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Abstract

We examined the extent to which temporal encoding may be implemented by single neurons in the cercal sensory system
of the house cricket Acheta domesticus. We found that these neurons exhibit a greater-than-expected coding capacity, due
in part to an increased precision in brief patterns of action potentials. We developed linear and non-linear models for
decoding the activity of these neurons. We found that the stimuli associated with short-interval patterns of spikes (ISIs of
8 ms or less) could be predicted better by second-order models as compared to linear models. Finally, we characterized the
difference between these linear and second-order models in a low-dimensional subspace, and showed that modification of
the linear models along only a few dimensions improved their predictive power to parity with the second order models.
Together these results show that single neurons are capable of using temporal patterns of spikes as fundamental symbols in
their neural code, and that they communicate specific stimulus distributions to subsequent neural structures.
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Introduction

A considerable amount of research has been focused on

determining the information coding schemes used within nervous

systems. This is due not only to the intrinsic interest in the nature

of the neural code, but to the necessity of understanding the

coding scheme implemented within any particular system before a

valid model can be developed for the mechanisms underlying

neural computation in that system. One important facet of the

general coding problem is the determination of the neural symbols

with which information is encoded in neural spike trains.

Specifically, is all of the information encoded in the mean firing

rates of the cells, or is some significant proportion of the

information encoded in more complex statistical features of the

spike patterns? In the studies reported here, we examined the

extent to which temporal encoding is implemented by a set of

sensory interneurons in the cercal system of the house cricket,

Acheta domesticus. To do this, we addressed four related questions:

are temporal patterns of spikes reliably elicited by stimuli? Does

reliability lead to increased capacity to transmit information? Do

temporal patterns represent novel stimulus features? Can any

apparent temporal encoding be explained by simple modification

to existing models?

Our general approach was to determine if spike patterns elicited

in response to sensory stimuli contain more or different

information about the stimulus waveform than would be predicted

from a simple linear analysis based on a consideration of individual

spikes. While a non-linear code could potentially provide more

information about the environment to an organism, a simple linear

code can be more precisely defined by experimenters, owing to the

simplicity of its structure. To that effect, we have utilized the

framework of reconstruction analysis pioneered by Bialek and

colleagues. In particular, we examined linear stimulus reconstruc-

tion, a form of analysis which implicitly assumes the implemen-

tation of a linear rate coding scheme [1–4], albeit at an arbitrarily

fine temporal scale. In order to obtain an estimate of the rate that

information about the stimulus is encoded in the neural response

(the mutual information rate), the stimulus reconstruction method

makes explicit assumptions of what aspects of the stimulus are

encoded in the neural response (the reconstruction filter) and how

they are encoded by the neural response (by independent single

spikes) By contrast, ‘direct’ methodologies [5–7] allow exact

estimates of the mutual information transmission rates of neurons

with few assumptions, but provide no estimates of the stimulus

quantities encoded nor the coding scheme implemented by the

neurons. Consequently, calculations of mutual information using

the direct method can include contributions due to temporal

patterns of spikes, as well as the spike rate assumption from the

stimulus reconstruction methodology. Comparisons of information

rates calculated using the two methods show that linear methods

routinely underestimate the true amount of information contained

in neural activity [8]. An open question in neural coding is

whether this discrepancy arises because neurons use temporal

encoding to represent the stimulus space (a possibility explicitly

rejected by linear reconstruction), or whether the information gap

is caused by other nonlinearities [3].

Previous studies in invertebrate sensory systems, including the

cricket cercal system, indicated that linear coding schemes have

difficulty describing the stimuli preceding short-interval, high

temporal frequency doublets [9–12]. We therefore narrowed our
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investigation to study only short-interval doublets, analogous to the

study of bursts in other sensory systems [13–16]. Our first step was

to determine if stimulus-elicited, short-interval spike doublets

occurred with greater precision than would be expected, based on

the observed statistics of single spikes. Specifically, we determined if

the timing of spikes in short-interval doublets had a higher

covariance than would be predicted from an analysis of the jitter

in the stimulus-response timing of isolated spikes [17,18]. We next

developed models to examine the extent to which such differences in

temporal precision might affect the ability of neurons to transmit

information about the sensory environment. We then determined if

the stimuli associated with temporal patterns of spikes were

significantly different than what was predicted by linear reconstruc-

tion. For this analysis, we developed linear and non-linear models

for decoding spike doublets, and compared the capabilities of these

two types of decoding schemes for representing the stimuli that

elicited such patterns of spikes. We demonstrate that short-interval

spike doublets convey information at higher rates than predicted by

the assumptions of linear coding, and that the stimuli associated

with such patterns are better predicted by second-order models than

by linear models. This indicates that these neurons employ a

temporal encoding scheme [3].

Results

Statistics of doublet activity
Our working hypothesis was that sensory systems can use short-

interval spike doublets to represent stimulus waveforms that are

significantly different than the waveforms that would be predicted

by the linear sum of two (offset) copies of the average waveform

leading up to a single isolated spike. In order to evaluate this

hypothesis we made electrophysiological recordings in giant

interneurons receiving input from the cercal system of the house

cricket Acheta domesticus. This sensory system is common to

orthopteran insect species, and is composed of at least 22

bilaterally-symmetric pairs of projecting interneurons that mediate

detection of low frequency air currents in the vicinity of the

animal’s body [19–23]. These cells make synaptic connections in

the terminal ganglion with approximately 2000 afferent neurons,

which themselves innervate the filiform hairs of the cercal

appendages. In addition to synapsing with the projecting

interneurons, the afferent neurons also synapse with approximate-

ly 200 pairs of local spiking and non-spiking interneurons, which

make connections with each-other as well as with the projecting

interneurons [24]. The axons of the projecting interneurons

extend from the terminal ganglion to higher processing and motor

centers in the thoracic ganglia and the brain [25,26]. We

performed our experiments in two pairs of these cells, giant

interneuron classes 10-2a and 10-3a. These cells have been well-

characterized both anatomically [20,25,26] and physiologically

[4,21–23,27–30], and compose a low-frequency subunit of the

projecting interneurons sensitive to air movement from all

directions within the horizontal plane. In order to determine the

encoding properties of these neurons we recorded intracellularly

from single axons (n = 40) while stimulating with both repeating

and non-repeating sequences of white noise air currents played at

the direction of peak sensitivity for each cell.

In Figure 1 we show the statistics associated with temporal

patterns of spikes recorded under these conditions. Panel A shows

the mean 6 1 SD of the membrane potential during single spike

firing events (blue, n = 10,701 events) as well as during a short

doublets of ISI = 2.6 ms (red, n = 464 events) from a single

recording of giant interneuron 10-2a. We see that for these short

doublet events the second spike occurs while the membrane is still

hyperpolarized from the first spike. In contrast, panel B shows the

single spike events superimposed with a doublet event with

ISI = 6.5 ms (red, n = 26 events) from the same recording. In this

case we see that the voltage across the cell membrane has returned

to the resting membrane potential (denoted with the broken black

line) before the second spike occurs.

Panel C shows the probability of occurrence of all interspike

intervals of less than 70 ms (the ISI histogram, binned at 0.1 ms

resolution) from the same recording as in panels A and B (black

line). In addition, the combined ISI histogram from 40 different

cells of class 10-2a and class 10-3a, recorded under the same

stimulus conditions, is shown with the gray shade. In the case of

the data from the single cell (black line), .85% of all ISIs were of

70 ms or less, while in the data pooled across all cells (gray shade)

.90% of the ISIs occurred in this interval. The histogram from

the single cell is well within the range of the population data. The

ISI histogram contains three clear peaks, one at 44 ms, one at

31 ms, and the tallest peak at 3 ms, which lies just at the edge of

the observed hard refractory period for this cell (2 ms). Note that

the peaks at 44 and 31 ms correspond to firing rates of 23 and

32 Hz, respectively, which in turn corresponds to the region of

peak stimulus-response coherence from analyses associated with

stimulus reconstruction [4,27,28,31]. This means that from the

perspective of linear rate encoding implicit in stimulus reconstruc-

tion, spikes with ISIs in the range of 31–44 ms would carry the

most information about the stimulus.

Panel D shows an expanded view of the ISIs from 2–5 ms in the

population histogram, with the y axis normalized to 1 at the most

often occurring ISI (3 ms). At this time base it becomes clear that

the ISIs from the minimum observed (2 ms) to the modal value

(3 ms) follow a sigmoidal curve. Berry and Meister [32] showed

that the relative refractory period of a neuron can be well

described by modeling this sigmoidal curve as a cumulative density

function of the ISI probability in this range. In this spirit we fit our

data with a Normal CDF (mean = 2.5 ms, SD = 0.2 ms) for later

modeling- see Figures 4 and 5.

In order to determine whether or not correlations between

spikes could be explained simply by doublet spike patterns, we

Author Summary

The information coding schemes used within nervous
systems have been the focus of an entire field within
neuroscience. An unresolved issue within the general
coding problem is the determination of the neural
‘‘symbols’’ with which information is encoded in neural
spike trains, analogous to the determination of the
nucleotide sequences used to represent proteins in
molecular biology. The goal of our study was to determine
if pairs of consecutive action potentials contain more or
different information about the stimuli that elicit them
than would be predicted from an analysis of individual
action potentials. We developed linear and non-linear
coding models and used likelihood analysis to address this
question for sensory interneurons in the cricket cercal
sensory system. Our results show that these neurons’ spike
trains can be decomposed into sequences of two neural
symbols: isolated single spikes and short-interval spike
doublets. Given the ubiquitous nature of similar neural
activity reported in other systems, we suspect that the
implementation of such temporal encoding schemes may
be widespread across animal phyla. Knowledge of the
basic coding units used by single cells will help in building
the large-scale neural network models necessary for
understanding how nervous systems function.

Temporal Encoding in a Nervous System
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looked at patterns of two consecutive ISIs (i.e. triplet patterns). If

each doublet event was independent of the preceding and

following spiking activity, then the joint probability p(ISI1 = x,

ISI2 = y) could be determined by taking the product of the two

marginal probabilities, p(ISI1 = x)?p(ISI2 = y), which we label as

the independent joint distribution, p_ind(x,y). We tested this

hypothesis for our pooled ISI data by comparing p(x,y) to

p_ind(x,y). Regions where the two probability distributions are not

significantly different from each other indicate where consecutive

ISIs are independent of each other. Figure 1E shows regions where

the two models are different at the 95% significance level (after

applying the Bonferroni correction for multiple comparisons [33]).

