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Profound changes in cerebrospinal fluid
proteome and metabolic profile are
associated with congenital hydrocephalus
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Abstract

The aetiology of congenital hydrocephalus (cHC) has yet to be resolved. cHC manifests late in rodent gestation, and by

18–22weeks in human fetuses, coinciding with the start of the major phase of cerebral cortex development. Previously

we found that cerebrospinal fluid (CSF) accumulation is associated with compositional changes, folate metabolic impair-

ment and consequential arrest in cortical development. Here, we report a proteomics study on hydrocephalic and

normal rat CSF using LC-MSMS and a metabolic pathway analysis to determine the major changes in metabolic and

signalling pathways. Non-targeted analysis revealed a proteome transformation across embryonic days 17–20, with the

largest changes between day 19 and 20. This provides evidence for a physiological shift in CSF composition and identifies

some of the molecular mechanisms unleashed during the onset of cHC. Top molecular regulators that may control the

shift in the CSF metabolic signature are also predicted, with potential key biomarkers proposed for early detection of

these changes that might be used to develop targeted early therapies for this condition. This study confirms

previous findings of a folate metabolic imbalance as well as providing more in depth metabolic analysis and understanding

of cHC CSF.
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Introduction

Congenital hydrocephalus (cHC) is a multifactorial

condition, resulting from combinations of environmen-

tal insults and genetic predispositions. In experimental

animal models, pregnancies exposed to x ray radiation,

nutritional deficiencies, alcohol consumption and other

teratogenic chemicals can all result in cHC, revealing

environmental toxicity and nutritional abnormalities as

risk factors.1–4 However, the mechanisms leading to,

and underlying cHC remain matters of great debate

and research, while early diagnosis and treatment of

cHC is crucial to the outcome of the new-born.

Although prenatal ventriculomegaly (enlarged brain

ventricles) can be identified by ultrasound imaging

between 18–20weeks of gestation, only certain aetiol-

ogies of cHC can be identified in utero.5 Other aetiol-

ogies may thus pass undiagnosed with severe

consequences for the fetal brain.1,6,7 Elucidation of

the complex pathophysiology of cHC and a better
understanding of metabolic changes involved should
aid the development of diagnostic tools and, potential-
ly, novel treatments to replace current surgical treat-
ments that can only be carried out postnatally.8 With a
prevalence of 4.65 per 10,000 births, cHC is particu-
larly difficult to treat, with poor neurological outcome
or common terminations of affected fetuses.5,8,9 CSF
composition changes, triggered by fluid drainage insuf-
ficiency and abnormal fluid accumulation, result in
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deficient cortical development.7 CSF flow obstruction

commonly occurs in the aqueduct of Silvius, an Arnold

Chiari malformation in the subarachnoid space, or by

brain tumours.10,11

Past proteomic analyses have described changes in

CSF composition across a broad spectrum of neuro-

logical disorders, and importantly, have served as a

useful tool for biomarker discovery.12,13 Thus, we

decided to analyse cHC CSF in the hydrocephalic

Texas (HTx) rat14 using a proteomic and metabolic

profiling approach to assess changes in normal and

hydrocephalic fetal brain metabolism during the criti-

cal period of cortical development. High volume CSF

secretion into the ventricles commences at gestational

days 17–18, as evidenced by the initial stages of ven-

tricular dilation, which is equivalent to the third-fourth

month of pregnancy (week 12–16) in humans.15,16 We

compared CSF from HTx rats and normal Sprague-

Dawley rats using liquid chromatography with

tandem mass spectrometry (LCMS)17–20 protein iden-

tification and metabolic pathway analysis by Ingenuity

Pathway Analysis (IPA) software (Qiagen).

Material and methods

Animals and CSF collection

All experiments were sanctioned by The Home Office,

Animals (Scientific Procedures) Act 1986 through proj-

ect and personal licence and by The University of

Manchester Animal Procedures Ethical Review

Committee. ARRIVE guidelines have been followed

in execution and reporting of animal experiments.21

Hydrocephalic Texas (HTx) and Sprague Dawley rats

were kept as previously described7 in 12 hour light-dark

cycles at constant temperature, low light levels and

with unlimited access to food and water. Timed

mating provided fetal tissue at gestational ages from

day 17 to 20. Pregnant dams were killed by overdose

of anaesthetic and fetuses were collected onto wet ice.

CSF from six controls and six HTx rat fetuses were

used for each gestational day. In total, eighteen con-

trols and eighteen HTx fetuses were used. The rationale

behind the sample size chosen was the fact that in pre-

vious LCMS analysis between three and six animals

were utilized to get successful results when comparing

proteomes from body fluid samples to achieve repeat-

ability and reproducibility as reported in the litera-

ture.21–23 CSF was collected by insertion of a fine

glass pipette into the cisterna magna and lateral ven-

tricles. 50 ml CSF per sample were centrifuged at

6500 rpm for 10min to remove cellular debri. The

supernatant was stored at �80�C until use.

