-
bles. The technique assumes that individuals in the sample need not come from a single underlying population, 
but rather from multiple, latent subgroups. Each identified subgroup has its own specific parameters (e.g., inter-
cept, slope, quadratic), which are unobserved. Furthermore, LCGMM accounts for within-class variation in all 
growth parameters, implying within-class heterogeneity in addition to the between-class heterogeneity among 
the identified subgroups.

Quadratic-shaped trajectories were fitted, allowing for curved developmental patterns, with an increasing 
number of latent trajectories, assuming a constant variance–covariance structure (correlated random intercept, 
linear, quadratic function). The proportions of missing BMIz data at each time point and across all time points 
in the first 2 years are shown in Supplemental Table 1; 87.5% of children had at least 4 measurements of BMI in 
the first 2 years. We used the maximum likelihood robust estimator to account for missing data by full informa-
tion maximum likelihood. This process approximates missing data by estimating a likelihood function for each 
individual based on variables that are present, such that all the available data points are used34. We identified the 
optimal number of latent trajectories based on two model-fit indices: the Bayesian Information Criterion (BIC) 
and the Bootstrap Likelihood Ratio Test (BLRT). A lower BIC value indicates a better model fit, while the BLRT 
provides a p-value indicating whether a model with one fewer trajectory groups (k-1 model) should be rejected in 
favour of a model with k trajectories. Posterior probabilities of belonging to each trajectory were also examined, 
with subjects assigned to the trajectory for which they had the highest posterior probability. We required each 
trajectory to contain a minimum of 5% of subjects, so that it would be large enough to be clinically important. 
Distinct trajectories were coded as a categorical variable (with k number of categories) and were named based 
on their visual appearance. As the trajectories were similar in nature in both girls and boys (as found in other 
studies13, 14), all analyses were performed on the total sample. In addition, when corrected postnatal age for infants 
born preterm35 was used in deriving the trajectories, the patterns were exactly the same as those derived using 
uncorrected postnatal age. In light of this, all analyses were performed using uncorrected postnatal age. To illus-
trate the robustness of the extracted trajectories, we repeated the analyses restricted to children with no missing 
BMIz data in the first 2 years (n = 536). All LCGMM analyses were conducted using Mplus version 7.4 (Muthén 
and Muthén, Los Angeles, CA).

Stage 2: Predictors and cardio-metabolic consequences of BMIz trajectories. Associations between maternal (age, 
income level, pre-pregnancy BMI (ppBMI), height, GWG, GDM status, parity and GA at delivery) and infant 
(ethnicity and breastfeeding) factors and BMIz trajectories were first examined using ordinal logistic regression. 
However, the proportional odds assumption was violated (Brant test p < 0.05) for many of the predictors (ppBMI, 
height, GWG, income level, ethnicity and GA at delivery), rendering the model unsuitable for analysis and inter-
pretation. We therefore used multinomial logistic regression, with the most commonly occurring trajectory cho-
sen as the reference category. As self-reported pre-pregnancy weight may have limited validity, we also carried 
out sensitivity analyses by replacing ppBMI with maternal BMI at booking (mean 8.7 ± 2.8 weeks of gestation).

We studied the association between BMIz trajectories and cardio-metabolic measures at 5 years (i.e., WHtR, 
SSF, FMI, LMI, SBP and DBP) using multivariable linear regression. As the distributions of child WHtR, SSF, FMI 
and LMI were skewed, the data were log-transformed and standardized to z-scores with a mean 0 and SD of 1. 
The log-transformation reduced the skewness and the problem of non-normality. Poisson regression models with 
robust variance were used to calculate the relative risk of obesity or prehypertension at 5 years for each distinct 
BMIz trajectory.