The independent model overpredicts the probability in two

separate regions lying along the diagonal, the first for consecutive

ISIs of approximately 5 ms or less, the second for consecutive ISIs

of approximately 30 to 50 ms (red regions). These correspond with

the peak regions from the ISI histogram in 1C. The independent

model simultaneously underpredicts the probability of a short ISI

being either preceded or followed by a silent period of 30–40 ms

(blue regions). We note that the relatively enhanced probability of

a long silent period preceding short-ISI doublet events could be

explained by the presence of a slow voltage-dependent conduc-

tance [34]. Voltage dependent Ca conductances are known to

exist in these cells [30,35]. While this observation may help to

pinpoint the mechanism for generating these short doublet

response patterns, the relatively small probability of these patterns

occurring (either as measured in the data, or under the

assumptions of independence) makes it unlikely to have a large

impact on information transfer in this study of the system (e.g.

Figure 4A).

Measurement of pattern variability
The variability in spike latency of a single spike plays an

important role in determining how much information can be

encoded in a neuron’s activity. However, it is not yet completely

clear whether all spikes experience equal variability regardless of

prior activity, or whether the immediate spiking history within a

cell can affect the variability of subsequent spikes. To address this

question, we measured the variability of doublet spiking in our

population of cells to repeated presentations of a white noise

stimulus. If variability of spike latency were truly independent of

spiking history, we would expect average variability of spike timing

to be approximately 1.3 ms, as in the case for isolated single spikes

(see Figure 5). In addition, we would expect that the variability of

ISIs would be even larger, since in that case an ISI would be the

sum (more properly the difference) of two independent random

variables. In this case, the variance of an ISI would be equal to the

sum of the variances of the component spikes’ jitter.

Figure 2 summarizes the results of the analysis for our 40

neurons. 2A shows 25 of the responses from a single IN 10-2a to

85 presentations of a stimulus that on the average elicited a

doublet of 2.6 ms (same cell as in Figure 1A & B). The upper and

lower plots show the raster and PSTH of the spiking activity,

respectively. The temporal precision of the first and second spikes,

as measured by the standard deviation (SD) of the distributions,

were 0.3 and 0.5 ms, respectively. Figure 2B shows spiking from

the same event, but now conditioned on the first spike of the event

rather than the time of the stimulus. The precision of the ISI, as

measured by the standard deviation of the difference between the

second and first spike times, was ,0.3 ms, with a correlation

coefficient (R) of 0.8 between the timing of the first and second

spikes. Note that the overall ISI response to the stimulus was more

precise than the onset latency of either of the individual spikes

times. In this case the a priori assumption that temporal precision of

response is independent of recent spike history can clearly be

rejected.

Figure 2C–D shows raster data and a PSTH for a second event

from the same recording as in Figure 3A–B. The mean ISI of this

second event was 6.5 ms compared to 2.6 ms in the previous case,

while the precision of both spikes within the doublets were similar

to the previous case (0.6 ms and 0.5 ms for the first and second

spikes of the doublet, respectively). Here however, the distribution

of the ISI is slightly larger relative to the two spikes that compose it

(precision = 0.7 ms, R = 0.23), although still slightly smaller than

Figure 1. Statistics of doublet spiking. A: 61 SD envelope showing
intracellular voltage waveform relative to resting membrane potential
of isolated single spikes (blue) and isolated short doublets of ISI 2.6 ms
(red) from a single recording in interneuron of class 10-2a. Dashed black
line denotes mean resting membrane potential (0 mV). B: 61 SD of
intracellular waveform from same recording as in A, this time with a
doublet of ISI 6.5 ms (red, n = 26). C: ISI histogram of data from
recording in A and B at 0.1 ms resolution (black line, n = 26,171 events),
as well as compilation data from 40 cells of class 10-2a and 10-3a (gray
shaded area, n = 577,435 events). D: Normalized ISI histogram of
population data from panel C, with time scale reduced to 1–5 ms. Red
line shows the recovery function, with black dashed line showing limits
of fit to recovery function. E: Difference between independent model
and measurements from data of joint probability of consecutive ISIs.
Positive (red) values represent overestimation by the independent
model, while negative (blue) values represent underpredictions by the
independent model.
doi:10.1371/journal.pcbi.1002041.g001
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expected if the two spikes were independent (0.8 ms, found by

taking the square root of the sum of the squared SDs for each

spike).

From the data presented in Figure 2 A–D we see that there is

clearly a correlation between previous spike history and stimulus-

response precision, at least for these two sample firing events in a

single cell. We also see that there seems to be a decrease in this

correlation with increasing time since the last spike. In order to

increase the statistical power of our examination of the temporal

precision of ISI events, we pooled the data from 7753 doublet

firing events occurring in recordings from all 40 cells in our data

set. We first use this larger data set to see if there is systematic

variation in the onset precision of a pattern of spikes dependent on

the subsequent interspike interval. The results of this analysis are

shown in Figure 2E. Here we see that very short doublets are

tightly locked to the timing of the stimulus, with a standard

deviation across trials (jitter) of less than 0.5 ms for ISIs of 2 and

3 ms. Longer duration ISIs have relatively larger values of jitter,

reaching a plateau of .1.1 ms for ISIs of 25 ms or more. The

onset jitter as a function of the following ISI was modeled using a

simple exponential (Eq. 1, methods) with best-fit coefficients and

95% confidence intervals: x1 = 21.061.0 ms, x2 = 4.865.2 ms,

x3 = 1.160.1 ms. The asymptotic value of the onset jitter (x3) was

similar to the mean stimulus-response jitter of single spikes

measured during repeated presentations of frozen noise stimuli

(1.3 ms, Figure 5). The resulting model is shown in Figure 2E as

the solid black line, with 695% confidence intervals of the fit

shown with the shaded gray regions.

In Figure 2F the same pooled data is used to calculate the

correlation between first and second spikes in the doublets as a

function of the average ISI of the doublets. What we see in the

pooled data confirms what we saw in our earlier example from the

single cell. ISIs had correlations significantly different from zero

out to approximately 35 ms, and spikes in doublets with short ISIs

(,5 ms) have correlations of 0.3 or higher. This means that

stimulus events that, on average, elicit short doublet ISIs almost

always produced the same response pattern, while stimuli that on

average produced ISIs of 10 ms or longer produced sets of

doublets with more variable ISIs, as well as the more variable

onset demonstrated in Figure 2E. The change in correlation

coefficient as a function of ISI was modeled as a double

exponential using Eq. 2 (see methods) with the following best fit

parameters and 95% confidence intervals: x1 = 2.360.8,

x2 = 1.760.5 ms, x3 = 0.260.1, and x4 = 28.9610.7 ms.

Simulation of distinct stimulus-conditioned spike
interactions

In order to determine the potential effects of ISI precision on

the ability of a neuron to transmit information, we built three

models of doublet firing that differed both in the onset variability

of the pattern as well as in the relative timing between spikes in the

pattern. Results of the simulations are shown in Figure 3. The first

model demonstrates the precision of ISIs if each spike was

generated truly independently with variance equivalent to the

values measured from response rasters to repeated stimuli

(Figure 5). The second model demonstrates the precision of ISIs

if each spike was initially generated independently as in the first

model, but with a refractory period based on the model of Berry

and Meister [32] later enforced in order to move second spikes

which occurred within 3 ms of the preceding spike (Figure 1D).

Finally, the third model uses onset precision and ISI correlation

matched to real data (model curves shown in Figure 2E and 2F,

respectively).

Figure 2. Spike-spike interactions in doublet patterns recorded
in cricket interneurons. A, Upper trace: A raster plot showing 25 of 85
responses to repeated presentations of a GWN stimulus, recording from the
same cell as shown in Figure 1. The cell consistently responded to the
stimulus by firing a doublet (first spike shown in blue, second spike in red)
with average ISI of 2.6 ms. A, Lower trace: PSTH of all 85 responses from the
raster, with the color convention conserved. B, upper and lower traces:
Raster plot and PSTH showing same data from A, here aligned relative to the
time of the first spike in the doublet (t = 0) rather than to the timing of the
stimulus. This shows the variability in ISI across presentations of a single
stimulus. C and D: Data from a second doublet event (mean ISI = 6.5 ms, 73
responses) from the same interneuron, data presentation conserved. E: jitter
of arrival time of first spike in repeatable doublets recorded from 40 different
cells in 32 animals, as a function of ISI (7753 events composed of 197,601
total pairs of spikes). Black line shows model fit to data (Eq. 1), with shaded
area representing 95% confidence envelope around predictions from the
model. Horizontal purple line shows population mean of single spike jitter
from frozen noise method. F: estimate of correlation coefficient between first
and second spikes in repeatable doublets (from same data set as in E). Error
bars represent 95% confidence limits on estimation of correlation coefficient.
Solid black line shows correlation coefficient as a function of ISI modeled as a
double exponential (Eq. 2), with 695% confidence interval on predictions
from the model shown by the shaded grey region.
doi:10.1371/journal.pcbi.1002041.g002
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Panels 3A–F use the same plotting convention as Figure 2A–D,

with each of the three models being displayed in its own vertical

column. Although all three models produced variable spike timing

raster plots and PSTHs (Figure 3A, 3C, and 3E, upper and lower

plots, respectively), the distributions of both spikes relative to the

time of the first spike (effectively the ISI- Figure 3B, 3D, and 3F) are

distinct between the different models, with correspondingly variable

amounts of correlation between first and second spike times.

Figure 3G shows how the correlation coefficient between spike

times evolves for each model for average ISIs varied between 2 ms

and 65 ms. Note that the correlation for the third model explicitly

matches the correlation coefficients calculated from (and are therefore

by definition identical to) the data in Figure 2F. The correlations

found both in actual data (Figure 2F) as well as in model 3

significantly exceed those for independent and refractory models for

ISIs less than 30 ms. The second and third models represent the

precision of doublet-spiking according to biophysically plausible

mechanisms, while the first model shows doublet spiking as predicted

by strict interpretation of the assumptions of linear reconstruction

analysis, i.e., independence between spikes. Although the first model

has first and second spikes that nominally occur independently of

each other, small amounts of correlation are induced by the fact that

the earliest spike was always attributed to the first spike distribution,

even if it was actually generated from the second spike distribution.