LCMS protein analysis

A non-targeted proteomic analysis of normal and

abnormal CSF was performed as described by

Nabiuni.24 Briefly, CSF was subjected to trypsin enzy-

matic digestion for protein fragmentation. Because
CSF contains around 2000 proteins and the LCMS

can reliably detect only around 200, isoelectric focus-

sing was used to produce 20 fractions which were each

put through physical separation of proteins/peptides by

liquid chromatography (LC) with detection of mass
and charge by mass spectrometry (MS) analysis. The

resulting LCMS data was entered into the MASCOT

database to identify proteins according to trypsin frag-

ment molecular weights and amino acid sequences. The

result was lists of proteins for each sample with
assigned accession numbers (Uniprot) and correspond-

ing chemical names. Lists of proteins, imported into

Microsoft Excel, were contrasted and their datasets

categorized to investigate what proteins and associated
metabolic pathways were either common, missing, or

present in each of the CSF categories. Each protein was

assigned a specific numerical value based on its place in

the list that also gives information about its relative

abundance since MASCOT software lists proteins in
order of abundance of trypsin fragments. Missing pro-

teins were assigned a “�1” value, which means “error”.

This is achieved by using the “if error” formula. This

formula allows the error to be tracked, and a “�1”
number will be displayed in the cell. Three lists of pro-

teins were obtained using the corresponding

“autofilters”: proteins unique to normal CSF, proteins

unique to abnormal CSF and common proteins present

in both.

Qiagen ingenuity pathway analysis (IPA)

IPA was used for protein-gene matching (mapping)

and core analysis to predict what proteins/genes were

associated with specific canonical pathways (www.tar

getexploreringenuity.com). Protein expression profiling
lists produced by LCMS and categorized in Microsoft

Excel were uploaded to the IPA server and then ana-

lysed to predict molecular interactions between pro-

teins and involvement and association with specific

metabolic functions. A global canonical pathway anal-
ysis (GCP) was carried out on Excel categories:

common proteome, normal unique proteome and

abnormal unique proteome. P-value measurements

obtained from GCP analysis were equivalent to the
relationships found between related genes in the Excel

categories and their associated metabolic pathways.

IPA uses the Fisher’s Exact Test analysis for hypothesis

testing to assess metabolic pathway enrichment (�log

(p-value)), which is based on the specific number of
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genes found in our dataset, and the reference total set
of genes retrieved from the IPA database. P-values are
a measure of the probability that the IPA relationships
between LCMS focus genes and a given metabolic
pathway or biological process is due only to random
chance. Only significantly predicted pathways (–log (p-
value)¼ 1.3; p< 0.005) were considered in this study.

Results

Percentage intervariability and the variation coeffi-
cients (CV) between the six individual controls and
the six hydrocephalic CSF samples were calculated
and represented in Figure 1(a) to (f) for each of the
three gestational days analysed (E17-20). Data for
normal sample 1 (NS1) represent comparisons between
proteome/sample 1 and proteome/samples 2, 3, 4, 5
and 6. Data for normal sample 2 (NS2) represent com-
parison of proteome/sample 2 with sample 1, 3, 4, 5,
and 6 and etc. Abnormal samples (AS) are presented in
the same manner. None of the individual proteome/
samples across the study showed CVs >10, which con-
firms the similarity between samples and thus, the reli-
ability of our results.

Protein content percentage intervariability between
controls and experimental samples as well as their
means are shown in Table 1 and the means are
shown graphically in Figure 2(a). CSF proteome com-
position analyses showed that, at E17-18, only 18.4%
proteome (276 proteins) were common between normal
and abnormal brain, whereas 36.7% (573 proteins)
novel proteins were unique to abnormal CSF, and
38.4% (574 proteins) were unique to normal CSF.
Common protein content became minimal (0.67%; 13
proteins) at E18-19 and rose again to 18.7% at E19-20.
Abnormal CSF varied in composition from 40.2% (573
proteins) to 49.1% (948 proteins) between days 17 to
19. Similarly, normal unique CSF proteome rose from
38.4% (574 proteins) to 50.2% (969 proteins) between
those days. However, between day 18 and 20, normal
unique proteome decreased from 50.2% (969 proteins)
to 23.74% (654 proteins) while abnormal unique pro-
teome rose even further from 49.1% (948 proteins) to
57.4 (1583 proteins), which was the most significant
change in CSF composition between day 19–20 and
throughout this time- point study. Common protein
content increased again at day 19–20 (18.7%; 517 pro-
teins) and this last gestational age was used for the
following IPA analysis.