For comparison, we also estimated the relative risk of obesity or prehypertension at 5 years for the (static) 
BMIz measurement at 2 years, categorized into four levels: <5th, 5th–<85th, 85th–<95th or ≥95th percentiles and 
compared those adjusted relative risk estimates to those associated with BMIz trajectories. To assess the vari-
ance of continuous cardio-metabolic outcomes explained by trajectory vs static BMIz groupings beyond baseline 
covariates, a basic model was first fitted by including predictors of cardio-metabolic outcomes (maternal income 
level, ppBMI, height, GWG, parity, GA at delivery, breastfeeding, child ethnicity, and sex) as independent varia-
bles in a linear regression analysis. Subsequently, the trajectory or static BMIz groupings were added separately 
to those baseline models; the increment in variance explained beyond that of baseline covariates was assessed 
using the adjusted R2 values. The area under the receiver operating characteristics (ROC) curve was also used to 
compare the predictive value of trajectory vs static BMIz groupings for obesity and prehypertension at 5 years.

All models were adjusted for maternal income level, ppBMI, GWG, parity, GA at delivery, breastfeeding, child 
ethnicity, and sex to reduce confounding, and exact age at measurement to improve precision. Recent studies have 
found a relationship between maternal height and offspring adiposity in childhood36; therefore, we also consid-
ered maternal height as a potential confounding variable in the analysis. Multiple imputation was used to account 
for missing covariates (maternal income level, n = 77; ppBMI, n = 105; height, n = 27; GWG, n = 33; breastfeed-
ing, n = 142) with 20 imputations based on the Markov-chain Monte Carlo technique, using MI IMPUTE to 
impute the missing values and MI ESTIMATE to analyze the imputed datasets. These analyses were performed 
using Stata 13 software (StataCorp LP, TX).

Data availability. Data are available from the National University of Singapore LORIS Database for research-
ers who meet the criteria for access to confidential data.
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Results
BMIz trajectories in the first 2 years. Based on the BIC, BLRT and posterior probabilities, the “best-fit-
ting model” (lowest BIC, significant BLRT p-value and posterior probability ≥0.70 for each subgroup) was the 
four-class model; the fit information indices are presented in Supplemental Table 2. Table 1 describes the demo-
graphic and clinical characteristics separately by BMIz trajectories. A large majority of the children (73.2%, 
n = 857) exhibited a normal BMIz trajectory, centred on BMIz = 0. The other three trajectories had distinct 
shapes: 13.2% (n = 155) had a stable low BMIz trajectory (average BMIz = −1 SD), 8.6% (n = 100) exhibited a 
stable high BMIz trajectory (average BMIz =  + 1SD) and 5.0% (n = 58) showed a rapid BMIz gain after 3 months 
trajectory in the first 2 years of life (Fig. 1). Sensitivity analyses using subjects with no missing BMIz data in the 
first 2 years (n = 536) showed the same trajectory patterns, further illustrating the robustness of the extracted 
BMIz trajectories (Supplemental Figure 2). Amongst children with no missing BMIz data, cross-tabulation anal-
yses showed similar group assignments as in the full dataset (Supplemental Table 3). Supplemental Table 4 shows 
the corresponding percentiles at 2 years for each BMIz trajectory group; these percentiles closely approximate the 
thresholds based on standard categories (i.e., 5th, 50th, 85th and 95th percentiles).

Predictors of BMIz trajectories in the first 2 years. The likelihood ratio test statistic of the multinomial 
logistic regression model yielded a p value of <0.01, indicating a significant association of the combined predic-
tors with BMIz trajectory outcomes. Children born preterm [odds ratio (95% CI): 2.23 (1.28–3.36)] and of Indian 
ethnicity [2.36 (1.54–3.63) vs Chinese ethnicity] were more likely to be in the stable low BMIz trajectory. Children 
of Malay [3.49 (1.48–8.25)] and Indian ethnicity [6.30 (2.66–14.73)] were more likely to be in the rapid BMIz gain 

All trajectories 
n = 1170

Stable low BMIz 
n = 155

Normal BMIz 
n = 857

Stable high 
BMIz n = 100

Rapid BMIz gain 
after 3 months 
n = 58 p valuec

Maternal characteristics

 Age (years) 30.7 ± 5.1a 30.7 ± 5.0 30.6 ± 5.1 30.9 ± 5.3 31.1 ± 5.4 0.92

 Educational attainment 0.58

 <12 years 467 (40.5)b 65 (13.9)c 333 (71.3)c 41 (8.8)c 28 (6.0)c

 ≥12 years 668 (50.5) 88 (12.8) 511 (74.3) 59 (8.6) 30 (4.3)