Information-theoretic analysis of models
In order to rigorously determine the effects the observed

precision in ISIs had on a cell’s ability to transmit information

Figure 3. Three models of spike-spike interactions in doublet patterns. A, Upper trace: raster plot of response from cell model 1
(independent ISI) to repeated presentations of a stimulus which reliably elicits a doublet with mean ISI of 2.6 ms, plotting convention as in Figure 2A.
Both the first (blue) and second (red) spikes in the doublet are drawn independently from normal distributions with means of 0 and 2.6 ms,
respectively, and standard deviations of 1.3 ms. A, Lower trace: Standard PSTH of raster from upper trace, convention conserved from Figure 2. B,
Upper and lower traces: raster plot and PSTH showing same data from A with each row aligned to the time of occurrence of the first spike in the
response, as in Figure 2B. C and D: (data presentation as in A and B) Model 2 of doublet behavior enforcing a relative refractory period between
nearby spikes, using recovery function from Figure 1C and jitter SD of 1.3 ms. E and F: Model 3 (data-matched) of doublet behavior, where the
relative timing of spikes is determined by Eqs. 1 and 2. G: Correlation coefficient between timing of first and second spikes of doublets drawn from
the three models as a function of ISI. Note that the correlation of Model 3 matches the exponential model from Figure 2F by design. H: Conditional
entropy (Eq. 4) of response pattern as a function of mean ISI for all three models.
doi:10.1371/journal.pcbi.1002041.g003

Temporal Encoding in a Nervous System
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about the stimuli, we measured information-theoretic quantities

such as entropy and mutual information in our data and models.

In direct method calculations the mutual information rate is

calculated as the difference between two entropies: the total

response entropy and the entropy of the response conditioned on a

stimulus. The total response entropy determines how much

bandwidth a cell has available for representing stimuli, while the

conditional entropy reflects how much of that response pattern

bandwidth is used to represent the same stimulus. In the present

context, a cell could use ISIs with relatively small conditional

entropy to transmit more information about a stimulus than ISIs

that exhibit relatively large conditional entropies.

Figure 3H shows the contribution to the conditional entropy due

to variability in both ISI and timing of pattern onset for each of the

three models discussed in the previous section, all as a function of

ISI. The conditional entropy curve for model 3 is lower than the

curves for the other two models over the entire range tested here,

and substantially so for short ISIs. Since model 3 matches data from

real cells, while models 1–2 represent decreasingly strict interpre-

tation of linear reconstruction, this indicates that the assumptions of

linear reconstruction overestimate the conditional variability of

spike patterns. In the information-theoretic framework shown here,

this means that a given doublet pattern is capable of transmitting

more information about the stimulus than predicted from linear

reconstruction assumptions. Specifically, if a cell on average gives a

4 ms doublet response to repeated presentations of a stimulus,

model 1 predicts that the conditional entropy of the response would

be 3.09 bits, while model 3 predicts that it would only be 2.43 bits.

This means that from this specific response event, the relative

reduction in the stimulus discrimination ability of model 3 due to

noise entropy would be 2‘(3.09-2.43) or approximately two-thirds as

large as for model 1.

In order to determine how much more information could be

transmitted overall in neurons using the ISI-correlated precision

Figure 4. Comparison of information-theoretic quantities. A: Total response entropy rate for 40 neurons as measured using the context-tree-
weighting (CTW) technique (x axis), vs. the modeled total response entropy (y axis). In panels A–D the red points indicate values from the cell in
Figure 2, dashed black lines indicate unity between the x and y axes. B: Response entropy rate conditioned on a stimulus event as measured by CTW
methods (x axis) vs models of the conditional entropy. C: Mutual information about the stimulus contained in the response patterns, calculated as the
difference between total and conditional entropies of the response. X axis shows result of CTW estimation for each cell, y axis shows information
calculation based on each of the three models. D: Comparison of mutual information measure using linear stimulus reconstruction approach (x axis)
with estimation from CTW method. Solid black line indicates Idir = 2?Ilin E: Boxplot showing how much of the proportional difference of information
between methodologies (Idir2Ilin) can be explained by varying temporal assumptions built in our models. For each of the three models, the boxplot
shows the fraction of the information explained by the difference between that model and the direct method estimate from panel D,
i.e. prop(x) = (Idir2Imodx)/(Idir2Ilin).
doi:10.1371/journal.pcbi.1002041.g004

Figure 5. Temporal precision of isolated single spikes. Value
along the abscissa shows single spike precision assessed by the
dejittering algorithm for 40 cells (population mean shown as a vertical
cyan line). Value along the ordinate shows single spike precision
assessed by a raster-based analysis for the same cells (population mean
shown as horizontal purple line). Each cell is represented by a single
point (red point is from same recording shown in Figure 1A–C). The
solid black line denotes where the two methods give equal results,
while the dashed black line shows where the dejittering method gives a
value twice as large as the raster analysis.
doi:10.1371/journal.pcbi.1002041.g005

Temporal Encoding in a Nervous System
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seen in our cells, we calculated mutual information rates on each

of our models using the ‘direct’ methodology [5]. To do this we

first calculated the total response entropy using only doublet

patterns (i.e., the ISI histogram) for each of our cells. We

compared these values to the actual response entropy for each cell,

estimated using the context-tree weighting algorithm [7]. The

results are shown in Figure 4A. Here each point represents data

from a single cell, with the x axis indicating the estimation of the

total response entropy from that cell using the CTW method, and

the y axis indicating the model estimate of the response entropy

described above. In this and all other plots throughout Figure 4,

the red symbol represents the various models fit to the exemplar

cell shown in Figure 2 A–D. The points all lie along the diagonal,

indicating that reducing the response dimensionality to consider

ISIs independently does not significantly reduce the calculated

value of the response entropy, in spite of the fact that there are

correlations in neighboring ISIs (e.g. Figure 1E).

We next fit the free parameters for each of our three models in

Figure 3 (jitter values, recovery function, and ISI correlation) to

each of our 40 cells. The resulting conditional entropy rates for

each of the 3 models and for each of the 40 cells are shown in

Figure 4B. Here the x-axis shows the conditional entropy rate

estimated using the CTW method. Points that lie along the

diagonal match the stimulus-conditioned variability seen in real

neurons, while points above or below the diagonal represent

overpredictions and underpredictions of conditional variability,

respectively. Since model 3 matches the temporal precision

parameters from the real data, we expect that it should also be

predictive of the conditional entropy of the real cells. We note that

this could potentially provide a simple way of estimating

information theoretic quantities from relatively few parameters.

Figure 4B shows that this is indeed the case- model 3 tends to

match the actual conditional entropy calculated in the cell most

closely, with results from the other models tending to lie above the

diagonal. This means that a strict interpretation of the assumptions

of linear reconstruction (model 1) overpredicts the amount of

conditional entropy present in the neural activity, and refractory

dynamics (model 2) are not sufficient to describe the low variability

seen in these neurons.

The information rate for each model was calculated by taking

the difference between the total entropy rate and the conditional

entropy rate. These values are plotted in Figure 4C vs. the amount

of mutual information calculated using the CTW method. As in

the case of the conditional entropy, model 3 tended to give the

closest match to data, with models 2 and 1 yielding progressively

lower estimates of information rate due to their larger relative

conditional entropies.

We were concerned with determining how the precise spiking

patterns seen in our data affect the ability of these cells to transmit

information, and specifically how the assumptions of linear

reconstruction might lead to reduced estimates of information

rates. Since our models reflect varying degrees of the assumptions

implicit in linear reconstruction methods, we compared the

modeled information rates with the rates obtained using linear

reconstruction for each cell in our sample. Figure 4D shows a

comparison between linear reconstruction information rates and

rates obtained using the CTW direct method. In almost all cases, the

linear method misses more than half of the information available in

the spike train. To compare this with the models, we assessed what

proportion of the difference between the linear and direct method

calculations could be explained by the difference between

information from the direct method and our models. The results

of this comparison are presented in the boxplot of Figure 4E, which

shows the lower and upper quartiles (horizontal blue lines) and the

median value (red line) for the proportion of information difference

explained across cells. Median values between different models are

significantly different at the 95% level if they do not fall within the

range of the notch on the respective boxplot. In the data presented

here, models 1 and 2 described significant, though statistically

indistinguishable proportions of the information difference (16.5%

and 12.5%, respectively).

Quantification of variability in stimulus-response latency
Analysis of the models revealed that correlations imposed by the

refractory period only explained a small amount of the

discrepancies between direct and linear information estimates. In

order to determine if other aspects of precision might explain the

information gap, we employed two different methods of assessing

the variability of single isolated spikes. These two methods

characterize distinct (but related) aspects of spike timing

variability. The first method assesses purely biophysical uncer-

tainty by estimating spike onset jitter in the response to ‘frozen’

white noise [18,36–38]. The second method is the ‘dejittering’

technique which assesses temporal uncertainty with non-repeated

broadband stimuli [17,39–42]. These two methods use comple-

mentary approaches to measure variability. By conditioning on

repeated stimuli, the raster method attempts to measure response

variability solely due to biophysical sources. In contrast, by using a

broader ensemble of non-repeated stimuli, the dejittering tech-

nique captures not only biophysical uncertainty, but also latency

variance caused by the fact that multiple stimuli are represented by

the same response (response invariance). This is an important

distinction in the context of comparing linear reconstruction

techniques with other measures of information rates in neural

systems, since the ‘variability’ in each spike determined by the

dejittering method is implicitly included in the construction of the

linear kernels.

Figure 5 shows the results of both analyses on the 40 neurons in

our data set. The values along the x axis indicate the standard

deviation of the variability in stimulus-spike latency assessed using

the dejittering method (mean across the population denoted by the

vertical cyan line), while the value on the y axis indicates the

standard deviation of the variability in stimulus-spike latency

assessed using the raster method (mean across the population is

shown with the horizontal purple line). The red point corresponds

with the cell indicated in red in Figure 4. As expected from the

considerations listed above, the dejittering method consistently

gives a larger value for the variability (mean jitter value of 2.1 ms,

compared with 1.3 ms for the raster method). We address the fact

that there is no significant correlation between the values obtained

from the two measures (R = 0.06 across the 40 cells, 95%

CI = [20.26 0.36]) in the following discussion.

To further investigate the relationship between several mea-

sured quantities and the difference in information measures

(Figure 4D), we used linear regression to determine how well each

measurement could predict the information, with the results

shown in table 1. The value of the variance obtained using the

‘dejittering’ technique was the only measured value significantly

correlated to the information difference, while the precision value

from the raster-based method was not significantly correlated.