IPA metabolic pathway analysis of the CSF proteome

IPA was used to perform metabolic pathway analysis
of the categorized LCMS proteome, identifying distinc-
tive pathway profiles for the common proteome

(common proteins in normal and abnormal CSF) and
whole CSF proteome (common and unique proteins in
normal and abnormal CSF) as shown in Figure 2(a).
The folate polyglutamylation pathway appears as the
only significantly enriched pathway (intense purple)
within the common proteome, whereas full normal
and unique normal CSF proteome shared the same
pathway patterns, as was the case for full abnormal
and unique abnormal proteome (Figure 2(b)).

Normal metabolic phenotype. The normal CSF metabolic
profile (Figure 3(a)) consisted of the xenobiotic-related
pathways: CAR, PXR, general signalling and general
xenobiotic metabolism with overlapping or score
values (–Log (p-value)) in the range 6–4. Following in
degree of significance were HIFa1 signalling (p3.9),
folate transformations I (p3), folate polyglutamylation
(p2), superpathway of serine and glycine (p1.9) and cell
cycle control of chromosomal activation (p1.8). Less
significant but still above the threshold was P53 signal-
ling (p1.4). Notably, ALDH1L1 is a protein member
shared by the top four xenobiotic-related canonical
pathways (Figure 4), and importantly also shared
with folate transformations I, which is part of the
folate metabolic cycle. Significantly, ALDH1L1 is
reduced in hydrocephalic CSF, and is the marker we
first identified for congenital hydrocephalus in the HTx
rat.7 Heat Shock Protein 90 Alpha family subunit A
member 1 (HSP90AA1) was also a molecular compo-
nent of all the top Xenobiotic pathways. Interestingly,
our analysis identified neural precursor cell-expressed
developmentally downregulated gene 4, (NEDD4) also
called E3 ubiquitin ligase Rsp5, which is part of the
ALDH1L1 molecular network (Figure 4). NEDD4
was exclusively detected in the unique normal CSF pro-
teome and within the protein ubiquitination pathway.
However, this pathway, along with Notch, telomerase
signalling as well as Glycine synthesis, was only at the
threshold of significance (-log (p-value) ¼1.3; p< 0.05
and it remains inconclusive whether these pathways are
significantly represented in normal CSF.

Abnormal metabolic phenotype. The abnormal hydroce-
phalic metabolic phenotype is shown in Figure 3(b).
IPA identified three top canonical pathways in hydro-
cephalic CSF: folate polyglutamylation, citrulline-nitric
oxide cycle and superpathway of citrulline, all with sig-
nificance of overlap value 3.9. Superpathway of serine
and glycine, urea cycle, P53 signalling, interleukin sig-
nalling, and glutamate degradation III (via aminobuty-
rate) followed in significance with scores 2.7, 2.5, 2.3,
2.3 and 2.2 respectively. Less enriched but still signifi-
cant were xenobiotic general metabolism (p1.9) and
folate transformations I (p1.6). Finally, IPA identified
common metabolic pathways to normal and abnormal
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Figure 1. % Proteome variability between samples at E17-18 (a) E18-19 (c) and E19-20 (e). Normal (NS, in green circle) versus
Abnormal (AS, in red circle); N¼ 6. The coefficient of variation (CV) between samples at each day is shown in b, d and f. The CV is
less than 10 in each case indicating good reproducibility of the data.
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unique CSF proteome. However, these were enriched

with different protein members of the pathway. Folate

polyglutamylation, superpathway of serine and glycine,

and P53 Signalling, were all shared pathways signifi-

cantly more enriched in abnormal than normal unique

proteomes. By contrast, common pathways HIF1a sig-

nalling and folate transformations I were relatively

more represented in unique normal CSF.

IPA predicted tumor protein (TP53) and specificity 1

protein (SP1) as master regulators leading to the

abnormal cHC metabolic phenotype

IPA predicted top rated regulators and their molecular

interactions are shown in Figure 5(a) and (b). IPA

assigned the highest score of significance (p15.4) to

TP53; p< 0.05. The second top master regulator was

SP1 (p11.3), followed by lower scored regulators with

scores 8 to 1.3. These were: NFE2L2, HNF4A,

PPARG, CREB1, AR, SP3 and AHR. Proposed

molecular interactions and molecular network for

TP53 and SP1 are shown in Figure 5(b). TP53 is sug-

gested to directly exert its effect on SP1 inhibiting

Histone Deacetylase 1 (HDAC1) and 3 (HDC3),
which at the same time inhibit TP53.

Folate hydrolase 1 (FOLH1) is unique to the
abnormal hydrocephalic proteome and is associated
with histone deacetylation and folate
polyglutamylation

FOLH1, also called Glutamate Carboxypeptidase II,
was a unique feature of the hydrocephalic proteome.
IPA molecular network analysis of FOLH1 is described
in Figure 6 where the interrelationship of FOLH1 with
HDAC1 is highlighted. This hydrolase converts poly-
glutamated folate into monoglutamated folate and it is
interrelated with the Folate Polyglutamylation path-
way (www.targetexplorer.ingenuitypathanalysis.com).
Additional details are illustrated in the pathway anal-
yses shown in supplementary figures.

