
Systems biology

Inferring causality in biological oscillators

Jonathan Tyler1,2, Daniel Forger1,3 and Jae Kyoung Kim 4,5,*

1Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, 2Department of Pediatrics, University of Michigan,

Ann Arbor, MI 48109, USA, 3Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109,

USA, 4Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

and 5Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea

*To whom correspondence should be addressed.

Associate Editor: Anthony Mathelier

Received on April 28, 2021; revised on August 25, 2021; editorial decision on August 26, 2021; accepted on August 27, 2021

Abstract

Motivation: Fundamental to biological study is identifying regulatory interactions. The recent surge in time-series
data collection in biology provides a unique opportunity to infer regulations computationally. However, when com-
ponents oscillate, model-free inference methods, while easily implemented, struggle to distinguish periodic syn-
chrony and causality. Alternatively, model-based methods test the reproducibility of time series given a specific
model but require inefficient simulations and have limited applicability.

Results: We develop an inference method based on a general model of molecular, neuronal and ecological oscillatory
systems that merges the advantages of both model-based and model-free methods, namely accuracy, broad applicability
and usability. Our method successfully infers the positive and negative regulations within various oscillatory networks,
e.g. the repressilator and a network of cofactors at the pS2 promoter, outperforming popular inference methods.

Availability and implementation: We provide a computational package, ION (Inferring Oscillatory Networks), that
users can easily apply to noisy, oscillatory time series to uncover the mechanisms by which diverse systems gener-
ate oscillations. Accompanying MATLAB code under a BSD-style license and examples are available at https://
github.com/Mathbiomed/ION. Additionally, the code is available under a CC-BY 4.0 License at https://doi.org/10.
6084/m9.figshare.16431408.v1.

Contact: jaekkim@kaist.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A fundamental goal in biology is to uncover causal interactions.
Conventional methods manipulate one or more components experi-
mentally to investigate the effect on others in the system. However,
these are time-consuming and costly, particularly as the number of
components increases. On the other hand, recent technological
advances (e.g. GFP, luciferase, microarray, etc.) continue to make
measuring time-series data easier. Accordingly, inferring direct regu-
lations solely given time-series data is crucial to revealing the mecha-
nisms underlying systems in a timely and inexpensive manner (Saint-
Antoine and Singh, 2020).

Various model-free methods have been widely used to infer inter-
actions because they are easy to implement and broadly applicable
(Casadiego et al., 2017; Deyle and Sugihara, 2011; Deyle et al.,
2013, 2016; Granger, 1969; Leng et al., 2020; Ma et al., 2017;
Pourzanjani et al., 2015; Runge et al., 2019; Stokes and Purdon,
2017; Sugihara et al., 2012; Tani et al., 2020; Tsonis et al., 2015;
Wang et al., 2020; Ye et al., 2015). A popular model-free method,
Granger Causality (GC), uses predictability to infer interactions, i.e.