This observation combined with the previously observed lack of

correlation between the two variables implies that the discrepan-

cies in information are best explained by accounting for response

invariances.

This result follows from our previous observation of the lack of

correlation between the two variables. The timing variability due

to repeated stimulus presentations (the only component of the jitter

captured in the raster-based method) affects information calcula-
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tions using both direct method and stimulus reconstruction

approaches. However, the variability in stimulus-response latency

for different response events (the component only captured by

dejittering) affects stimulus reconstruction-based information

estimates, hence the reason it is a good predictor of the gap

between the two methods of estimating information.

Modeling of pattern-conditioned stimuli
We wished to determine whether the temporally precise spike

doublets represented stimuli that were significantly different from

those which preceded single spikes, or from those that would be

predicted by linear reconstruction analysis. To do this, we developed

a novel likelihood test. First we built models of the stimulus preceding

specific patterns of spikes, similar to those developed by de Ruyter

van Steveninck and Bialek [9]. For a set of doublets with a specific

ISI, the model of the doublet-conditioned stimulus ensemble was

generated by taking the mean and covariance across that sample set

(schematically depicted for 2 ms ISI in Figure 6A and 6D). This

model is referred to as the doublet-triggered stimulus model (DTSM).

To build a model of the same ISI that was consistent with the

stimulus-reconstruction methodology, we followed the following

procedure. First, we collected stimulus segments associated with

isolated single spike events, and took the Gaussian approximation of

the ensemble as above (Figure 6A and 6B We call this the singlet-

triggered stimulus model (STSM). We then took two copies of the

same ‘‘singlet’’ model, offset them by the specified ISI, and summed

the models (Eqns. 5, 6, 7). This produced a model of the stimuli

associated with a doublet that was an extension of the assumptions of

linear reconstruction, as discussed in Methods and supplementary

text S1. We denote this model as the synthetic doublet-triggered

stimulus model (sDTSM, Figure 6C). This procedure provided us

with two successively stronger testable hypotheses: 1) the stimuli

preceding doublet spiking events were no different from stimuli

preceding single spikes, and 2) that the stimuli preceding such doublet

patterns could be predicted by an appropriately-combined pattern of

the stimuli preceding a single spike. Under this second null hypothesis

there are potentially infinite pairs of stimulus-response codewords,

limited only by the temporal precision of the stimulus response

relationship: a 2.0 ms ISI could represent a different stimulus pattern

than a 2.1 ms pattern, etc. In order to properly test these two

hypotheses within the constraints of the available data, we examined

doublet patterns with at most 1 ms precision. The models were

validated by 106 cross-validation (see Methods). Finally, to reduce

artifacts associated with the structure of the band-limited stimulus, we

projected all models and test data into a reduced-dimensional space

(see supplementary text S1). Six of the 294 examples of the test data

excluded during the 106 validation for a 2 ms doublet pattern are

shown in Figure 6E. Note the variability in individual waveforms

relative to the model means shown in 6C and 6D.

Likelihood analysis
To examine which models could best predict the stimuli preceding

doublet events, we performed likelihood ratio tests between the

DTSM and STSM, as well as between the DTSM and sDTSM.

Considering the log of the ratios, cases in which both tested models

were equally likely to explain the data had a log-likelihood ratio value

of zero, cases in which the DTSM outperformed the STSM or

sDTSM had values .0, while in the reverse case the value was ,0.

The results of the likelihood test between the STSM and the

DTSM for the same cell as used in Figures 1 and 3 are shown in

Figure 7A. For each ISI, the mean 6 95% confidence interval of

the log likelihood ratio is shown. The mean estimate of the LLR is

greater than zero for all ISIs modeled, which means that, for all

ISIs tested in this cell, the stimuli preceding doublets are

significantly different from those preceding single spikes.

Data from the same cell were also used to test the sDTSM vs. the

DTSM, with the results shown in Figure 7B. The black points show

mean 6 95% confidence intervals of the log likelihood ratio as in 7A.

The solid line through the distribution shows the least-squares fit of the

4-parametric Eq. 9 to the data (shaded gray region shows 695% CIs of

predictions from the fit). The best fit parameters with 95% confidence

intervals were x1 = 1.760.3, x2 = 2.260.6 ms, x3 = 0.060.1, and

x4 = 2.1610563.961010 ms. Here the second exponential in the

mixture is essentially missing, with coefficient close to 0 and uncertain

time constant. The higher order model was selected to maintain

compatibility with the population case discussed subsequently. In this

case, the predicted LLR value from the exponential fit is distinct from

zero until ISIs of 8–9 ms (,4x2), indicating that for smaller ISIs the

sDTSMs does not account for the data as well as the DTSM.

In order to show which doublets across the set of test cells had

log-likelihood ratios indicating a non-linear mapping of stimulus

space, we performed the same analysis over the population of cells.

To avoid biasing due to small sample sizes and using repeating

stimuli, we restricted ourselves to experiments with non-repeating

stimuli. This left us with a subset of nine neurons from our initial

pool of 40. As before, we estimated LLRs in 106 cross-validation

trials for each cell. The results of calculating the LLR for the

STSM vs. the DTSM for the nine cells are shown in Figure 7C

(plotting convention as in 7A). Here we see again that, as in our

exemplar cell, the stimuli preceding single spikes are unable to

account for the stimuli preceding doublets.

Finally, we show the population results of the LLRs between the

DTSM and the sDTSM in Figure 7D (plotting conventions the

same as in 7B). The solid line through the distribution shows the best

least-squared fit of Eq. 9 to the data. The best fit parameters with

95% confidence intervals were x1 = 2.760.2, x2 = 2.060.2 ms,

x3 = 20.060.1, and x4 = 25.9610663.161012 ms. As in the single

cell case discussed above, the second term in the double exponential

mixture is inactive, while the population LLRs remain significantly

positive until ISIs of 7–8 ms.

Evaluation of compressive non-linearity on models of
stimulus

The analysis in the previous section demonstrates that the

stimuli preceding patterns of spikes differ significantly from the

Table 1. Linear regression analysis on information rates.

Predictor
Variable Slope ±95% CI Y Int ±95% CI R ±95% CI

JittDJ 0.11 [0.05 0.16] 0.35 [0.24 0.46] 0.54 [0.28 0.73]

JittRB 0.10 [20.03 0.23] 0.44 [0.27 0.61] 0.25 [20.07 0.52]

Firing Rate 0.00 [20.00 0.00] 0.54 [0.48 0.60] 0.16 [20.16 0.45]

Burstiness 0.06 [20.13 0.24] 0.56 [0.51 0.60] 0.10 [20.22 0.40]

srecovery 20.00 [20.00 0.00] 0.57 [0.56 0.59] 20.01 [20.32 0.30]

Slope and Y intercept coefficients and their respective 95% CIs from linear
regression between five different parameters of models and the proportional
difference ((ID2IL)/ID) between direct and linear reconstruction methods of
information calculation (from Figure 4D). Also shown is the correlation
coefficient R and its 95% confidence intervals. Variables: JittDJ- temporal
precision of isolated single spikes from the dejittering method. JittRB- temporal
precision of isolated single spikes from the raster-based method. Firing Rate-
sustained firing rate of the cell during stimulation. Burstiness- proportion of all
doublets in recording that have ISIs of 8 ms or less. srecovery- standard deviation
of normcdf fit for recovery function from refractory period, from methods of
Berry and Meister [32].
doi:10.1371/journal.pcbi.1002041.t001
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predictions of linear stimulus reconstruction. However, the specific

deviations remain unclear. For instance, one potential explanation

for the results seen in Figure 7 is a form of compressive non-

linearity, where the stimuli preceding doublets of a specific ISI are

better modeled by a sDTSM with a shorter ISI. This would be a

natural way for a neuron to adjust its operational range within the

limits imposed by biophysical constraints, allowing it to encode

stimuli that ‘should’ be represented by an ISI smaller than the

cell’s refractory period. Such an encoding mechanism would be

the representational correlate of the ‘free firing rate’ described by

Berry and Meister [32].

In order to determine whether such a mechanism could explain

the difference between the sDTSM and the DTSM, we performed

a modified likelihood test. Instead of testing whether a data-based

or synthetic model best explained observed data with a specific

ISI, we asked which of several sDTSMs (each having a different

ISI) best explained the data. We built these models using Eqns 6

and 7, for offset values of 23 to 29 ms (in this case a 23 ms offset

would be equivalent to a 3 ms offset, but with an additional 3 ms

latency prior to the response), and tested them with doublet data

containing ISIs from 2 to 26 ms. The results of this analysis are

shown in Figure 8, pooled across the 9 cells in our likelihood data

set. Figure 8A shows the probability of each sDTSM (y axis, sum

along each column = 1) explaining the data for each ISI (x axis),

averaged across all cells. For ISIs.2 ms the clear peak lies along

the diagonal of the image, indicating that, for these ISIs, the best

offset between single spike stimuli in the sDTSM is the actual ISI

of the data being modeled. However, for doublets with an ISI of

2 ms, the best-match sDTSM was actually the one with two single

spikes at 0 offset (i.e. completely superimposed). This indicates

Figure 6. Schematic of modeling event-conditioned stimuli. A: Simultaneous recording of one second of GWN wind stimulus (bottom trace)
and intracellular membrane potential (upper trace) from the same interneuron as in Figure 3. Well-isolated response patterns are divided into isolated
single spike responses (blue) and ,2 ms doublets (red and cyan). Response patterns which either are not sufficiently isolated are not considered in
subsequent analysis (black). The 50 ms of the stimulus preceding the second spike of the response pattern is highlighted in matching colors (bottom
trace). B, Upper panel: Gaussian model of 50 ms of stimulus preceding an isolated single-spike response, consisting of a mean (blue, left panel) and
covariance (right panel, color scale in mm2/sec2) of the entire single-spike-conditioned stimulus ensemble (13,375 events from 30 minutes of
recording). B, Lower panel: Same Gaussian model as in upper panel, offset by 2 ms. C: Synthetic Gaussian model of stimulus preceding 2 ms doublets,
obtained by summing the means from panel B (cyan, left panel), and summing and then constraining the covariances (Eq. 6). D: Gaussian model
(mean, red, and covariance) of 50 ms of stimulus preceding isolated doublet response patterns with 2 ms ISIs, based on 90% of the doublet-
conditioned stimulus ensemble (2,652 events from 30 minutes of recording). E: Selection of 6 of the 294 stimulus samples which elicited a 2 ms
doublet response and that were not used to build the Gaussian model in panel D, to later be used for likelihood testing.
doi:10.1371/journal.pcbi.1002041.g006
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that, on average, doublets of 2 ms and less represent stimuli that

are more similar to exactly superimposed copies of stimuli

preceding single spikes (rather than offset copies of the singlet-

conditioned stimuli). This can be observed by comparing the

respective means in Figure 6C and 6D. Such a relationship is

consistent with the concept of the compressive non-linearity

discussed above.