Discussion

Proteomic profiling is suggested to supersede genomic
and transcriptomic analysis to reflect the actual meta-
bolic phenotype of diseases more accurately. This is
due to the fact that gene expression levels do not
always correlate with protein expression levels, and
genetic analysis is not suitable for identification of
posttranslational modifications like ubiquitination,
acetylation/deacetylation and methylation.25 The path-
ophysiology of cHC is still unclear and a high propor-
tion of affected pregnancies result in terminations,
stillbirths and live births with lifelong neurological def-
icits because of the lack of a predictive tool early in
pregnancy5 or a preventive therapy such as that for
neural tube defects. Surgical treatment for hydroceph-
alus involves shunting CSF or endoscopic third ventri-
culostomy, the main treatments of choice to remove
damaging excess CSF, but these are not free from
life-threatening complications. At the same time, CSF
is a promising source of information to identify meta-
bolic patterns and biomarker discovery.26,27 In this sce-
nario, it was reasonable to perform CSF proteomic
analysis followed by “in silico” computational analysis
for identification of the cHC metabolic phenotype to
further understand the complex pathophysiology of
cHC and to discover novel candidates for drug thera-
pies. In this study, no genetic testing was performed to
identify proteome variability due to sex differences.
Our LCMS analysis rather focused on exposed differ-
entially expressed protein profiles between controls and
experimental samples at different gestational ages.
Previous studies have found no differences between
sexes in the incidence or severity of hydrocephalus.14,15

Thus, we postulate that these differences are the result
of abnormal gene replication, transcription, translation

Table 1. Percentage of variability in protein content (normal
unique, abnormal unique and common).

%Normal

unique

%Abnormal

unique %Common

Day 17–18

S1 38.2 36.4 18.3

S2 38.9 37.1 18.6

S3 36.7 35 17.6

S4 37.5 35 18

S5 40.9 40.3 19.6

S6 38.2 36.4 18.33

Average 38.4 36.7 18.4

Day 18–19

S1 50.6 49.49 0.6

S2 50.8 49.68 0.6

S3 50.7 49.58 0.6

S4 51.6 50.46 0.6

S5 47.3 46.26 0.6

S6 50.2 49.1 0.6

Average 50.2 49.1 0.6

Day 19–20

S1 22.8 55.2 18.0

S2 23.9 57.9 18.9

S3 24.3 58.9 19.2

S4 23.8 57.6 18.8

S5 23.3 56.4 18.4

S6 24.1 58.4 19

Average 23.7 57.4 18.7

Comparison between six controls and six experimental samples: S1, S2,

S3 S4 S5 and S6 at gestational age 17–18; 18–19 and 19–20.
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Figure 2. (a) CSF proteome data categorization and average protein content comparison analysis for gestational day E17 to E20.
Average differential protein expression in normal and abnormal CSF are shown to highlight unique and common protein content.
Content diverges throughout gestational ages leading to major changes between day 18 and 20 where the unique abnormal proteome
diverges from the unique normal proteome and increases in proportion to the total. (b) Comparative analysis of selected canonical
pathways identified in the proteomes. Common proteome and full (common and unique) CSF proteome were analysed simultaneously
and compared as shown in 2bi. heat map, where normal versus abnormal CSF canonical pathways are displayed. Similarly, unique
normal CSF proteome was compared to unique abnormal CSF as illustrated in 2bii. heat map. Intensity of colour purple is equivalent
to the significance of the identified pathways in relation to IPA reference canonical pathways. Significance or -Log (p-value is measured
with the Fisher Exact Test; p< 0.05.

Requena-Jimenez et al. 3405



Figure 3. (a) Normal CSF unique metabolic phenotype. Canonical pathways generated by IPA on proteins solely detected in normal
CSF are shown in this figure in order of significance from left to right. IPA predicted activation of top significant CAR Xenobiotic
Signalling followed by PXR, General Xenobiotic Signalling, General Xenobiotic Metabolism, HIF1a Signalling and Folate related
pathways (Folate Transformations I and Folate Polyglutamylation). Less significant and just above the threshold were Superpathway of
Serine and Glycine, Cell Cycle Control of Chromosomal Activation, and P53 Signalling. Also shown in this figure were non-significant
pathways: Telomerase Signalling, Glycine Biosynthesis I and Notch Signalling. Fisher Exact Test; Threshold 1.3; P< 0.05). (b) Abnormal
CSF unique metabolic phenotype. Metabolic pathways predicted by IPA in abnormal CSF unique proteome are shown in this figure. In
order of significance, Folate Polyglutamylation was the top pathway followed by Citrulline-Nitric Oxide Cycle, Superpathway of
Citrulline Metabolism, Superpathway of Glycine and Serine Metabolism, Urea Cycle, P53 Signalling, HIF1 a Signalling, Interleukin
Signalling, Glutamate Degradation III (via aminobutyrate), General Xenobiotic Metabolism and Folate Transformations I. Non-signif-
icant pathways also retrieved by IPA were Cell Cycle Control of Chromosomal activation, Telomerase Signalling and Glycine
Biosynthesis. Fisher Exact Test; Threshold 1.3; P< 0.05).
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and/or changes in metabolism triggered by a CSF

drainage insufficiency. IPA complementary analysis

further identified the metabolic signature of cHC as

well as associated master regulators responsible for

the metabolic changes observed.
The normal metabolic phenotype of fetal CSF con-

sisted of, among others, xenobiotic- related pathways.

