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Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make com-
putational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: 
(i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what 
would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as 
well as with respect to the type and number of potentially important elementary reaction steps (including decomposition 
reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantifi-
cation warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. 
(iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although 
being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the 
addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surpris-
ing in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous 
explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues 
that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system.
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1 Introduction

Catalysis is a key and emergent concept in chemistry: sub-
stances are assigned a special role as they take part in a reac-
tion but are eventually recovered unchanged after a product 
has been formed. It is a chemical insight that such patterns 
can be discovered in complex reaction mechanisms. From a 
quantum chemical point of view, this translates into produc-
ing and then analyzing networks of elementary steps, which 
map all (with respect to external conditions such as tem-
perature) feasible chemical transformations in a sequence 
of structural changes across a Born-Oppenheimer potential 
energy surface. Understanding catalysis in terms of such 
reaction networks can then be a starting point for the design 
of processes guided by constraints such as being efficient, 
cheap, green, and/or sustainable.

Computational catalysis can deliver unprecedented details 
about catalytic reaction mechanisms [1–33]. However, a uni-
versal theoretical approach toward computational catalysis 
with generally applicable algorithms is not available. This 
can be a handicap for practical applications, especially in 
view of the growing field of experimental catalysis with 
increasingly complex catalyst structures such as metal-
organic frameworks [34–37], single-atom catalysts [38–40], 
supported nanoparticles  [41], supported organometallic 
catalysts [42–45], binary catalysts [46], encapsulated cat-
alysts  [47–50], self-assembling nanostructures [51, 52], 
nanozymes [53], protein nanocages [54], nucleic-acid cata-
lysts [55], and artificial (metallo)enzymes [56–59].

In this work, we first provide a brief overview of the dif-
ferent computational approaches that have been developed 
for applications in catalysis and in related fields, before we 
then focus on the detailed first-principles modeling of vast 
elementary reaction networks. It is the very nature of this 
complex topic that requires us to touch upon many diverse 
subjects. While we attempt to provide a balanced overview 
with a focus on the most recent developments, we empha-
size that a complete literature review will be impossible to 
achieve in the context of this work. We therefore consider 
the numerous references given here as a starting point for 
interested readers to dive deeper into the literature of a spe-
cific subject. Eventually, we will focus on automated pro-
cedures steered by autonomously working computer (meta)
programs. Such approaches will have a broad future for vari-
ous reasons to be discussed, but they are still in their infancy. 
It is for this reason that we will then consider conceptual 
aspects of autonomous computational explorations of cata-
lytic systems, which we then supplement with an explicit 
example to highlight some of the key issues that need to be 
mastered.

2  Computational Catalysis and Mechanism 
Exploration

Considering the complexity of a catalytic process in terms 
of reaction steps and materials, first-principles modeling is 
challenging because of the structural variety and size of the 
atomistic systems and because of the vast amount of fine-
grained transformation steps that need to be considered. 
Hence, it is obvious to exploit existing data first, which has 
already become a major strategy for the design of new mate-
rials with specific functionality [60–66]. Vast amounts of 
data of different origin may be utilized to understand and 
design catalytic processes [67, 68]. A substantial number of 
publicly accessible databases [69–92] has become available 
along with software packages encoding general workflows to 
interact with these databases [93–104]. Screening these data 
can produce valuable property predictions [105–109]. High-
throughput studies can be accelerated by exploiting also sur-
rogate models, i.e., efficient, empirical models that can pro-
duce property predictions such as adsorption energies, albeit 
less accurately than a first-principles-based model such as 
density functional theory (DFT) [110]. Surrogate models 
can be scaling relationships [111–113], physical descrip-
tors [114–117], or machine learning (ML) models trained on 
physical or structural descriptors [118–134]. Furthermore, 
they can be enhanced by stability analysis to save comput-
ing time on unstable materials [135]. Such fast data-driven 
hypothesis generation can then be refined with uncertainty 
quantification by DFT calculations [110, 136–141].

The application of surrogate models of known uncer-
tainty together with a workflow for high-throughput DFT 
calculations has been adapted to the evaluation of reaction 
networks [112, 142–145]. A small molecular size of reac-
tants, such as the oxidation of CO or the oxidative coupling 
of methanol, limits the number of possible intermediates 
during the reaction. If, in addition, no pronounced structural 
changes of the catalyst occur during the reaction so that its 
structure may be regarded as basically stiff, small chemical 
reaction networks will emerge that can be considered com-
plete [146, 147]. In such a case, a threshold for the maximum 
molecular size, e.g., number of carbon atoms involved, can 
be chosen to then define a chemical reaction network of all 
possible elementary steps based on reaction equations [112].