To see how consistent this relationship was across the cells in

our data set, we found the peak probability for each ISI. The mean

6 1 SD of this value across the cells in our population is plotted in

Figure 8B, showing that this relationship is indeed consistent

across this population of neurons.

Having established that a compressive non-linearity exists in the

encoding scheme of these cells, we returned to the likelihood

analysis shown in Figure 7D, and repeated it with the best-fit

synthetic model, rather than matching the intervals to the ISIs

being tested. We refer to this best-fit synthetic model as the

compressed synthetic doublet-triggered stimulus model (csDTSM).

The results of comparing the DTSM and the csDTSM are shown

with grey markers in Figure 8C, superimposed on the original

comparison between the DTSM and sDTSM (black markers).

Although accounting for the non-linearity significantly increases

the predictive power of the 2 ms synthetic model, this improve-

ment still explains only a fraction of the difference in predictive

power between the sDTSM and the DTSM for short ISIs. This

indicates that the results in Figure 7 cannot be explained solely by

the refractory behavior of neurons.

Quantification of difference in synthetic and data-based
models

Having shown that modifications accounting for refractory

periods do not explain the differences in our models (Figure 8), we

Figure 7. Likelihood analysis. A: Distribution of mean log-likelihood ratios for data-based doublet and singlet models for ISIs ranging from
2–25 ms, from the same cell as in Figure 6. Error bars show 695% confidence intervals on the mean. B: Distribution of log-likelihood ratios for data-
based and synthetic doublet models for same cell as in panel A. Solid black curve shows double exponential model (Eq. 9) fit to data, gray shading
indicates 95% confidence interval on predictions from model. C: Distribution of log-likelihood ratios for data-based doublet and singlet models, data
pooled across 8 cells, presentation as in A. D: Distribution of log-likelihood ratios for data-based and synthetic models, pooled across 8 cells, as well as
exponential model fit to data. Presentation as in panel B.
doi:10.1371/journal.pcbi.1002041.g007

Figure 8. Non-linear compression. A: Non-linear mapping between
input ISI (x axis) and best-match synthetic ISI (y axis), determined from
peaks in likelihood. B: Effects of non-linear compression on estimates of
log-likelihood ratios. Black points show LLR between synthetic (‘synth
mod 1’) and data-based doublet models, as in 7D, gray points show LLR
between synthetic model modified by non-linear compression (‘synth
mod 2’) and data-based doublet models.
doi:10.1371/journal.pcbi.1002041.g008
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sought to fully quantify these differences in a rigorous manner. To

do this we used iSTAC analysis [43] as adapted to multivariate

inference in [11]. iSTAC is a form of dimensional reduction,

conceptually similar to principal components analysis (PCA). PCA

has been used previously to examine the difference between burst-

and single spike-triggered stimulus ensembles in model neurons

[44]. The difference (and, for this application, the distinct benefit)

of iSTAC is that it is guaranteed to preserve the most information

about the distinction between the two spaces, as assessed using KL

divergence, for any given dimensionality of the subspace (see

Methods). The maximally informative subspace of the specified

dimensionality provides the most compact description of the

difference between the two models [11].

In our case, the two multi-dimensional Gaussian models we

wished to compare were the sDTSM and the DTSM. We were

interested only in quantifying model differences that were

potentially important in decoding responses. Since data-based

and synthetic models for ISIs in which the LLR was not

significantly different from zero were (by definition) equally good

at decoding responses, we focused the comparison on the range for

which the data-based model outperformed the synthetic model.

For the cell shown in Figure 7B and 8B, this corresponded to

ISI,8 ms. Note that although the original dimensionality of these

models was equal to the number of sample points in the

corresponding event-triggered average (50 points), the compari-

sons between data-based and synthetic models were performed in

the same reduced dimensionality subspace used to calculate the

LLRs. iSTAC analysis allowed us to characterize the difference in

models using a small number of dimensions, ranging from a single

dimension (i.e., a single vector representing the axis of greatest

divergence between the two model distributions) up to the full

dimensionality of the original models. With iSTAC we could also

quantify in bits how much of the difference between the models

was captured at each level of reduction.

Figure 9 shows results for iSTAC analysis from the same cell as

shown in 7A and 7B. The ISIs shown here were chosen from the

region where the doublet outperformed the synthetic model in the

LLR test, as represented by the 2 ms ISI models in panels A–D.

For the sake of visual clarity, the means, covariances, and iSTAC

dimensions in 9A–D are shown in the original 50-dimensional

Figure 9. iSTAC analysis of data-based and synthetic models. A: Mean of data-based (red) and synthetic (purple) multivariate Gaussian
models for stimulus preceding a 2 ms doublet, from the same cell as in Figures 7A and 7B. Covariance of data-based and synthetic models are shown
in panels B and C, respectively (color scale in mm2/sec2). D: Estimate of the 3 most informative iSTAC dimensions (shaded area indicates mean 6 SD
across 106validation). E: Measure of the total normalized K-L divergence between data-based and synthetic models for 2, 5, and 8 ms, as a function
of subspace dimensionality. Mean 6 SD across 106 validation is shown with error bars, which are on the order of the size of the markers for the
points. F: Measure of the portion of the total K-L divergence explained by the subspace containing the three largest iSTAC vectors, as a function of ISI
in the model. G: Improvement of the synthetic model performance in LLR tests from the single cell in Figure 7B (black markers) by modification along
the 3-dimensional subspace shown in panel 9D (cyan markers). Error bars represent 695% CIs on the mean.
doi:10.1371/journal.pcbi.1002041.g009
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space, even though calculations were performed in the reduced-

dimensionality space.

Panel 9A shows the mean of both the DTSM (red) and the

csDTSM (purple). These represent the average predictions of the

respective models for stimuli preceding a 2 ms response pattern.

These two waveforms clearly differ, with the greatest visual

difference coming in the regions where the csDTSM overpredicts

the stimulus (14 to 12 ms before the response pattern), and

underpredicts the stimulus (6 to 3 ms before the response pattern).

As shown previously in Figure 7, these differences are significant

with respect to coding. The covariance for the DTSM and

csDTSM are shown in panels 9B and 9C, respectively. Once again

differences in the model are noticeable by eye. Here the diagonal

elements from 21 to 9 ms prior to the response are overpredicted

by the synthetic model.

The first three vectors describing the maximally informative

subspace between the synthetic and doublet models are shown in

panel 9. Note that instead of lines expressing the mean of the

iSTAC vectors, we use shaded regions to depict the mean 6 SD

obtained from performing iSTAC on every model from the 106
cross-validation (shaded area = 2SD). In the case of the 2 ms

model, the power in the three most informative dimensions is

concentrated in a continuous stimulus region from approximately

14 to 3 ms prior to the second spike in the response (Figure 9D).

This space corresponds to the regions of dissimilarity from visual

inspection, and can be subdivided into a region from 14 to 12 ms

before the spike where the synthetic model over-predicts both the

mean and variance relative to the data based model, and a second

region from 6 to 3 ms prior to the spike where the reverse is true

(compare red and purple traces in 9A). This means that, in order

to improve the predictive power of the synthetic model the most,

we should increase the synthetic mean and covariance in the 23 to

26 ms region, and decrease them in the 212 to 214 ms region.

This would be accomplished by scaling along the iSTAC

dimensions.

In addition to showing which stimulus dimensions are most

informative, we use the iSTAC analysis to quantify the extent to

which the DTSM and linear sDTSM differ. This is accomplished

by calculating the K-L divergence between the two models for

each iSTAC dimension, which gives a measure of how well that

dimension explains the difference between the two models in the

information-theoretic units of bits (see Methods). The normalized

cumulative information recovered for using subspaces of various

sizes up to 12 dimensions is shown in Figure 9E for models of 2, 5

and 8 ms ISIs (cumulative K-L divergence without normalization

is shown in Figure S1). We see that dimensional reduction with the

least loss of information is accomplished with the 2 ms models. In

comparison, the longer ISIs require more dimensions to describe

an equivalent amount of information about the differences

between models. This point is underscored in panel 9F, where

we show the proportion of total information contained in the

subspace containing iSTAC dimensions 1–3 for each ISI from 2 to

9 ms. Over 85% of the difference is captured by a 3-dimensional

subspace for the 2 ms ISI, while only ,65% of the difference is

captured in the case of the 9 ms ISI.

Taken together, these results indicate that for short ISIs,

changes in a relatively small subspace of the synthetic model would

cause substantial improvements in that model’s LLR performance.

We tested this notion by modifying the mean and covariance of

the synthetic model for each ISI so that they were identical to the

mean and covariance of the corresponding DTSMs in a three-

dimensional iSTAC subspace, but were unchanged along the

remaining dimensions. We refer to such synthetic models as the

modified compressed synthetic doublet-triggered stimulus model

(mcsDTSM). Figure 9G shows the results of LLR analysis

performed for the csDTSM vs. the DTSM, as well as for the

mcsDTSM vs. the DTSM, for ISIs between 2 and 9 ms. For each

ISI from 2–7 ms, the LLR decreased significantly for the

mcsDTSM in comparison with the csDTSM. In this case the

LLR stopped being significant at the 95% confidence level for all

ISIs greater than 4 ms. Similar results were seen for other cells in

the data set (Figure S2). This indicates that the iSTAC dimensions

do indeed capture the differences between the models that are

important for decoding neural activity. Note that although the

3-dimensional subspace explains the greatest percentage of difference

for the shortest ISIs (panel 9F), these same ISIs have the greatest

LLR difference between sDTSM and DTSM, and hence for the

shortest ISIs the mcsDTSM does not quite explain the data as well

as the DTSM. These results further indicate that the deviations of

these cells from linearity, previously shown in Figure 7, can be

quantified using a dimensionally-compact descriptor. These results

also help pave the way for future lines of research into the nature

of non-linear encoding, including experiments to determine the

precise biophysical mechanisms which might lead to the observed

deviations from linearity, as well as confirmation of these results by

showing whether or not modifications of the stimulus along these

few dimensions affect the probability of eliciting short doublets.