 Income level per month 0.03

 <SGD $2000 165 (15.2) 24 (14.6) 121 (73.3) 8 (4.8) 12 (7.3)

 SGD $2000–5999 608 (55.6) 89 (14.6) 429 (70.6) 54 (8.9) 36 (5.9)

 ≥SGD $6000 320 (29.2) 34 (10.6) 249 (77.8) 29 (9.1) 8 (2.5)

 Parity 0.08

 Primiparous 534 (45.6) 61 (11.4) 409 (76.6) 37 (6.9) 27 (5.1)

 Multiparous 636 (54.4) 94 (14.8) 448 (70.4) 63 (9.9) 31 (4.9)

Pre-pregnancy BMId (kg/m2) 22.7 ± 4.4 22.2 ± 4.2 22.6 ± 4.3 24.1 ± 4.4 25.1 ± 5.6 <0.001

 Height (cm) 158.3 ± 5.6 157.0 ± 5.3 158.4 ± 5.7 159.1 ± 5.4 157.7 ± 5.6 0.01

 GWGd z-score −1.01 ± 1.08 −1.29 ± 1.23 −1.00 ± 1.06 −0.73 ± 0.98 −0.95 ± 0.99 <0.001

 Gestational diabetes 0.22

 No 877 (81.1) 110 (12.5) 654 (74.6) 74 (8.4) 39 (4.4)

 Yes 204 (18.9) 34 (16.7) 138 (67.7) 18 (8.8) 14 (6.9)

Gestational age at delivery 0.008

 Term 1081 (92.3) 133 (12.3) 803 (74.3) 94 (8.7) 51 (4.7)

 Pre-term 89 (7.7) 22 (24.7) 54 (60.7) 6 (6.7) 7 (7.8)

Child characteristics <0.001

Sex

 Male 619 (52.9) 72 (13.1) 431 (78.2) 74 (11.9) 36 (5.8)

 Female 551 (47.1) 83 (13.4) 426 (68.8) 26 (4.7) 22 (4.0)

Ethnicity <0.001

 Chinese 660 (56.4) 78 (11.8) 514 (77.9) 57 (8.6) 11 (1.7)

 Malay 298 (25.5) 27 (9.1) 213 (71.5) 35 (11.7) 23 (7.7)

 Indian 212 (18.1) 50 (23.6) 130 (61.3) 8 (3.8) 24 (11.3)

Breastfeeding type 0.03

 Low 461 (44.8) 71 (15.4) 321 (69.6) 34 (7.4) 35 (7.6)

 Intermediate 446 (43.4) 56 (12.6) 329 (73.8) 49 (10.9) 12 (2.7)

 High 122 (11.8) 15 (12.3) 90 (73.8) 10 (8.2) 7 (5.7)

Table 1. Demographic and clinical characteristics according to BMI z-score trajectories. aMean ±SD. bn (%);  
indicates column percentages. cn (%); indicates row percentages. cBased on one-way ANOVA (for 
continuous variables) or chi-square test (for categorical variables). dAbbreviations: BMI = body mass index; 
GWG = gestational weight gain.
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trajectory than those of Chinese ethnicity, while those born to multiparous mothers were more likely to be in the 
stable high BMIz trajectory [1.67 (1.07–2.61)] vs primiparous mothers. A 1-SD increase in maternal ppBMI or 
GWG was associated with a higher likelihood of belonging to the rapid BMIz gain and stable high BMIz trajec-
tories, and a lower likelihood of belonging to the stable low BMIz trajectory (Table 2). Similarly, a 1-SD increase 
in maternal height was associated with a lower likelihood [0.79 (0.66–0.94)] of her child’s being in the stable low 
BMIz trajectory. Sensitivity analyses showed booking BMI, in place of ppBMI, was also a significant predictor of 
BMIz trajectories in the first 2 years (Supplemental Table 5).