Xenobiotics, such as aldehyde compounds, are natural

and highly reactive molecules that are either intermedi-

ates or products of numerous metabolic reactions.28

Free aldehydes induce genotoxic damage and cellular

stress in neural stem cells29 triggering xenobiotic

metabolism, in which at least 17 types of Aldehyde

Dehydrogenase are involved. Mutations in these

genes are responsible for inborn errors of metabo-

lism.30,31 The Aldehyde dehydrogenase ALDH1L1 is

a xenobiotic metabolizing enzyme that is part of the

general Xenobiotic Metabolism Signalling Pathway

and the CAR and PXR Metabolism Signalling

Pathways.32,33 These were all top-rated pathways by

IPA analysis of normal CSF. CAR and PXR are pro-

tein receptors present in the cytoplasm and nuclei of

brain cells. In cytoplasm, these receptors, in the

absence of ligand, bind to the HSP90 chaperon protein

forming a complex that is eventually translocated to

the nucleus, where target genes related to the xenobi-

otic metabolizing enzymes Phase I (ALDH1L1) are

activated for stimulation of xenobiotics metabolism.

ALDH1L1 is activated by its own substrates through

signalling cascades that are involved in its binding to

CAR and PXR receptors in the nuclei. Aryl

Hydrocarbon Receptor (AHR) ligand and Aryl hydro-

carbon receptor nuclear translocator (ARNT) or HIF-

B are receptors that regulate xenobiotic-metabolizing

enzymes such as ALDH1L1.34,35 Similar to CAR and

PXR receptors, AHR and ARNT bind to HSP90 chap-

eron protein and translocate to nuclei where target

genes like ALDH1L1 are transcribed in order to trigger

the xenobiotics metabolism, promoting cell prolifera-

tion and differentiation, and enhancing cell survival in

a toxic cell environment. Null or negligible levels of

ALDH1L1 in hydrocephalic CSF are suggested to be

involved in the pathogenesis of HC.7 Importantly, in

the present study, all ALDH1L1-related xenobiotic-

pathways were identified in “control” or normal CSF,

but not detected in abnormal CSF. Since, ALDH1L is

Figure 4. ALDH1L1 I in silico protein-protein IPA network analysis and its canonical pathways. ALDH1L1 molecular network and
interrelationships with Xenobiotic pathways and Folate Transformation I. Orange arrows indicate the molecules that fall in the specific
canonical pathway. Grey arrows show network intrarelationships. Ephrin type A receptor 5 precursor (EPHA5); Reactive Oxygen
Species 1 (ROS1); Protein Tyrosine Kinase (PTK); Megakaryocyte-Associated Tyrosine Kinase (MATK); FMS-related tyrosine Kinase 4
(FLT4); Neurotrophic Receptor Tyrosine Kinase 3 (NTRK3); Heat Shock Protein 90 Alpha; family class A; member 1 (HSP90AA1);
Aldehyde Dehydrogenase 1 L1 (ADH1L1); 1-Phospholipase C Epsilon 1 (PLCE1); E3 Ubiquitin-protein ligase type Rsp5 (Rsp5)
Phospholipase (PLC); Protein Kinase c (PKc); Phospholipase C Beta 2 (PLCB2); A Kinase anchoring protein (AKAP);Protein
Kinase a (PKa).
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a key enzyme for aldehyde detoxification, its absence in
CSF suggests that all the canonical pathways involved

in Xenobiotic metabolism might be compromised,

resulting in brain toxicity and cellular stress. Yet,

what is observed in the fetal hydrocephalic brain is
an arrest of development thought to be a consequence

of aspects of folate metabolism involving ALDH1L1 in

synthesising DNA.7,36 This arrest in development may
be a mechanism to prevent the brain toxicity that might

otherwise occur. Indeed, no cell death is observed in the

cHC fetal HTx brain.37

ALDH1L1 is a member of the folate transforma-
tions I pathway, which is part of the folate metabolic

cycle. This cycle involves folate transformation reac-

tions where folates act as carriers of one-carbon units
in several oxidation states.38 These reactions are impor-

tant for the synthesis of glycine, methionine, formyl-

methionine and purines and pyrimidine nucleotides for

DNA synthesis. This pathway is shared with both
normal and abnormal CSF, yet greater protein enrich-

ment in normal CSF implies delayed activation of the

Folate Metabolic Cycle. This finding confirms a fault
in folate metabolism already identified in previous

investigations7,39 that demonstrated how reduced

CSF levels of the folate enzyme ALDH1L1 are

associated with impaired folate metabolism and poor
brain folate provision.