Discussion

Temporal encoding hypotheses
The nature of the neural code has long been studied. While

early work such as that of Adrian showed that much of the

information about a stimulus is contained in the firing rate of a

neural response [45], more sophisticated analyses have demon-

strated that information about the stimulus can be extracted from

the timing of individual spikes in the neural response [1,2,9].

Additionally, it has been shown that neurons are capable of

responding with as much temporal precision as 1 ms [18,36–

38,46]. This has led to the hypothesis that neurons might use a

temporal code, through which multi-spike patterns are used to

represent stimuli that are distinct from those stimuli which could

be predicted based on consideration of individual spikes [3].

Recent work in several systems have purported to show various

types of temporal encoding with respect to this definition [47–52].

Our results are consistent with this temporal encoding hypothesis,

where high frequency doublets (2–8 ms) are used to represent

stimuli composed of frequencies less than 200 Hz. The results also

indicate how the stimuli corresponding to these doublets differ

from those stimuli that can be represented by sums of

appropriately offset linear kernels.

Temporal precision of multi-spike dode words
Several factors have been identified that would act to constrain

the effectiveness of temporal codes. In particular, the upper bound

on the duration of multiple-spike code words is imposed by the

biophysical constraints on decoding and by selective pressure on

the reaction time of the animal in making a decision based on

sensory input. Similarly, the lower bound on the duration of

multiple-spike code words is imposed by the refractory period of

the cell and by the limiting temporal uncertainty in the stimulus-

response relationship [9,32,50]. One specific factor contributing to

the temporal uncertainty in stimulus-response relations is the

inherent limiting noisiness or ‘‘jitter’’ in spike timing. While cells

driven by dynamic, large-amplitude stimuli tend to minimize this

jitter [5,18,37,38,53–57], the temporal variability of single spikes

must still limit the ability of a neuron to transfer information with

precise patterns. This limit would become especially severe if noise
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from single spikes summed independently. We have recently

shown that isolated single spikes recorded from cercal interneurons

exhibit a stimulus-to-response jitter of ,2.2 ms around the mean

latency [17]. Here we have repeated that analysis, and further

extended it in several manners. First we show that doublet events

with ISIs of less than 30 ms have event onset jitter considerably

tighter than the onset variability of single spikes across trials

(Figure 2E), which is in agreement with modeling studies [44].

Second we show that this stimulus-response jitter does not

independently affect spikes in short-interval doublets, and that

the times of occurrence of spikes in doublets with average ISIs of

5 ms or less are tightly correlated, exceeding even the precision

expected from consideration of a refractory period as shown by

Berry and Meister [32]. Such correlations, where repeated stimuli

elicit nearly identical patterns of spikes, are necessary for a

temporal code to be able to efficiently transmit information about

the stimulus. Such mechanisms have been theoretically implicated

in models of visual cortex [44], and indeed highly reproducible

ISIs have been shown to exist in the presence of noise in several

vertebrate sensory systems [32,50,58], suggesting that this form of

temporal encoding is not restricted to the insect realm.

The analysis reported here also derives an estimate of the

minimum ‘word length’ of temporal patterns distinct from single

spikes in this set of neurons (#8 ms), and should be used as a first

step in determining parameters for analyses of dynamical neural

coding [10,11,59].

Implications for information transmission
Information theoretic analysis has proven to be a useful tool in

determining the coding schemes of many different sensory systems.

Two of the most popular methods of information theoretic analysis

in neuroscience, the direct method and linear stimulus recon-

struction, each have distinct advantages. Assuming that biases are

appropriately accounted for [6,7], the former method gives an

accurate estimate of the true information rate contained in neural

activity and allows for encoding of stimulus parameters by

temporal patterns of responses (as well as all other types of

responses), however it gives no model for how this transmission

occurs. Stimulus reconstruction offers a model for how stimulus

energy is encoded by neurons, but only gives a lower bound

estimate for information transmission and makes strong assump-

tions such as precluding the possibility of temporal encoding.

Several studies have now performed both analyses on the same

data [7,53,60,61], while in other cases different studies have used

the two methods separately on similar cells using similar stimuli

[1,5,16,52,62,63]. These experiments have been performed in

different sensory modalities from diverse animal phyla, including

retina in salamander, guinea pig, and cat, cat thalamus, primate

visual area MT, the fish electrosensory lateral line lobe (ELL), and

the fly visual system. In all cases reported so far the linear

reconstruction technique has substantially underestimated the

information available in the neural activity, in some cases missing

80% of the information (Table 2).

One of the possible reasons for this discrepancy in information

rates is that any aspects of the stimuli encoded by temporal

patterns in the nervous system would not be accounted for in

calculations using stimulus reconstruction (in addition to other

proposed non-linearities [8,53,61]). Our analysis shows that a

significant proportion of this information gap can be attributed to

assumptions about the temporal variability implicit in reconstruc-

tion methodology (e.g. Figures 3–4 and table 1). This result is in

agreement with the work of Bialek and colleagues, as well as

several other studies which have measured the information

contained in specific patterns of spikes [9,47,64–66].

In particular, de Ruyter van Steveninck and Bialek showed that

in the H1 neurons of flies, ISIs of 10 ms and less transmitted the

most information about the stimulus (their Figure 7). Similarly, in

the same system Brenner et al showed that ISIs of 6 ms and less

provided greater ‘‘event information’’ than longer ISIs (their

Figure 3). In both studies the authors attempted to estimate the

mutual information tied to specific response events. Here we use a

complementary approach, instead characterizing only the condi-

tional entropy for specific response events (Figures 3H and 4B),

and then relating that to estimates of the total mutual information

(Figure 4D–E). Our results are consistent with the work from flies,

showing that ISIs less than 10 ms are capable of carrying more

information about the stimulus than longer-interval doublets.

Other recent work has shown that the lower bound estimate

provided by linear reconstruction techniques becomes looser in the

case of high-intensity stimulation [12,60,61,67]. The amplitude of

our stimulus was larger than reported values in other investigations

of this system [4,27,28]. This indicates that part of our measured

Table 2. Comparison of linear and direct estimates of
information rates in various sensory systems.

Preparation Inf Method Inf Rate Inf Ratio Reference

Fly H1 Rev Recon 64 2.5* [1]

Direct 81 [5]

Salamander Retina Rev Recon 3.2 ,3.0 [63]

Direct ,9.6 [62]

Guinea Pig Retina Rev Recon 3.3 4.6 [7]

Direct 15.2

Cat Retina Rev Recon 61.1/62.2 1.4/1.8{ [61]

Direct 82.5/109.2

Cat Thalamus Rev Recon ,1 ,3.6 [16]

Direct 3.6 [52]

Macaque MT Rev Recon 5 2.5 [53]

Direct 12.5

Fish ELL Rev Recon 14.7/25.2 1.6/2.1{ [60]

Direct 23.1/52.9

Cricket Cercal INs Rev Recon 41.167.8 2.3 Present
Study

Direct 96.7619.8

Comparison of methods of estimating information rate which either take into
account temporal patterns of spikes (direct methods) or which assume
independence of consecutive spikes (reverse reconstruction methodologies). All
values for information rates are reported as bits/second, except for the values
for cat thalamus, which are reported in units of bits/spike.
*The estimate of information rate from linear reconstruction for H1 was actually
based on an artificial left/right pair, while the direct method estimate was for a
single neuron. The ratio reported here of direct estimate/linear reconstruction
estimate was based on one-half of the value from linear reconstruction, as
estimates from such artificial pairs tend to double the information estimate of
single cells [4].
{Cat Retinal cells were split into four physiological categories- on and off X cells,
and on and off Y cells. In this table the four categories were summarized by
two numbers, with on and off X cells lumped into one category (numbers on
the left for information rates and ratios), and on and off Y cells placed in a
second category (numbers on the right).
{The electric fish ELL was stimulated with two different, behaviorally relevant
stimulus geometries: local geometry corresponding to prey signals (numbers
on the left for information rates and ratios), and global geometry
corresponding to conspecific signaling (numbers on the right).

1Data reported are from same cells as used in the present study. Values
reported are mean 6 SD, n = 40.

doi:10.1371/journal.pcbi.1002041.t002
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information gap might be due to our stimulation regime, though

direct comparison of stimulation amplitude is confounded by

differing calibration methods between the previous studies and the

current one. Recent work by Pillow and colleagues [68]

demonstrates an alternate method to the lower bound information

rates, based on estimation of the maximum a posteriori distribution of

stimuli conditioned upon responses. This method provides a

tighter lower bound on the information rate under high-intensity

stimulation conditions, provided there is enough data for

estimation of the covariance of residuals to have converged and

that the neurons are sufficiently linear. It is possible that using this

linear estimator would lead to smaller information gaps in our

system as well as the others listed in Table 2, though given the

magnitude of the reported gaps (,60%) it is likely that there would

still be a significant discrepancy between linear and direct

information estimates.

Previous reports that studied the cricket cercal system provided

evidence that interneurons 10-2a and 10-3a as well as their

presynaptic afferents strictly use linear encoding [4,27,28,69].

Data that supported these conclusions included consideration of

the residual from stimulus reconstruction. However, the potential

for patterns of spikes to non-linearly represent stimulus waveforms

has not previously been investigated in this system. Our results

here show that such patterns of spikes represent distinct stimuli,

and are capable of transmitting information at higher rates than

can be recovered from spike rate alone. This represents a

substantial revision in our understanding of how the cercal system

operates.

Bursting vs. tonic spiking
Although no bursting mechanism has been characterized in the

cricket cercal system, we note that the relatively enhanced

probability of a long silent period preceding short-ISI doublet

events (Figure 1E) is reminiscent of the voltage-dependent calcium

conductance (IT) involved in the generation of bursting activity in

relay cells of the mammalian LGN [34]. Indeed, it is known that

there are voltage-dependent calcium conductances in these cells

[30,35], and the deviation from independence of neighboring ISIs

observed here is consistent with a calcium conductance-based

bursting mechanism that has a time-dependent inactivation

mechanism.