Associations of early BMIz trajectories with later (5 years) cardio-metabolic measures. After adjusting for poten-
tial confounders, the stable low BMIz trajectory was significantly associated with lower WHtR [β (95% CI): 
−0.02SD units (−0.03, −0.01)], SSF [−0.43SD units (−0.62, −0.24)], FMI [−0.55SD units (−0.94, −0.15)], LMI 
[−0.68SD units (−1.07, −0.29)], SBP [−2.86 mmHg (−4.92, −0.80)] and DBP [−1.61 mmHg (−3.01, −0.20)], 
compared to the normal BMIz trajectory. Both the stable high BMIz and rapid BMIz gain trajectories were asso-
ciated with higher WHtR and SSF, but not with SBP and DBP, compared to the normal BMIz trajectory (Table 3). 
Only the rapid BMIz gain trajectory was associated with higher FMI [0.97SD units (0.32, 1.63)], and only the sta-
ble high BMIz trajectory was associated with higher LMI [0.45SD units (0.05, 0.86)]. In addition, children in the 
rapid BMIz gain trajectory had significantly higher adiposity (WHtR, SSF, FMI) at 5 years compared to children 
in the stable high BMIz trajectory (Supplemental Table 6). Compared to the normal BMIz trajectory, both stable 
high BMIz [relative risk (95% CI): 3.22 (1.73, 6.05)] and rapid BMIz gain [2.56 (1.19–5.53)] trajectories were asso-
ciated with an increased risk of obesity, while the stable low BMIz trajectory was associated with a decreased risk 
of obesity [0.12 (0.02, 0.85)] at 5 years. No significant associations were observed between early BMIz trajectories 
and later prehypertension (Table 4).

Comparing early BMIz trajectories and static BMIz in predicting cardio-metabolic measures 
at 5 years. Early BMIz trajectory was more predictive of body composition measures (FMI and LMI) and 
obesity at 5 years than was (static) BMIz at 2 years. For FMI and LMI, the adjusted R2 values were 26.5% and 
17.6%, respectively, in fully-adjusted models with BMIz trajectories; these R2 values were higher than those for 
static BMIz at 2 years (16.9% and 14.6%, respectively) (Supplemental Table 7). Furthermore, all BMIz trajectories 
in the first 2 years (compared to the normal BMIz trajectory) were significantly associated with obesity at 5 years 
(a negative association for the stable low BMIz trajectory and positive associations for the stable high BMIz and 
rapid BMIz gain trajectories), while BMIz ≥95th percentile at 2 years (compared to BMIz 5th – 85th percentile) 
was the only static measure found to be significantly associated with obesity at 5 years [relative risk (95% CI): 
6.96 (3.67–13.20)] (Table 4). The area under the ROC curve was also higher in fully-adjusted models for BMIz 
trajectories, compared to those for static BMIz at 2 years (Supplemental Table 7).

Discussion
We have identified four distinct BMIz trajectories in the first 2 years of life in a multi-ethnic cohort of Asian chil-
dren. We observed ethnic-specific differences and several factors predictive of the BMIz trajectories. Our findings 
suggest that different BMIz trajectories in the first 2 years reflect differential changes in body composition (fat vs 
lean mass) and are more predictive of body composition and obesity in later childhood than a single time point 
assessment of BMIz at 2 years.

The trajectory patterns observed in our study are consistent with those reported in previous studies by 
Magee et al.13 and Ventura et al.15, which also identified four BMI trajectories in childhood using LCGMM. The 
combined findings thus suggest that these four distinct BMI trajectories are real, rather than an artefact of the 

Figure 1. BMIz trajectories in the first 2 years of life in the GUSTO cohort. Red line = stable low BMIz 
trajectory (n = 155); Green line = Normal BMIz trajectory (n = 857); Purple line = stable high BMIz trajectory 
(n = 100); Blue line = Rapid BMIz gain after 3 months trajectory (n = 58). Values indicate mean BMIz at each 
time point.
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data-driven nature of the LCGMM technique. Other studies by Kwon et al.18 and Giles et al.17 also identified 
four BMI trajectories with similar patterns; those studies utilized a different technique known as group-based 
trajectory modelling, however, which assumes no within-class variation (i.e., variance in each subgroup is fixed 
to zero)8. LCGMM allows for greater heterogeneity because of its estimation of within-class variance for each 
trajectory10, 11.