X causes Y if X has unique information that improves the prediction
of Y (Granger, 1969; Stokes and Purdon, 2017). However, GC relies
heavily on the assumption that the time-series data are stationary
(Lütkepohl, 2005) making it challenging to apply to oscillatory
time-series data that are highly non-stationary (Abel et al., 2016;
Pourzanjani et al., 2015; Stokes and Purdon, 2017; Yang et al.,
2018). To overcome this limitation, inference methods for dynamic-
al systems, such as Convergent Cross Mapping (CCM), use a differ-
ing view of predictability to infer causality, i.e. X causes Y if
historical values of X can be recovered from Y alone (Deyle et al.,
2013; 2016; Deyle and Sugihara, 2011; Leng et al., 2020; Ma et al.,
2017; Runge et al., 2019; Sugihara et al., 2012; Tani et al., 2020;
Tsonis et al., 2015; Wang et al., 2020; Ye et al., 2015). Despite the
success of CCM methods, they struggle to differentiate synchrony
(i.e. similar periods among components) versus causality, frequently
resulting in an increase in false-positive inferences in oscillatory net-
works. This is problematic because biological processes frequently
exhibit oscillatory behavior in time-series data, e.g. about half of the
protein-coding genome is transcribed rhythmically (Mure et al.,
2018; Zhang et al., 2014).
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Alternatively, model-based methods infer causality by testing re-
producibility of time-series data with mechanistic models. Although
testing reproducibility requires computationally expensive model
simulations and fittings (Balsa-Canto et al., 2008; Firman et al.,
2019; Geva-Zatorsky et al., 2010; Gotoh et al., 2016; Lillacci and
Khammash, 2010; McBride and Petzold, 2018; Mhaskar et al.,
2002; Pitt and Banga, 2019; Radde and Kaderali, 2009; Stra�zar
et al., 2014; Toni et al., 2009; Trejo Banos et al., 2015; Wang et al.,
2018; Wang and Enright, 2013), if the underlying model is accurate,
model-based methods do not suffer from false positive predictions
unlike model-free methods. However, the inference results strongly
depend on the choice of model, often derived from limited informa-
tion. Thus, inference methods using more general ODE forms were
developed (Brunton et al., 2016; Jensen et al., 2009; Jo et al., 2018;
Kim and Forger, 2012b; Konopka, 2011; Konopka and Rooman,
2010; Mangan et al., 2016; McGoff et al., 2016; Pigolotti et al.,
2007, 2009). For example, previously, we developed a method that
infers causation from X to Y by checking the reproducibility of oscil-
latory time-series data given a common ODE model:
dY
dt ¼ f ðXÞ � gðYÞ. Here, f and g describe the synthesis and degrad-
ation rates of Y, respectively (Kim and Forger, 2012b). Pigolotti
et al. (2007) considered the most general possible mechanistic model
between two components:

dY

dt
¼ f ðX;YÞ: (1)

However, unlike Kim and Forger (2012b), this method uses only
the minima and maxima of the time-series data (Pigolotti et al.,
2007), thus requiring the restrictive assumption that all given com-
ponents are in a single negative feedback loop. Moreover, extensions
of the method require that a single negative feedback loop structure
drive the dynamics, limiting their applicability (Jensen et al., 2009;
Pigolotti et al., 2009).

Here, we develop an inference method for biological oscillators
described by Equation (1) that is easy to implement, broadly applic-
able and accurate, while also computationally efficient. Specifically,
we identify a fundamental relationship between the general model
(Equation 1) and its oscillatory solution. Using this relationship, we
develop a functional transformation (i.e. regulation-detection func-
tion) of a pair of oscillatory time-series data that easily tests the re-
producibility of the time series with the general model. This
transformation enables accurate and precise inference of the (self-)
regulation type (e.g. positive, negative or a mixture) between two
components X and Y described by Equation (1). Our method infers
regulations within various network structures such as a cycle, mul-
tiple cycles and a cycle with outputs from in silico oscillatory time-
series data. Furthermore, our method successfully infers regulation
types from noisy experimental data measured at the molecular and
organismal levels. In particular, from time-series data of the repressi-
lator and cofactors at the pS2 promoter, our method infers networks
that match current biological knowledge while popular model-free
methods incorrectly infer nearly fully connected networks.
Importantly, our method predicts hidden regulations for the pS2
promoter after estradiol treatment, guiding experimental investiga-
tion. Finally, we provide a user-friendly computational package
(ION: Inferring Oscillatory Networks) that implements our method
to infer network structures of biological oscillators.

2 Results

2.1 Inferring regulation types from oscillatory time

series
The reduced FitzHugh-Nagumo model (Fig. 1A) (FitzHugh, 1961)
describes the interactions between the membrane potential of a neu-
ron (V) and the accommodation and refractoriness of the membrane
(W) (FitzHugh, 1961; Nagumo et al., 1962). In particular, W posi-
tively regulates V while V negatively regulates W. In addition, V dis-
plays a mixture of positive and negative self-regulation while W
negatively regulates itself.