Our neural coding results are also in broad agreement with

work on bursting activity in the pyramidal cells of the electro-

sensory lateral line lobe (ELL) of weakly electric fish, the lateral

geniculate nucleus (LGN) in the mammalian visual pathway and

other sensory systems. In these systems it has been suggested that

isolated single spikes and short ISI ‘burst’ events compose two

separate channels for encoding information about the stimulus

[13,70]. It has been shown that the stimuli preceding bursts are

distinct from the stimuli preceding single spikes [16,71], and that

certain types of naturalistic stimuli are more likely to elicit burst

responses [72,73]. It has also been shown that bursts with distinct

ISIs can be clustered into classes representing distinct stimuli

[10,15,50,74,75], and that stimuli associated with bursts are easier

to decode using a feature extraction vs. a reconstruction technique

[13,73,76]. These results have been interpreted as suggesting that

tonic spiking in sensory systems is used to keep a ‘running

commentary’ of the dynamics of the stimulus, while burst events

are used for feature detection of surprising or otherwise

ethologically-relevant stimulus events.

The results that we present here agree with this suggestion of

segregated tasks. We show that in the case of cercal interneurons

single spikes and doublets code for significantly different stimuli.

Additionally, we show that spikes belonging to ISIs of greater than

8 ms correspond with stimuli that essentially match appropriately

offset copies of the linear reconstruction kernels, and can be

thought of as essentially tonic in nature. However, the stimuli

associated with the shorter doublets are somewhat larger and

sharper than linear predictions (e.g. Figure 6C and D, Figure 9A),

and can be thought of as belonging to a separate ‘bursty’

information channel. We also extend previous results by

demonstrating explicitly that this bursty channel is not only

distinct from tonic spiking as in [16,71], but also that the

associated stimuli are distinct from combinations of the stimuli

associated with single spikes (e.g. Figures 6–9). This is in general

agreement with results from the H1 neurons of flies as well as

auditory receptor neurons in locusts [9,65,77]. In the study of de

Ruyter van Steveninck and Bialek it was shown that the mean

stimulus preceding short patterns of spikes in the H1 neurons of

flies was impossible to predict from combinations of the mean

stimulus preceding single spikes (their Figures 5G and 12).

Similarly, the recent study of Fernandes et al (also using H1

neurons) showed that spike-spike interactions on short time scales

were significant in determining the shape of second-order

reconstruction kernels, and that accounting for them could lead

to 100% improvement in reconstruction at specific moments

during stimulation. A similar study by Eyherabide and colleagues

on grasshopper auditory neurons used T-tests to show that the

stimuli preceding bursts could not be predicted by offset copies of

the stimulus preceding single spikes. We extend these studies by

not only showing that the stimulus preceding bursts comprises a

unique codeword in our system, but also showing how these

differences can not be related to simple refractory phenomena

(Figure 8), as well as the specific dimensions along which linear

models fail to predict the stimulus preceding bursts (Figure 9).

Biological relevance
It is important to consider possible neural coding schemes

within a broader neuroethological context. The cercal system of

crickets has been shown to be responsive to acceleration due to

gravity [78], to the touch of approaching predators [79,80], to air

movement caused by the approach of predators [81–84], and to

air movement generated by the stridulation of nearby conspecifics

[22,85,86]. All of these types of stimuli activate the cercal filiform

mechanosensors, which synapse onto the interneurons studied

here. (The first two types of stimuli also activate several other types

of mechanosensory receptors in addition to the filiform hairs,

which do not synapse directly onto the interneurons we studied.)

Although the precise synaptic-connectivity with higher order

neurons is unknown in the cricket cercal system, it is known that

these giant interneurons have axonal arborizations in the thoracic

ganglia that connect to motor nerves, as well as arborizations in

the mechanosensory centers in the protocerebrum [25,26], and

that neurons with multi-modal sensitivities (including sensitivity to

air flow) project out of these areas and can effect behavior related

to locomotion [87–89]. It is unclear what role the cercal system

plays in specific behaviors such as phonotaxis and courtship [90],

although at the very least the relatively few cercal filiform

interneurons must carry enough information to allow the animal

to distinguish between the signature of an approaching predator

and the infrasound components of conspecific calling songs. A

myriad of different encoding schemes for representing this

information can be imagined, including one where different

post-synaptic neurons use short term depression and facilitation to

selectively filter for specific ISI durations in bursts [91]. There is,

in fact, strong evidence that crickets specifically use short bursts at

the interneuron level of the auditory system to trigger evasive

responses [14]. In addition, there is evidence in other orthopteran
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species that thoracic motorneurons which receive input from the

cercal system undergo facilitiation, as short presynaptic bursts

trigger spiking response in the motorneurons, while presynaptic

single spikes do not [92]. Further, it has been shown that direct

intracellular current injection into cricket neurons 10-2a and 10-3a

can elicit escape-like running responses within tens of milliseconds

[25]. Here we show that stimuli which include the frequency

content of both predatory and conspecific stimuli elicit both single

spike and doublet spiking responses, and that these two response

types represent distinct information about the stimuli. A plausible

working hypothesis is that the short-interval spike doublets we

characterize here are the symbolic correlate of a component of the

animal’s evasive response, consistent with the searchlight hypoth-

esis of bursting in other sensory systems [70], while single isolated

spikes mediate detection of other sensory signals.

Methods

Preparation, electrophysiology, and stimulation
Experiments were conducted on 32 female crickets of the

species Acheta domesticus that had undergone their final adult molt

within the last 8–24 hours. Crickets were anaesthetized by placing

them on ice for 5–10 minutes, and then removing the legs,

ovipositor, wings, gut, reproductive organs, and fatty tissue. The

preparation was pinned to a disk of silicone elastomer, and all

incisions were sealed with petroleum jelly. The abdominal cavity

was connected to a perfusion system containing hypotonic cricket

saline [93], and a small steel platform was inserted under the

terminal abdominal ganglion.

Intracellular recordings were made from neurons 10-2a (n = 19)

and 10-3a (n = 21), two bilaterally-symmetric pairs of giant

projecting interneurons in the terminal abdominal ganglion of

the cricket [20]. Sharp intracellular electrode penetration into the

axons of these neurons was facilitated by first applying protease

solution (Sigma-Aldritch, P5147, St Louis, MO). Electrodes were

filled with a mixture of 2% Neurobiotin (Vector Laboratories,

SP1120) and 3 M KCl, yielding electrode resistances between 2

and 10 MV. During neural recordings the Neurobiotin passively

entered the neuron, and following the experiment the neuron was

conjugated with an ABC-DAB reaction (DAKOCytomation

K0377, and Vector Laboratories SK4100, respectively) for

morphological identification.

Experiments were performed in a previously described

stimulation system [10], in which air particle displacement

generated by stereo speakers stimulated the filiform hairs on the

crickets’ cerci. Each filiform hair is innervated by an afferent

neuron that makes direct excitatory synaptic contact with the giant

projecting interneurons. All stimuli consisted of single-dimension-

al, 10–200 Hz band-passed (BP) Gaussian White Noise (GWN) air

movement with an RMS amplitude of 72–76 mm/sec. The

amplitude of the air movement was calibrated using a low-velocity

air current sensor (Titan sensor, MicroFlown Technologies,

Zevenaar, The Netherlands). This band encompassed the range

of all known stimuli of ethological relevance to this system

[83,86,94]. Stimuli were either long-term, non-repeating stimuli of

up to approximately 33 minutes length for the stimulus codeword

analysis, or else 30 to 100 repeats of a short, 10 second segment for

the analysis of temporal variability of doublet spiking patterns.

During experiments the membrane potential and stimulus voltage

were sampled at 10 kHz and recorded on a Windows XP

computer running proprietary LabVIEW software. Prior to

analysis all stimulus voltage waveforms were run through a

calibration filter to convert them to measures of air particle

velocity.

Measurements of temporal uncertainty
Doublet events that were consistently elicited by repeated

presentations of the stimulus were identified with a modified

version of the event identification protocol of Berry and colleagues

[18]. In order to avoid results due to adaptation, we excluded

initial repetitions of the stimulus where the average firing rate was

greater than 120% of the average firing rate across all trials. The

adapted responses to repeated trials of the stimulus were then

binned into histograms at 1 ms resolution and thresheld in order

to define firing boundaries of events. Doublets were extracted from

the collections of all events, taking care that no more than 20% of

the trials contained contaminating spikes. Varying this exclusion

threshold between 10–90% of the trials did not greatly affect the

results of the correlation analysis. For each doublet event, the

timing of the first and second spikes of the doublet on each trial

was extracted and pooled across all events and all cells by ISI. The

jitter (standard deviation of the first spike time across trials) and the

correlation coefficients between first and second spike in the

doublet were then calculated. Simple exponential models of the

form:

jitt ISIð Þ~x1
:e

{ISI=x2zx3 ð1Þ

and

R ISIð Þ~x1
:e

{ISI=x2zx3
:e

{ISI=x4 ð2Þ

were then fit to the jitter and correlation data, respectively, where

ISI represents the mean inter-spike-interval and x1 through x4

represent the parameters fit in the optimization. For all

exponential equations, the number of parameters used to fit the

data was determined by selecting the model with the lowest value

of the Akaike Information Criterion (AIC) [95]. Fits for the

coefficients, 95% confidence intervals on the coefficients, and 95%

confidence intervals on predictions from the models were obtained

with least-squares fitting using the routines nlinfit, nlparci and

nlpredci from the MATLABH statistics toolbox.

Modeling of ISI timing precision
Three models of ISI variability were constructed in order to

elucidate the mechanisms of ISI precision seen in real cells. For the

first two models the onset jitter (defined as the standard deviation

in first spike timing across repeated presentations of identical

stimulus waveforms) was fixed at 1.3 ms, which is the observed

across-trial jitter of isolated single spikes in recordings from the 40

recorded cells (Figure 5). In model 1 the timing of the two spikes in

each trial were drawn from two independent normal distributions

with SD of 1.3 ms. In model 2, spike times were drawn

independently from normal distributions as in model 1, however

second spikes that occurred within a refractory period (Figure 1)

were moved by a Gaussian random variable with SD determined

from the recovery function fit to the ISI histogram (Figure 1D)

[32]. This approximated the presence of a refractory period. For

the third model, both onset jitter of the doublet and variability

within the doublet were matched to values observed from data

(equations 1 and 2). Correlations between the spikes were imposed

by multiplying the time of the first spike (mean time of

occurrence = 0) by R and adding a sample from a normally-

distributed random variable with variance

s2~s2
0 1{R2
� �

ð3Þ

Temporal Encoding in a Nervous System

PLoS Computational Biology | www.ploscompbiol.org 15 May 2011 | Volume 7 | Issue 5 | e1002041



where s0 is the standard deviation of the first spike. This preserved

the unconditioned variance of the second spike time, but

constrained the variance of the ISI between the first and second

spike (the covariance) to be less than the sum of the variances of

the two separate distributions.