Another commonly identified folate-related path-
way was folate polyglutamylation, which, in contrast
with folate transformations I, was significantly less rep-
resented in normal unique CSF, and the highest top-
rated pathway in the abnormal unique proteome
(Figure 3). Folates are either free in normal CSF,
bound to just one molecule of glutamate (monogluta-
mated state), or stored intracellularly transformed into
folyl-polyglutamated folates by folylpoly-gamma-
glutamate synthase or converted into dihydrofolate
and tetrahydrofolate in the folate metabolic cycle.40

High representation of the folate polyglutamation
pathway in the hydrocephalic CSF points to an elevat-
ed use of glutamate, probably provided by the tricar-
boxylic cycle in mitochondria. This cycle is linked with
the superpathway of serine and glycine in the sense that
2-oxoglutarate is synthesized in the former pathway to
feed the latter to produce the glutamate required for
folate polyglutamylation.41 These notions indicate that
folate polyglutamylation and superpathway of serine
and glycine are intertwined (Figure 3), which explains
why they appear both highly represented in hydroce-
phalic CSF with similar significance of overlap.
Importantly, abnormally increased folate polyglutamy-
lation in CSF would effectively make folate unavailable
for metabolism. In addition, FOLH1 or glutamate car-
boxypeptidase II (GCP II); a c-glutamylhydrolase com-
monly found in glial cells and neurons, was uniquely
detected in abnormal CSF.42 This enzyme is interrelat-
ed with the Folate Polyglutamylation pathway
(Figure 6) and involved in the degradation of folate
polyglutamate chains in the peripheral nervous
system. The interplay between FOLH1 and folylpoly-
gamma-glutamate synthase is crucial to regulate
dietary folate homeostasis.43,44 Nevertheless, FOLH1
up-regulation is associated with brain disease, specifi-
cally with glutamate excitotoxicity, traumatic brain
injury and neuropathic pain.45 Consequently, FOLH1
presence in abnormal brain might well point to neuro-
toxicity associated with enhanced glutamate transmis-
sion from neuron to neuron and neuron to glia
signalling.46

Another common pathway was HIF1a signalling.
This pathway is induced to maintain homeostasis in
situations of hypoxia, stimulating transcriptional acti-
vations and translation into proteins involved in angio-
genesis, cell proliferation and glucose metabolism.47–49

This pathway was second top-rated in normal CSF, but
relatively less enriched in abnormal brain, suggesting
delayed vascularization and other pathway-associated
functions. HIFa is also one of the subunits of the Aryl
Hydrocarbon Receptor Nuclear Translocator
(ARNT), an essential component of the Xenobiotic

Figure 5. Master Regulators and proposed interlinked mecha-
nistic networks predicted by IPA. Master regulators Heatmap
suggested by IPA in order of significance (5a); Threshold: 1.3;
p< 0.05. TP53 mechanistic network (5b). TP53 and SP1 were
identified as top regulators with top score 15.4 for Tumor
Protein 53 (TP53) and second top score 11.3 for Specificity
Protein 1 (SP1). Lower scores ranging from 8 to 1.3 were
assigned to Nuclear Factor Erythroid 2 like 2 (NFE2L2), Hepatic
Nuclear Factor 4 (HNF4A), Peroxisome Proliferator Activated
Receptor Gamma (PPARG), CAMP Responsive Element Binding
Protein (CREB1), Androgen Receptor (AR), Specificity Protein 3
(SP3) and Aryl Carbon Receptor (AHR).
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Metabolism, which highlights the interrelationship

between xenobiotic-related pathways and HIF1a sig-

nalling50; both pathways highly represented in normal

CSF (Figure 3).
The citrulline-nitric oxide cycle and superpathway

of citrulline metabolism were significantly

protein-enriched pathways solely identified within the

unique abnormal CSF proteome (Figure 3(b)). As well

as being key in vascular homeostasis, nitric oxide (NO)

plays a crucial role in cell signalling in the nervous

system and is involved in synaptic plasticity. NO

release depends on arginine bioavailability provided

by the general blood circulation from exogenous sour-

ces or by regeneration in the Citrulline-Nitric Oxide

Cycle, where arginine is transformed into citrulline

and NO.51 Arginine is at the same time regenerated

from citrulline by arginosuccinate synthase and lyase,

which involves production of fumarate.52 In addition,

superpathway of citrulline metabolism is interlinked

with the Citrulline-NO cycle as this pathway is

involved in the generation of citrulline from glutamine,

glutamate and arginine, among other precursors feed-

ing the Citrulline-NO Cycle. Importantly, high levels of

fumarate lead to neurotoxicity, apoptosis and altered

global methylation profiles, and NO contributes to

neuronal death.53,54 In this context, brain toxicity due

to accumulation of fumarate is proposed. Similarly,

potential neurotoxicity is also suggested by exclusive

detection of Glutamate Degradation Pathway (via ami-

nobutyrate) in abnormal CSF. Glutamate is converted

Figure 6. FOLH1 Molecular network and metabolic pathway overlay. FOLH1 direct interrelationship with HDAC1 (light blue) and
indirect relationships with SP1 and general HDACs (dark blue dotted squares) are detailed in this diagram as well as relationship with
related pathway (Folate Polyglutamylation).