How are such inter- and self-regulations reflected in the oscilla-
tory change of V and W simulated with the model (Fig. 1B)?
Notably, the changes in V and W do not directly reflect their regula-
tory interactions. For instance, although W positively regulates V,
when W increases, V does not always increase (e.g. in the yellow re-
gion, Fig. 1B). This is because W positively regulates _V rather than
V (Fig. 1A). However, the relationship between the change in W and
_V also does not reflect the positive regulation of W on V. For ex-

ample, in the yellow region (Fig. 1B), _V decreases despite increasing
W because the self-regulation of V on _V masks the effect of W on _V .
Thus, to infer the effect of W on _V independently of V, we investi-
gate the relationship between W and _V at time points t and the re-
flection time, tV, where VðtÞ ¼ VðtVÞ (Fig. 1B). Since VðtÞ ¼ VðtVÞ,
the difference _V ðtÞ � _V ðtVÞ ¼ f ðVðtÞ;WðtÞÞ � f ðVðtVÞ;WðtVÞÞ is
solely determined by W. Thus, because W positively regulates V
(Fig. 1A), if W(t) is greater (less) than WðtVÞ; _V ðtÞ should be greater
(less) than _V ðtVÞ. Similarly, to infer the type of self-regulation of V,
we must remove the variation of _V due to W that masks the effect of
V on _V . Thus, we investigate the relationship between V and _V at
time points t and the reflection time, tW, where WðtÞ ¼WðtWÞ
(Fig. 1B). To quantify such relationships between W and _V and V
and _V , we develop the regulation-detection functions:

RtV

W!VðtÞ :¼ ðWðtÞ �WðtVÞÞ � ð _V ðtÞ � _V ðtVÞÞ
:¼WtV

d ðtÞ � _V
tV

d ðtÞ;
(2)

and

RtW

V!VðtÞ :¼ ðVðtÞ � VðtWÞÞ � ð _V ðtÞ � _V ðtWÞÞ
:¼ VtW

d ðtÞ � _V
tW

d ðtÞ:
(3)

As W positively regulates V, the functions WtV

d and _V
tV

d have the
same sign and thus, RtV

W!VðtÞ � 0 throughout the cycle (Fig. 1C,
left). That is, if WtV

d ¼WðtÞ �WðtVÞ � 0, then _V
tV

d ¼ _V ðtÞ �
_V ðtVÞ ¼ 3ðWðtÞ �WðtVÞÞ � 0 (Fig. 1A). On the other hand, due to

the mixed self-regulation of V, the relationship between the signs of
VtW

d ðtÞ and _V
tW

d ðtÞ, and thus the sign of RtW

V!VðtÞ, varies throughout
the cycle (Fig. 1C, right).

As the profiles of the sign of the regulation-detection functions
(Equations 2 and 3) reflect the regulation type, we develop a regula-
tion-detection score that quantifies the variation in the sign of the
regulation-detection functions. For instance, the regulation-
detection score for the regulation of W on V is defined as

hRW!Vi :¼
Ð s
0 RtV

W!VðtÞdt
Ð s
0 jR

tV

W!VðtÞjdt

¼ Positive Area

Total Area
�Negative Area

Total Area
;

(4)

where s is the period (e.g. s¼ 1 in Fig. 1C, left). The regulation-
detection score hRW!Vi ¼ 1 because W positively regulates V, and
thus RV

W!VðtÞ � 0 (i.e. the negative area is zero) (Fig. 1C, left). On
the other hand, because V both positively and negatively regulates it-
self, RtW

V!VðtÞ takes both positive and negative values, so hRV!Vi ¼
0:6� 0:4 ¼ 0:2 (Fig. 1C, right).