Information-theoretic calculations
Models of ISI variability and onset precision were used to

calculate information rates relating to various assumptions on the

correlation between nearby spikes. This was done by assuming

independence between onset jitter and ISI variability. For each ISI

in each model, the probability of a response pattern conditioned

on a stimulus was approximated by determining the temporal

correlation between spikes for the ISI/model pair, determining the

variance of the corresponding ISI using equation 3 (representing

the variability of ISIs conditioned on a stimulus), and then adding

the onset jitter squared appropriate to each model (representing

the variance in latency of patterns conditioned on a stimulus, see

previous section). The square root of the resulting sum was used as

the standard deviation to generate a normal probability density

function representing the total pattern variability conditioned on

the occurrence of a stimulus. The conditional entropy for the ISI,

HC, was calculated according to

HC ISIð Þ~{
X

isi
p isið Þ:log2 p isið Þ½ � ð4Þ

This yielded the conditional entropy per stimulus event. To

transform this into a rate we weighted by the probability of each

ISI occurring in our data set (we used the ISI histogram as a

surrogate, representing the probability of our white noise stimulus

eliciting a given pattern), and then multiplied this value by the rate

of occurrence of ISIs in the recording (number of spikes in the

recording-1 divided by the length of the recording). The

unconditional or total response entropy rate was calculated using

only the ISI histogram plugged into Eq. 4, multiplied by the rate of

occurrence of ISIs. The mutual information of the models was

estimated as the difference in the two entropy rates. These model

values were compared with entropy and information rates

calculated from our data using the CTW method [7], as well as

information rates using stimulus reconstruction methods [1,2]

obtained through a multi-taper calculation of the coherence

function [4,96].

Response-conditioned stimulus models
Three distinct response-conditioned stimulus models were

developed: two doublet-conditioned models and a singlet-condi-

tioned model. For the first doublet-conditioned model, all of the

well-isolated doublets with a given inter-spike-interval, which were

neither preceded nor followed by other spikes within a 20 ms

window, were located. Note that this definition of doublets

necessarily differs from the definition used in finding doublet

responses from repeated presentations of a single stimulus

described in the previous section. The stimulus segments starting

50 ms prior to the second spike of all doublet events were collected

to form the doublet-triggered stimulus ensemble (DTSE). 10% of

these stimuli were held out for later cross-validation as the test

doublet-triggered stimulus ensemble (tDTSE), while the remaining

90% of the ensemble was used to build the doublet-triggered

stimulus model (DTSM). This consisted of the mean, mD, and the

covariance matrix of the ensemble, CD, both sampled at 1 kHz.

In order to build the singlet model and the second doublet

model, we identified all of the single spikes isolated by the same

criteria used for the doublets (i.e., no other spikes in a 20 ms

window around the spike). All of the stimulus segments preceding

the isolated spikes were collected, extending from 50 to 1 ms prior

to the spike. The entire singlet-triggered stimulus ensemble (STSE)

was then used to build a singlet-triggered stimulus model (STSM)

with mean ms and covariance Cs. In order to form a synthetic mean

of the stimulus for the doublet (msD), ms was replicated, shifted in

time, and summed according to:

msD tð Þ~mS tð ÞzmS tzISIð Þ ð5Þ

where ISI represents the inter-spike interval of the desired model.

The synthetic covariance of the stimulus for the doublet (CsD) was

calculated according to:

CsD t1,t2ð Þ~a CS t1,t2ð ÞzCS t1zISI ,t2zISIð Þð Þ ð6Þ

where

log a~
1

n
logPeig CSð Þ{logPeig CS(t1,t2)zCS(t1zISI ,t2zISI)ð Þð Þ

~
1

n

X
log eig CSð Þ{log eig CS(t1,t2)zCS(t1zISI ,t2zISI)ð Þ

ð7Þ

ensured that the sDTSM operated over approximately the same

volume in stimulus space as the DTSM. Products and sums in (7)

are over all eigenvalues of the respective covariance matrices. See

the supplementary text S1, section ‘Covariance Structure of

Synthetic Stimulus Models’ for derivations of Eq. 6 and Eq. 7. msD,

and CsD composed the sDTSM.

Likelihood tests
The relative abilities of the STSM, the sDTSM, and the

DTSM to predict the stimuli preceding a doublet response were

tested with a simple log likelihood test. The log likelihood L for

each sample x of the tDTSE coming from each model was

calculated as:

L~{
1

2
x{mð ÞT C{1 x{mð Þ{n:log 2pð Þ{2:log Cj j

1
2

� �� �
ð8Þ

where n is the dimensionality of the model, m and C are the mean

and covariance of the model being tested (either the STSM,

DTSM, or sDTSM), log is the natural logarithm, (N)T represents

the transpose of the matrix, and |N| represents the determinant of

the matrix. The difference of log likelihood values, LDTSM-LSTSM

and LDTSM-LsDTSM, were then calculated to determine the log-

likelihood ratios (LLRs). Samples with log likelihood ratios

greater than zero were more likely to have been elicited by the

data-based model, while samples with log likelihood ratios of zero

were equally likely to have been elicited by either model in the

test. Prior to performing likelihood tests, all models and test

samples were projected into a reduced space to overcome

spurious effects due to band-limited stimuli [11], (see supplemen-

tary text S1, section ‘Effects of Band-Limiting on Likelihood

Analysis’). Due to the large data demands of the multivariate

models, we removed ISIs from experiments that had less than 80

samples. In order to avoid biasing due to large outliers we also

removed LLR values with absolute values greater than three

standard deviations from the mean. This typically amounted to

less than 2% of the available samples.

When visualizing the LLR distribution vs the ISI of the

respective models, we modeled the observed decay with a sum of
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exponentials identical to Eq. 2:

LLR ISIð Þ~x1
:e

{ISI=x2zx3
:e

{ISI=x4 ð9Þ

We obtain the parameters of the model as a least-squared fit in a

manner identical to the analysis of Eq. 2. This functional relation

was selected among several by again using the AIC.

iSTAC analysis
We employed iSTAC [43] to compactly describe the difference

between the DTSM and the sDTSM. iSTAC finds a subspace that

maintains as much as possible of the Kullback-Leibler (KL)

divergence between two distributions. We briefly summarize the

method of Pillow and Simoncelli:

iSTAC assumes that the probability of a stimulus x given a

certain condition is normal:

P xð Þ~ 1

2pð Þ
n
2 Cj j

1
2

e
{1

2
x{mð ÞT C{1 x{mð Þ½ � ð10Þ

In this probabilistic formulation, the difference between two data

sets is characterized by the KL divergence:

D P,P0ð Þ~
ð

Rn

P xð Þ:log
P xð Þ
P0 xð Þ dx ð11Þ

where P(x) is the base probability against which differences are

sought (in our case either the sDTSM or the sDTSM+DTSM, see

methods; the STSM was not tested with iSTAC), and P’(x) is the

probability which needs to be discriminated (either the DTSM or

the raw stimulus). D(P,P’) is an information-theoretic quantity

charactering the difference between the two distribution in bits (all

log values are base 2). Since we were only interested in relative

comparison between two distributions, the base probability P(x)

was rescaled to have zero mean and an identity covariance matrix.

Therefore, let:

mW ~C
{1

2 m0{mð Þ ð12Þ

and

CW ~C
{1

2C0C{1
2 ð13Þ

where mW and CW are the DTSM mean and covariance,

respectively whitened against the base probability. This allows us

to simplify Eq. 11 to:

D P,P0ð Þ~ 1

2
Tr CWð Þ{log CWj jzmW

T mW {n
� �

ð14Þ

where Tr(N) represents the trace of the matrix. We then specify an

m-dimensional linear subspace defined by an orthonormal basis B

in which D(P,P’) satisfies:

D B½ � P,P0ð Þ~ 1

2
Tr BT CW zmW mW

T
� �

B
� �

{ log BT CW B
�� ��{m

� �
ð15Þ

The most informative subspace is described by the matrix B that

maximizes Eq. 15. We analyzed a variety of dimensionalities m,

ranging from single dimensional to the full dimensionality of our

models.

Supporting Information

Figure S1 Measure of the total K-L divergence between data-

based and synthetic models for 2, 5, and 8 ms, as a function of

subspace dimensionality. Mean 6 SD across 106 validation is

shown with error bars, which are on the order of the size of the

markers for the points. Data presentation is as in Figure 9E,

however here the K-L divergence has not been normalized (and so

is in units of bits).

(EPS)

Figure S2 Improvement of the synthetic model performance in

LLR tests from the data from the 9 neurons shown in Figures 7D

and 8B (black markers) by modification along their respective 3-

dimensional iSTAC subspaces (cyan markers). Error bars

represent 695% CIs on the mean.

(EPS)

Text S1 Supplementary Methods.

(DOC)
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neurons of the cricket Gryllus bimaculatus - responses to natural stimuli and activity

in walking behavior. J Comp Physiol [A] 166: 901–914.

88. Hörner M (1992) Wind-Evoked Escape Running of the Cricket Gryllus
Bimaculatus: II. Neurophysiological Analysis. J Exp Biol 171: 215–245.

89. Schildberger K (1984) Multimodal interneurons in the cricket brain: properties
of identified extrinsic mushroom body cells. J Comp Physiol [A] 154: 71–79.

90. Pollack GS, Givois V, Balakrishnan R (1998) Air-movement ‘signals’ are not
required for female mounting during courtship in the cricket Teleogryllus oceanicus.

J Comp Physiol [A] 183: 513–518.

91. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit

of neural information: selective communication via resonance. Trends Neurosci

26: 161–167.

92. Ritzmann RE, Camhi JM (1978) Excitation of Leg motor neurons by giant

interneurons in the cockroach Periplaneta americana. J Comp Physiol [A] 125:

305–316.

93. O’Shea M, Adams ME (1981) Pentapeptide (proctolin) associated with an

identified neuron. Science 213: 567–569.

94. Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to

airborne vibration. Behav Ecol Sociobiol 4: 101–110.

95. Burnham KP, Anderson DR (2002) Model Selection and Multi-Model

Inference: A Practical Information-Theoretic Approach. New York: Springer.

96. Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coherency

of sequences of action potentials. Neural Comput 13: 717–749.

Temporal Encoding in a Nervous System

PLoS Computational Biology | www.ploscompbiol.org 19 May 2011 | Volume 7 | Issue 5 | e1002041