The comparative strength and limitations of the LCGMM method over other alternative approaches (e.g., trac-
ing growth on a growth chart) are the subject of some debate37. Clinicians often follow a “rule-of-thumb” method, 
in which excessive growth is indicated by crossing major percentile lines on a standard growth chart38. That 
method is simple and straightforward to implement, while LCGMM is relatively computer-intensive. The choice 
of the correct model and number of classes in LCGMM is also not always straightforward. The “rule-of-thumb” 
method however, assumes growth to be a linear function of size at different ages, which could subject the observed 
associations to statistical artefacts. LCGMM is capable of modelling non-linear growth curves, estimating indi-
vidual trajectories and identifying distinctive subgroups in the population37. We believe these advantages out-
weigh its relative complexity.

We found that maternal adiposity-related factors (ppBMI, GWG) were associated with BMIz trajectories reflecting 
larger child size (stable high-weight and rapid weight gain). The positive relation between maternal adiposity-related 
factors and child size has been reported in other populations39, 40, as well as in our own cohort27, 41. Our findings 
provide further evidence that over-nutrition in utero may lead to high-risk BMI trajectories during early childhood. 
Although the mechanism is still not well-understood, it is believed that this may occur through increased transfer 
of maternal energy substrates, such as glucose, lipids and amino acids to the fetus28, 42, with the combined increase 
in all fuels likely contributing to the development of high-risk trajectories during early childhood28. We did not 
find an association between breastfeeding and the BMIz trajectories, consistent with earlier studies by Pryor et al.14,  
Giles et al.17 and Garden et al.43. While meta-analyses have suggested that breastfeeding is associated with a reduced 
risk of childhood overweight and obesity, this evidence is largely based on observational studies; reverse causality and 
residual confounding by behavioral or socio-economic attributes may explain the results of those studies.

We also observed ethnic differences in BMIz trajectories, with Malay children more likely than Chinese chil-
dren to have rapid BMIz gain trajectories and Indian children more likely to have stable low BMIz or rapid BMIz 
gain trajectories. We have previously described that Indian children had smaller birth sizes and lower BMI in 
infancy compared to Chinese children28; this may potentially explain the relationship between Indian ethnicity 
and a low BMIz trajectory, which is the result of BMI tracking. Similar ethnic differences in rapid BMI gain 