Similarly, we can obtain information about the regulation of V
on W and the self regulation of W with the regulation-detection
functions RtW

V!W :¼ VtW

d � _W
tW

d ðtÞ (Fig. 1D, left) and RtV

W!W :¼
WtV

d � _W
tV

d ðtÞ (Fig. 1D, right). Because V negatively regulates W,
RtW

V!WðtÞ � 0. Also, because the self-regulation of W is purely nega-
tive, RtV

W!WðtÞ � 0. Thus, hRV!Wi ¼ �1, and hRW!Wi ¼ �1
(Fig. 1D). Taken together, in general, if X positively (negatively) reg-
ulates Y, then hRX!Yi ¼ 1 (hRX!Yi ¼ �1) (see Supplementary
Theorem S1 in Supplementary Information).

Next, we calculated the regulation-detection scores from experi-
mentally measured oscillatory time-series data of two bacteria:
Paramecium (P) and Didinium (D) (Fig. 1E) (Veilleux, 1976). As P is
a prey of the predator D (Veilleux, 1976), D is expected to negatively
regulate P and P is expected to positively regulate D. Reflecting this,
hRP!Di ¼ 1 and hRD!Pi ¼ �1 (Fig. 1E). Furthermore, reflecting the
positive (i.e. birth) and negative (i.e. death) self-regulation of both P
and D, hRD!Di ¼ 0:51� 0:49 ¼ 0:02 and hRP!Pi ¼ 0:63� 0:37 ¼
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0:26 (Fig. 1E). The regulation-detection scores appear to accurately
reflect regulation types even for noisy and discrete time-series data.

2.2 Regulation inference method from oscillatory time

series
If X positively (negatively) regulates Y, then the reflection score
hRX!Yi ¼ 1 (resp., –1). That is, �1 < hRX!Yi < 1 indicates either
mixed regulation or the absence of regulation. Thus, when interac-
tions are not mixed (i.e. monotonic), such as gene regulation by a
transcription factor or predator-prey relationships, �1 <
hRX!Yi < 1 indicates the absence of regulation. This can be used to
infer regulations from time-series data, as positive or negative regu-
lation is present only when hRX!Yi ¼ 1 or –1, respectively.
Similarly, self-regulation, which is either positive or negative, is pos-
sible only when hRY!Yi ¼ 1 or –1. However, since depletion of a
component typically increases as its own concentration increases,
self-regulation can be assumed to be negative (i.e. hRY!Yi ¼ �1). In
this case, positive or negative regulation from X to Y is possible only
when ~R ¼ ðhRX!Yi; hRY!YiÞ ¼ ð1;�1Þ or ð�1;�1Þ, and thus, ~R 6¼
ð61;�1Þ indicates the absence of regulation (Rule 1, Fig. 2A).
Furthermore, we use ~R ¼ ð1;�1Þ or ð�1;�1Þ to infer positive or

negative regulation (Rules 2 and 3, Fig. 2A). Note that, if positive or
mixed self-regulation is possible, as in Figure 1E, Rules 2 and 3 can
be relaxed to hRX!Yi ¼ 1 and hRX!Yi ¼ �1, respectively.

We illustrate how the three rules (Fig. 2A) infer regulations using
as an example the Kim-Forger model (Fig. 2B), a simple model
describing the mammalian circadian clock (Kim, 2016; Kim and
Forger, 2012a). To infer the network structure (Fig. 2B, bottom)
from the time series (Fig. 2B, top), we compute ~R for each possible
interaction and self-regulation pair (Fig. 2B, box). Using Rule 1,
three regulations are inferred as absent (Fig. 2B, box). Furthermore,
Rules 2 and 3 identify the two positive regulations (M! PC and
PC ! P) and the one negative regulation (P aM), which have ~R ¼
ð1;�1Þ and ~R ¼ ð�1;�1Þ, respectively (Fig. 2B, box). This success-
fully infers the negative feedback loop structure (Fig. 2B, bottom).
Our method also successfully infers regulations in the Frzilator nega-
tive feedback loop (Igoshin et al., 2004) (Fig. 2C and Supplementary
Table S1) and a 4-state Goodwin oscillator (Goodwin, 1965)
(Fig. 2D and Supplementary Table S2).