Requena-Jimenez et al. 3409



into 4-aminobutyrate and ammonia by glutamate
decarboxylase. 4-aminobutyrate transaminases then
converts 4-aminobutyrate into succinate semialdehyde
and this is converted to succinate by succinate semi-
aldehyde dehydrogenase. High levels of succinate like
fumarate also lead to neurotoxicity and altered meth-
ylation status.55,56 Lastly, in our metabolic pathways
analysis, is the interleukin signalling pathway, which
was also a unique metabolic feature of abnormal
CSF. This outcome was unexpected as cHC is generally
associated with neuroinflammation, and this pathway
is linked to anti-inflammatory processes (Figure 3(b)).

In summary, canonical pathway analysis of the
normal and abnormal unique proteomes gives compel-
ling evidence of the striking CSF metabolic transfor-
mations occurring in the early stages of cHC. Our
analysis identifies a hydrocephalic CSF metabolic sig-
nature characterized by absent or delayed detoxifica-
tion (undetected xenobiotic-related pathways),
genotoxicity and cytotoxicity (citrulline-related path-
ways), and differences in the time window for activa-
tion of the folate metabolic cycle, which might be
potentially delayed and/or detrimental for later brain
development and fits with the developmental deficit
and cell cycle arrest we have observed in the developing
hydrocephalic brain.7,36,39

“In Silico” ALDH1L1 molecular network analysis
(Figure 4) describes HPS90AA1-ALDH1L1 protein
interactions and their relationships with Xenobiotic
Metabolism. Cytoplasmic HPS90AA1 functions as a
chaperon that assists to stabilize protein tridemensional
structure unfolding and refolding proteins to regain the
normal folding as well as preventing their aggregation
due to the occurrence of misfolded proteins in heat-
associated cell stress as well as cell stress due to the
presence of toxic chemicals, oxidative stress and
inflammation.57 Importantly, HPS90AA1 also aids in
protein quality control through the ubiquitination pro-
cess: a posttranslational modification needed for
removal of, among others proteins misfolded enzymes,
which is required for protein homeostasis. Failed pro-
tein quality control is associated with neurodegenera-
tive diseases and protein misfolding diseases.58

Interestingly, normal proteomic profile analysis identi-
fied ubiquitinase NEDD4 or Rsp 5 as part of the
ALDH1L1 molecular network (Figure 4). NEED4 is
a type of ubiquitin E3 Ligase that was unique to
normal CSF and not present in abnormal CSF. E3-
Ligases are responsible for ubiquitination marking pro-
teins like ALDH1L1 for proteosomal degradation.
This important result highlights NEDD4 as a novel
candidate biomarker of cHC that might explain why
ALDH1L1 is at normal concentrations in brain tissue
but absent in CSF in the hydrocephalic brain.
Previously published IHC staining revealed

ALDH1L1 at normal levels in brain tissue and reduced

or null levels in CSF of hydrocephalic brains; however,

IHC staining does not discern between intact and mis-
folded ALDH1L1. Therefore, depletion of ALDH1L1

in CSF might suggest permanent binding of misfolded

ALDH1L1 to HPS90A11 caused by a lack of NEDD4

in brain tissue that otherwise in normal conditions
would have recognized the ALDHL1-HPS90AA1 com-

plex and destroyed it in the proteosome. Fang et al.59

and Khan et al.60 described a similar process in the

literature. Moreover, ALDH1L1 is a multicomplex

enzyme with an intermediate domain, rich in
phospho-serine and NEDD4 is a special type of ligase

that acts on enzymes rich in this amino acid.61,62 These

facts together with our findings suggest that misfolded

ALDH1L1 followed by impaired ubiquitination might
lead to cHC. However, whether the protein ubiquitina-

tion pathway is truly represented in normal CSF

remains inconclusive as the significance for this path-

way was at the threshold level (1.3; p< 0.05) (Figure 6).

A plausible explanation is that day 19–20 of gestation
is still early for complete expression of all the numerous

proteins involved in ubiquitination and proteosomal

degradation in cHC.
In this study, we were also interested in the molec-

ular driving force or master regulators leading to cHC.