Stable low BMIz Stable high BMIz
Rapid BMIz gain after 3 
months

Odds ratioa

95% CI

Odds ratioa

95% CI

Odds ratioa

95% CI

Low High Low High Low High

Income level (per month)b

<SGD $2000 0.87 0.52 0.69 0.64 0.31 1.34 0.96 0.43 2.14

SGD $2000–5999 1.00 — — 1.00 — — 1.00 — —

≥SGD $6000 0.66 0.42 1.03 1.17 0.69 1.99 0.41 0.15 1.12

Parityb

Primiparous 1.00 — — 1.00 — — 1.00 — —

Multiparous 1.22 0.84 1.75 1.67 1.07 2.61 0.89 0.47 1.65

Ethnicityb

Chinese 1.00 — — 1.00 — — 1.00 — —

Malay 0.71 0.44 1.17 1.51 0.90 2.53 3.49 1.48 8.25

Indian 2.36 1.54 3.63 0.57 0.27 1.21 6.30 2.66 14.73

Gestational age at deliveryb

Term 1.00 — — 1.00 — — 1.00 — —

Pre-term 2.23 1.28 3.86 1.46 0.66 3.22 1.51 0.51 4.53

Pre-pregnancy BMIb

(per 1SD increase) 0.73 0.59 0.91 1.49 1.19 1.88 1.43 1.06 1.95

Heightb

(per 1SD increase) 0.79 0.66 0.94 1.08 0.87 1.34 0.94 0.68 1.28

GWG z-score b

(per 1SD increase) 0.83 0.69 0.99 1.51 1.19 1.90 1.39 1.02 1.90

Breastfeeding typeb

Low 1.31 0.86 1.99 0.68 0.41 1.13 1.95 0.93 4.10

Intermediate 1.00 — — 1.00 — — 1.00 — —

High 1.03 0.54 1.97 0.91 0.45 1.84 1.22 0.32 4.62

Table 2. Predictors of BMI z-score trajectory groups in the first 2 years of life. aOdds ratio estimates are 
referenced to the normal BMI z-score trajectory. bAll predictor variables are simultaneously included in the 
regression model.
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trajectories have also been reported between African-American and white children in the U.S12. We have no clear 
biological explanation for the observed ethnic differences in rapid BMIz gain trajectories; an interplay between 
genetic and epigenetic factors, as well as a shared obesogenic environment, may be operating.

Maintenance of a stable high BMIz trajectory or accelerated BMIz gain was strongly associated with higher 
adiposity and increased obesity risk, while maintenance of a stable low BMIz trajectory protected against 
increased adiposity and obesity risk at 5 years, in line with earlier findings17, 18. This relationship may potentially 
be explained by BMI tracking, which has been demonstrated from infancy to middle childhood44. In addition, all 
BMIz trajectories in the first 2 years were significantly associated with obesity at 5 years (a negative association 
for stable low BMIz trajectory and positive associations for stable high BMIz and rapid BMIz gain trajectories), 
while BMIz ≥95th percentile at 2 years was the only static measure with a significant association. A drawback of 
previous studies is the utilization of BMI at a single time-point as a predictor of subsequent obesity and cardiovas-
cular risk4, 5. Such static assessments of BMI provide a snapshot of the “intensity” of adiposity, while ignoring the 
dynamics of BMI over time, such as duration, age of onset, and rate of rise of adiposity, which may have profound 
effects. Our findings provide evidence that both duration (reflected by stable high BMIz and stable low BMIz tra-
jectories) and age of onset (reflected by rapid BMIz gain trajectory) of excess adiposity may be important factors 
in predicting subsequent cardio-metabolic risk. Our findings suggest that identification of developmental BMIz 
trajectories in the first 2 years may be helpful in identifying high-risk groups early in life, and thus in tailoring 
preventive interventions.

BMI z-score trajectory Stable low BMIz Stable high BMIz
Rapid BMIz gain after 3 
months

Cardio-metabolic 
outcomes β coefficienta 95% CI β coefficienta 95% CI β coefficienta 95% CI

Waist-to-Height Ratiob 
(n = 864) −0.02 −0.03, −0.01 0.02 0.01, 0.03 0.03 0.02, 0.04

Sum of skinfoldsb 
(n = 820) −0.43 −0.62, −0.24 0.42 0.19, 0.65 0.70 0.36, 1.03

Fat-mass indexb 
(n = 247) −0.55 −0.94, −0.15 0.35 −0.06, 0.75 0.97 0.32, 1.63

Lean-mass indexb 
(n = 247) −0.68 −1.07, −0.29 0.45 0.05, 0.86 0.62 −0.02, 1.27

Systolic blood pressurec 
(n = 757) −2.86 −4.92, −0.80 0.83 −2.75, 4.42 1.49 −0.99, 3.96

Diastolic blood pressurec 
(n = 757) −1.61 −3.01, −0.20 −0.91 −3.35, 1.53 0.41 −1.27, 2.10

Table 3. Associations between BMI z-score trajectory subgroups with cardio-metabolic outcomes at 
5-years. aβ-coefficient estimates are referenced to the normal BMI z-score trajectory. bAdjusted for maternal 
income level, ppBMI, height, GWG, parity, GA at delivery, breastfeeding, child ethnicity, sex and exact age at 
measurement. cAdjusted for maternal income level, ppBMI, height, GWG, parity, GA at delivery, breastfeeding, 
blood pressure at 26–28 weeks of gestation, child ethnicity, sex and exact age at measurement.