In fact, the order of peaks and nadirs of the time series in single
feedback loops matches the order of regulation in the feedback loop
(Fig. 2B–D). For instance, the peak of M is followed by the peaks of
PC and then P (Fig. 2B). This property has been used in previous
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algorithms to infer single negative feedback loop structures (Jensen
et al., 2009; Pigolotti et al., 2007, 2009). However, since experimen-
tal datasets often contain components from more than one system,
we test our method on a more challenging case when data are
merged from the Kim-Forger (Fig. 2E, top; solid lines) and Goodwin
(Fig. 2E, top; dashed lines) models. If only the order of peaks is used
for this example, a single negative feedback loop with seven compo-
nents is inferred whereas our method successfully infers the two in-
dependent underlying networks (Fig. 2E, bottom and Supplementary
Table S3). Moreover, our inference method also successfully infers a
cyclic network with output variables, also not adhering to the single
feedback loop structure (Fig. 2F and Supplementary Table S4).

While our method successfully infers regulations within various
networks, we caution that ~R ¼ ð61;�1Þ can occur even in the ab-
sence of regulation, making some correct interactions difficult to dis-
tinguish. For example, in the original repressilator model (Fig. 2G,
top) (Elowitz and Leibler, 2000; Potvin-Trottier et al., 2016), the
mRNA and protein time series are so similar in phase (i.e. the phase
difference is only 2.4% of the total period) that our method, along
with inferring the actual interactions, predicts spurious interactions

from one protein to the next protein. Thus, we advise users to check
for nearly identical time series, which may increase false-positive
inferences in our method as well as other inference methods.

2.3 Robustness of the inference method to interpolation

error and noise
Experimentally measured time-series data are sampled discretely, in
which case our method uses interpolation to generate continuous
data (see Section 4.1.1). Accordingly, we test how sensitive our
method is to interpolation error, specifically after linear interpol-
ation, by using the in silico datasets in Figures 2B–F. That is, by
decreasing the points measured per period from 102 to 101 (i.e.
increasing the interpolation error), we quantify the accuracy of our
inference method with the F1 score, i.e. the harmonic mean of preci-
sion and recall (Fig. 3A). F1 ¼ 1 and F1 ¼ 0 indicate perfect recovery
of all regulations and absence of any correct regulations, respective-
ly. To account for interpolation error, we accept interactions based
on three thresholds for hRi values: 0.99, 0.95 and 0.90. For example,
a threshold of 0.99 means that we accept any interaction that
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satisfies both jhRX!Yij > 0:99 and hRY!Yi < �0:99. We run our
method beginning at 100 randomly selected times (Section 4.3).
Then, we investigate how the mean of the distribution of F1 scores
changes as the sampling rate decreases (Fig. 3B). For single nega-
tive feedback loops (i.e. Frzilator, Goodwin, Kim-Forger), our
method accurately recovers the network even when the number of
data points measured per period is relatively low, e.g. ten per cycle.
For the more complicated models (i.e. the merged Goodwin and
Kim-Forger and the Kim-Forger with outputs models), slightly
more data points are required for inference at high accuracy.
Furthermore, our method shows similar robustness across the three
thresholds, especially when the points sampled are toward the
lower end.