IPA software identified two top main top regulators

P53 and SP1 (Figure 5(a) and (b)). The transcriptional

regulator TP53 responds to cellular stress to regulate
expression of target genes resulting in potential cell

cycle arrest, cell cycle progression, angiogenesis,

DNA repair, apoptosis as well as changes in metabo-

lism. Increased cell stress induces genotoxicity and
cytotoxicity to trigger TP53 activation63 promoting

abnormal histone acetylation/deacetylation and meth-

ylation status.64,65 Moreover, oxidative stress leads to

hyperacetylation of TP 53, which activates SP1, the
second top-rated master regulator in our study. SP1

activation is also the result of histone acetylation

through Histone Acetylation Transferases (HAT)66 as

well as inhibition of HDCA1 and HDAC3 activity,

which promotes transcription and erasure of methyla-
tion.67,68 We have found a profound loss of methyla-

tion in the HTx rat supporting the activity of this

pathway ((Naz et al., 2021, in preparation). These con-

cepts agree with the IPA predicted mechanistic network
for TP53 and SP1 master regulators as shown in

Figures 5 and 6 where TP53, SP1, HDAC1 and

HDCA3 molecule-molecule interactions are described.

In this context, lack of DNA methylation and therefore
gene silencing by promotion of acetylation is suggested

as well as exacerbated transcription caused ultimately

by TP53 activation of SP1and inhibition of deacetyla-

tion. Finally, evidence of increased transcription
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activity in cHC is demonstrated by the sheer amount of
protein expression in the abnormal proteome.

TP53 however, develops a myriad of responses
acting as “good cop” or “bad cop” depending on sit-
uations of low or high cell stress.63–65 This duality of
function might explain why TP53 is the same top reg-
ulator predicted by IPA in the normal or “control”
proteome. Since toxicity-associated pathways charac-
terize the abnormal proteome, it is plausible that
TP53 might act as “bad cop” compromising cell metab-
olism and inducing cell damage in cHC due to a shut-
down of xenobiotic metabolic pathways. Conversely, in
situations of low stress TP53 cell survival mechanisms
such as detoxification activation are stimulated to pro-
mote cell survival.

Furthermore, HDAC1 is suggested to interact with
FOLH1 to regulate stability by modulating its lysine
acetylation status.69 As previously mentioned,
SP1-dependent-trancription activation by acetyl trans-
ferases is associated with inhibition of histone deacety-
lation (HDAC1). In our study, HDAC1 appears to be
repressed, implying that FOLH1 is bound to be unsta-
ble with negative repercussions for folate polyglutamy-
lation and, hence, folate homeostasis.

Interestingly, the work of Eide and Ringstad in 2018
and 202070,71 importantly revealed how the brain is
prone to increased toxicity in the entorhinal cortex
and lateral ventricles by a faulty glymphatic system as
well as a dysfunctional choroid plexus promoting spon-
taneous normal pressure HC. Moreover, the apical sur-
face of the choroid plexus (epiplexus) is acknowledged
as a macrophage-like tissue. Macrophage activation in
this area was associated with choroid plexus cell death
by the release of macrophage toxic substances leading
again to choroid plexus dysfunction, CSF blockade
and hydrocephalus in spontaneous hypertensive
rats.72 These findings are concurrent with our study
that suggests how brain toxicity is linked to CSF
obstruction, which hampers the clearance of toxic
waste leading to the unique metabolic changes repre-
sented in the CSF of hydrocephalic Texas (HTx) rats.

Conclusions

This non-target metabolic profile analysis provides a
comprehensive protein screening for identification of
cHC-related metabolic pathways represented in CSF.
Overall, 1583 proteins differentially expressed in abnor-
mal CSF were rigorously detected (CV< 10; N¼ 6 in
each gestational age) by LCMS and investigated fur-
ther by complementary biocomputing IPA analysis to
elucidate the metabolic phenotype of this condition,
which was mainly characterized by toxicity-related
pathways and differences in folate metabolism when
compared to control CSF. This body of work also

clarifies the key pathways mediating the pathogenesis

of cHC, provides a tool for disease prediction and

prognosis early in pregnancy, and proposes novel

focus proteins like NEDD4, FOLH1, TP53, SP1,

HDAC1 and HDAC3 as potential therapeutic targets

in the endeavour to discover a non-invasive treatment

that might prevent all-together the need for life-

threatening surgical procedures later at birth. The

findings of this in-depth analysis confirm many of

our previous findings of folate metabolic imbalance,

which are, among others, the specific loss of

ALDH1L1, also known as 10-formyl tetrahydrofolate

dehydrogenase, in hydrocephalic CSF and its relation-

ship to severity of hydrocephalus. Moreover, a study

we are currently preparing for publication demon-

strates significant loss of methylation in the HTx rat

across systems including the brain, which taken togeth-

er, support the findings of the current study, and the

methodology to investigate in depth changes associated

with this condition. A further, important aspect of this

work is to demonstrate the physiological role of CSF in

the developing brain and no doubt also in the adult

brain considering its continuous production and asso-

ciation with other conditions later in life.
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