Obesity at 5-yearsa 
n = 65/870

Prehypertension at 5-yearsb 
n = 92/757

Relative risk

95% CI

Relative risk

95% CI

Low High Low High

BMIz trajectories

Stable low BMIz (n = 155) 0.12 0.02 0.85 0.84 0.41 1.70

Normal BMIz trajectory 
(n = 857) 1.00 — — 1.00 — —

Stable high BMIz (n = 100) 3.22 1.73 6.05 1.23 0.60 2.53

Rapid BMIz gain (n = 58) 2.56 1.19 5.53 1.48 0.57 3.86

Static BMIz at 2 years

< 5th percentile (n = 54) 0.68 0.09 4.90 0.90 0.41 1.94

5th–<85th percentile 
(n = 936) 1.00 — — 1.00 — —

85th–<95th percentile 
(n = 121) 1.79 0.82 3.90 1.03 0.51 3.19

≥95th percentile (n = 60) 6.96 3.67 13.20 1.24 0.48 3.19

Table 4. Relative risk and 95% CI of child obesity and prehypertension at 5-years according to BMIz 
trajectories and static BMIz at 2 years. aAdjusted for maternal income level, ppBMI, height, GWG, parity, GA at 
delivery, breastfeeding and child ethnicity. bAdjusted for maternal income level, ppBMI, height, GWG, parity, 
GA at delivery, breastfeeding, blood pressure at 26–28 weeks of gestation and child ethnicity.



www.nature.com/scientificreports/

8Scientific RepoRts | 7: 8424  | DOI:10.1038/s41598-017-09046-y

Strengths of our study include its prospective design, which is crucial for assessing the predictors of BMIz 
trajectories and their associations with cardio-metabolic measures later in childhood. Given the paucity of data 
in Asian populations on growth trajectories and their relation to later health outcomes, our findings fill an impor-
tant gap and provide new insights into the role of early BMI development and its potential contribution to future 
metabolic disease risk in Asian populations. Our study also included several measures of BMI in the first 2 years, 
providing greater granularity in estimating BMIz trajectories, as well as several measures of adiposity at age 5 
years, including WHtR, skinfolds and fat mass.

Limitations include the fact that maternal pre-pregnancy weight was self-reported at study enrolment, 
which may be affected by errors in recall. However, our data showed a strong correlation between self-reported 
pre-pregnancy weight and measured booking weight (ρ = 0.96), and sensitivity analyses using booking BMI as 
a predictor showed similar observations. Maternal smoking during pregnancy was not included as a predictor, 
owing to low prevalence in our study sample (2%), but was unrelated to child adiposity in previous analyses45. We 
were also unable to account for childhood dietary patterns or physical activity at 5 years, which may reflect expo-
sure to an obesogenic environment. Half of the women approached were not eligible for inclusion in the cohort, 
and we had no wish to generalize our findings to ineligible women and children. We have previously shown that 
the ethnic background of those recruited and not recruited differed between these two groups, reflecting our a 
priori plans to recruit disproportionately from the minority ethnic groups23. Moreover, the strong associations 
of the stable high BMIz and rapid BMIz gain trajectories with increased adiposity and obesity risk observed in 
our study were in line with recent findings17, 18, also suggesting the robustness of our study findings. Finally, our 
study did not measure other cardio-metabolic biomarkers such as blood glucose, insulin, lipids, triglycerides 
and C-peptide, and thus lacking outcomes such as dysglycemia or dyslipidemia. In future studies, data on these 
outcomes would help clarify the health implications of our findings.

In conclusion, BMIz trajectories in the first 2 years were associated with cardio-metabolic measures later in 
childhood, which in turn are known predictors of cardio-metabolic outcomes in adult life. The potential public 
health and clinical implications of our findings are worth noting. First, identification of developmental BMIz tra-
jectories in the first 2 years may be helpful in identifying high-risk groups. Second, the assessment of prenatal pre-
dictors of BMIz trajectories may enhance our understanding of etiologic pathways of cardio-metabolic disease. 
Lastly, the predictors of early childhood BMIz trajectories, especially modifiable ones (e.g., pre-pregnancy BMI 
and gestational weight gain), may help in developing effective preventive clinical and public health interventions 
for cardio-metabolic disease. Future follow-up of our cohort will be important to assess whether the associations 
we observed persist later in life.
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