Next, because experimental data are noisy, we increase the level
of the multiplicative noise added to the dataset from 0 (no noise) to
10% multiplicative noise (sampled from Nð0; 0:12Þ). The F1 scores
tend to decrease, but the decrease occurs more dramatically when
the threshold is 0.99, indicating that the high threshold leads to
higher sensitivity to noise. Moreover, this decrease in F1 scores with
the threshold of 0.99 is a result of an increase in false negatives (i.e.
the exclusion of true interactions due to noise). Thus, we use a
threshold of 0.9 when applying our inference method to experimen-
tal data (see below) as it leads to the most accurate results in the
presence of noise (Fig. 3C). While 0.9 is recommended, depending
on the weight of either avoiding false-positive or false-negative pre-
dictions, users can adjust the threshold when using our computation-
al package, Inferring Oscillatory Networks (ION) (Fig. 4A; see
Supplementary Information and Supplementary Figs S1 and S2 for a
step-by-step manual). See Supplementary Information for details
about how to choose the threshold.

2.4 Successful inferences from experimentally

measured time series
As our inference method (ION) is quite robust to discrete data sampling
and noise, we expect that our inference method can accurately infer regu-
lations from experimentally measured time series as well. Indeed, our
method successfully infers a three-gene repressilator network from experi-
mental data of the three proteins (Potvin-Trottier et al., 2016) (Fig. 4B
and Supplementary Table S6). Note that our method recovers the repressi-
lator network despite the absence of mRNA data because the shape and
phase of the mRNA and protein profiles are expected to be similar, as in
Figure 2G, due to the short translation time in E.coli relative to the period
(Choi et al., 2020). This indicates that our method also infers indirect
regulation with a short time delay. Moreover, we compare our method
with two popular model-free inference methods, PCM (Leng et al., 2020)
and GC (Granger, 1969) (Fig. 4B). As these methods can only infer the
presence of regulation, not its type (i.e. positive and negative), unlike our
method, the arrows represent inferred regulations, which could be either
positive or negative. PCM recovers two correct regulations, P2 ! P1 and
P3 ! P2, but fails to recover the regulation P1 ! P3 and makes two
false-positive predictions, P1 ! P2 and P3 ! P1 (Fig. 4B, middle). While
the GC infers all existing regulations, it makes two additional false-
positive predictions, P1 ! P2 and P2 ! P3 (Fig. 4B, right). Even for this
simple three-node network, the popular model-free inference methods
make false-positive predictions because the network components oscillate
at the same period (Cobey and Baskerville, 2016).

Next, we consider a more challenging case: the combination of
two copies of the dataset in Figure 4B, one at the original phase and
one with shifted phase (Fig. 4C and Supplementary Table S7). Our
method successfully infers two repressilator networks, whereas PCM
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and GC suffer from several spurious regulations (4 and 15 false-
positive interactions in Fig. 4B and C, respectively). Note that, even
though we are using the same repressilator dataset, there are inconsis-
tencies in the PCM and GC results compared with those from
Figure 4B. These inconsistencies are a consequence of the shortened
length of data used in Figure 4C compared with that in Figure 4B.
This indicates that, in addition to the risk of false-positive inference,
PCM and GC are sensitive to the amount of data, unlike ours.

For time series measuring the amount of cofactors present at the
estrogen-sensitive pS2 promoter after treatment with estradiol [data
from Métivier et al. (2003) and Lemaire et al. (2006)], PCM and GC
infer an almost fully connected network and a fully connected net-
work, respectively (Fig. 4D). On the other hand, our method only
infers two regulations, both supported by the current biological
understanding of the system. That is, estradiol triggers the binding
of human ERa (hER) to the pS2 promoter to recruit RNA
Polymerase II, supporting the inferred positive regulation of POLII
by hER. Furthermore, TRIP1 acts as a surrogate measure for the 20S
proteasome (APIS), which promotes proteasome-mediated degrad-
ation of hER (Métivier et al., 2003), supporting the inferred negative
regulation of hER by TRIP1. However, the inferred network
(Fig. 4D, Supplementary Table S8) does not contain a negative

feedback loop, which is required to generate sustained oscillations
(Novák and Tyson, 2008). Thus, there may be intermediate steps be-
tween POLII and TRIP1, TRIP1 and HDAC, and also HDAC and
hER that form the negative feedback loop (Fig. 4D; question marks).
Altogether, this illustrates that our method can identify direct regula-
tions while highlighting connections that require further experimen-
tal investigation.

3 Discussion

We developed a model-based method that infers regulations within
networks underlying biological oscillators. The method identifies
positive or negative regulation by efficiently testing the reproducibil-
ity of time-series data given Equation (1). Our method successfully
inferred several networks such as single cycles (e.g. repressilator),
two independent cycles and a cycle structure with outputs.
Importantly, our method can distinguish direct versus indirect regu-
lations, unlike GC and CCM (Fig. 4) (Leng et al., 2020). That is,
when X! Y ! Z, our method typically infers X! Y, not X! Z
(Fig. 2B–F). However, if Y ! Z is fast and thus Y and Z oscillate
with nearly identical phases, our method infers X! Z as well
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(Fig. 2G). Thus, if networks contain hidden steps with fast time
scales (i.e. short time delays), our method may infer additional indir-
ect regulations. Furthermore, we provide a user-friendly computa-
tional package, ION, that infers regulations within biological
networks that oscillate from the molecular to the population level.
When our method is coupled with evolving experimental time series,
it can uncover unknown functional relationships and mechanisms
that drive oscillatory behavior in biological systems.

Our method merges the advantages of model-based and model-
free methods while mitigating the drawbacks of each. In particular,
our model-based inference method does not suffer from the serious
risk of false-positive prediction for biological oscillators or sensitivity
to the amount of data, unlike the previous model-free inference meth-
ods such as GC and PCM (Fig. 4). However, as our inference method
is model-based, it runs the risk that the imposed ODE model and
functional relationships create false representations of the true interac-
tions (Cobey and Baskerville, 2016). Our method minimizes this risk
by using the most general form of an ODE Equation (1) to model the
change in a component that is acted upon by another component and
itself. In this way, we resolve the limitations of previous model-based
methods that restricted the class of models, such as separable synthesis
and degradation functions (Jo et al., 2018; Kim and Forger, 2012b;
Konopka and Rooman, 2010), specific types of functions (e.g. power
or Hill functions) (Gotoh et al., 2016; Konopka and Rooman, 2010)
and a single feedback loop (Jensen et al., 2009; Pigolotti et al., 2007,
2009). Thus, we were able to uncover several varying network struc-
tures. While we considered the most general form of an ODE
Equation (1) that describes the interactions between two components,
an interesting future direction would be to extend our work to models
that describe the interactions among multiple oscillatory components,
e.g. dY

dt ¼ f ðX1; . . . ;Xn;YÞ.

4 Materials and methods

4.1 Inferring Oscillatory Networks (ION) computational

package
We provide user-friendly MATLAB code at https://github.com/
Mathbiomed/ION (Github) and https://doi.org/10.6084/m9.fig
share.16431408.v1 (figshare). The ION package can be used to infer
the network structure of oscillators, which are described by
Equation (1), across all levels of biology. Here, we briefly describe
the key steps of the ION package (see Supplementary Information
for a comprehensive manual).

4.1.1 Reflection times

For each time point ti of the given time series
XðtÞ ¼ ðXðt1Þ;Xðt2Þ; . . . ;XðtnÞÞ, first, the reflection time tiX needs to
be calculated (Fig. 1B). That is, we seek the time point tiX such that
XðtiÞ ¼ XðtiX Þ and the signs of the slopes at XðtiÞ and XðtiX Þ are op-
posite (i.e. rising and falling phase). For this, the discrete X(t) is
interpolated to a continuous time series FXðtÞ with either the ‘linear’
or ‘fourier’ interpolation method, chosen by the user. Then, tiX is
estimated by identifying the closest time point to ti among time
points t satisfying the following equation:

FXðtÞ ¼ XðtiÞ and signðF0XðtÞÞ 6¼ signðF0XðtiÞÞ:

4.1.2 Regulation-detection function and score

Using the estimated tiX , we compute the regulation-detection func-
tion, e.g. R

tiX

Y!XðtiÞ, for each time point ti as follows:

ðYðtiX Þ � YðtiÞÞð _XðtiX Þ � _XðtiÞÞ:

If the linear method is chosen, YðtiX Þ is linearly interpolated
based on the data ðYðt1Þ; . . . ;YðtnÞÞ, and _XðtÞ ¼ ð _Xðt1Þ; . . . ; _XðtnÞÞ
is estimated using a moving slope filter method. Specifically, after fit-
ting a low-order polynomial regression model to XðtÞ ¼
ðXðt1Þ;Xðt2Þ; . . . ;XðtnÞÞ with a sliding window (Oppenheim et al.,
1999), the derivative of the polynomial fit is used to estimate

_XðtÞ,and then _XðtiX Þ is linearly interpolated based on the estimated
_XðtÞ. The model order and the length of the sliding window parame-

ters can be adjusted (see Supplementary Information). On the other
hand, if the fourier method is chosen, both _XðtiÞ and _XðtiX Þ are esti-
mated as _FXðtiÞ and _FXðtiX Þ, respectively, and similarly, YðtiÞ and
YðtiX Þ are estimated as FYðtiÞ and FYðtiX Þ, respectively, where FYðtÞ
is the Fourier series fit to the data Y(t). Finally, in both cases, the
regulation-detection score (Equation 4) is estimated using the
MATLAB function trapz.

4.2 Time-series data
We simulate in silico data using the MATLAB function ode23tb
(Fig. 2). See Supplementary Information for the model equations and
parameters. The experimental datasets of the repressilator (Fig. 4B)
were obtained from (Potvin-Trottier et al., 2016). Next, to generate
the duplicated experimental repressilator dataset (Fig. 4C), we
mixed two copies of the repressilator dataset from Figure 4B. We
kept one copy at the original phase and, for the second copy, we
shifted the phase by 115 min (almost half of the period) (Fig. 4C).
Then, we removed data on the left and the right where there was
only coverage of one of the two datasets. We obtained the estradiol
dataset (Fig. 4D) from (Lemaire et al., 2006; Métivier et al., 2003)
and the Paramecium/Didinium data (Fig. 1E) from (Sugihara et al.,
2012).

4.3 Discrete and noisy data
To generate discretely sampled data (Fig. 3B), we select a random
point in the first period to begin data extraction, and then we uni-
formly sample two periods worth of data at a sampling rate of 100
points per period. We repeat this process 100 times—every time ran-
domly initializing the starting point in the first period—to generate
100 distinct datasets for every model. Then, we run our algorithm
and compute F1 scores for each of the 100 datasets. Next, from each
of the 100 generated datasets, we take every other data point to re-
duce the number of data points (e.g. 50;33;25; . . . ;10 per period).

For the multiplicative noise analysis (Fig. 3C), we begin with two
periods worth of data sampled at 100 points per period. Then, we
add multiplicative noise sampled randomly from a normal distribu-
tion with mean 0 and standard deviation given by the percentage.
For example, at 10% multiplicative noise, we add the noise XðtiÞ � �
to XðtiÞ, where � is sampled randomly from Nð0; 0:12Þ.

4.4 PCM and GC
We ran the Partial Cross Mapping (PCM) (Leng et al., 2020), an ex-
tension of CCM, with an embedding dimension of 3, s¼ 1, a max
delay of 3 and a threshold of 0.5684 as recommended in (Leng et al.,
2020). We ran the GC using the code provided in (Chandler, 2020),
specifying a max delay of 3 as we did with the PCM and a signifi-
cance level of 95%. We rejected the null hypothesis that Y does not
Granger cause X, and thereby inferred direct regulations, if the value
of the F-statistic was greater than the critical value from the F-distri-
bution (Granger, 1969).
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