Larger reactants with increased structural degrees of free-
dom and/or structurally floppy catalysts require many more 
elementary steps for reaching a complete reaction mecha-
nism of the catalytic process, typically much more than can 
be considered in manual work. Hence, automated procedures 
are key for the elucidation of such a complete network in 
order to uncover all relevant mechanistic steps [148–152]. 
Naturally, definitions of reaction types  [153] or graph 
rules [154, 155] have been exploited for this purpose. The 
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network of all assumed reaction intermediates on a given 
surface can then be combined with high-throughput quan-
tum chemical calculations and micro-kinetic modeling 
to compare different existing hypotheses for a reaction 
mechanism [156].

Constructing a reaction network simply based on viable 
intermediates on reactants and considering the catalyst 
solely as a static partner, onto which these intermediates 
are adsorbed, is mostly limited to flat catalytic surfaces. 
Most existing algorithms likely struggle with solid phases 
that undergo structural rearrangements during reactions on 
their surfaces so that the reaction intermediates significantly 
differ from their gas phase counterparts; examples are flex-
ible catalysts such as nanoclusters [157], anchored organo-
metallic complexes [158], and reactions that remove and 
regenerate atoms at a surface [159]. The increased degree 
of complexity that the direct structural involvement of such 
catalysts adds to the problem of the elucidation of catalytic 
reactions networks for large reactants with a high degree of 
structural flexibility highlights an even more pronounced 
role of automated exploration procedures, which we, given 
the diverse nature of potentially catalytic agents, decided 
to base on electronic structure information only [160–163]. 
This allows us to exploit general heuristic concepts based on 
the first principles of quantum mechanics.

Most automated reaction network generation schemes 
have originally been developed for molecular systems (see, 
e.g., Refs. [160, 164–176]). The underlying algorithms and 
concepts range from graph-based rules to the interpretation 
of the electronic wave function, and to ab initio molecu-
lar dynamics (MD). However, all these algorithms have the 
common goal of constructing all possible elementary steps 
for a given pool of reactants by locating the correspond-
ing transition states with first-principles and semi-empirical 
electronic structure methods. Whereas they were developed 
for systems that represent a single phase (typically the gas 
phase or a solution), some of them have also been applied 
to reactions on metallic surfaces.

The latest release of the graph-based reaction mechanism 
generator (RMG) by Liu et al. [155] features additional 
graph rules for surfaces, in which the surface is treated as 
a single graph node with which every other node can form 
bonds with. The authors applied this approach to methane 
dry reforming on Ni (111) [177], for which their algorithm 
found many of the reactions of an established mecha-
nism [178]. However, their approach was limited to prede-
fined reaction types, the adsorption energies were based on 
literature values or group additivity for missing literature 
data, and the reaction energy barriers were derived from 
scaling relationships from the literature.

Zimmerman and co-workers have developed the software 
S-ZStruct [179] for specifically handling surface explora-
tions. It implements an interface to the atomistic simulation 

environment (ASE) [180] to find adsorption sites and explore 
reaction paths of adsorbates with their growing string method 
(GSM) [168, 181]. Maeda et al. have also explored reactions 
of adsorbates on (111) surfaces [182–184] with their artifi-
cial force induced reaction (AFIR) approach [185]. While 
both approaches, GSM and AFIR, are versatile and general, 
the application studies were limited to low-index surfaces 
with a completely constrained slab. Moreover, the adsorp-
tion site location of ASE is implemented only for certain 
surfaces, while more advanced surfaces would require man-
ual definitions [179]. Owing to the general, atomistic nature 
of their core algorithm, the AFIR and GSM method, both 
Maeda et al. [186–188] and Zimmerman et al. [189–199] 
have studied homogeneous catalysis more extensively, also 
incorporating experimental information. Their algorithms 
can also be applied in a semiautomatic fashion by steering 
the exploration into certain branches of the reaction net-
work, either by specifying specific internal coordination 
transformations or fragments of the molecules that shall be 
combined or dissociated. However, this requires extensive 
knowledge of the software.

In a different approach, Liu and co-workers [200] sam-
pled a reaction on a Cu (111) surface, namely the water 
gas shift reaction. They constrained two of three layers and 
found the reaction with their enhanced sampling technique 
called stochastic surface walking (SSW). They applied the 
SSW technique also for solids [201] and more complicated 
heterogeneous systems [202, 203] by training a neural net-
work on MD data, which is implemented in their LASP 
software package [204]. Besides surface slabs, also first-
principles-based exploration methods have been applied 
to cluster models of nanoparticles based on graph rules 
by Habershon et al. [205] and with the AFIR approach by 
Maeda et al. [206–208].

A common reference example, that was studied by 
multiple groups, is the hydroformulation of ethene by the 
HCo(CO)3 catalyst with the goal to reproduce the mechanism 
by Heck and Breslow [209]. This example has been inves-
tigated with time-independent calculations by Maeda and 
Morokuma [210], with an MD based method by Martínez-
Núñez et al. [211], and with graph rule based approaches by 
Habershon et al. [170] and by Kim et al. [172].

While some proof-of-principle studies on (111) metal 
surfaces and conformationally limited organometallic 
catalysts have been conducted, a general software pack-
age for autonomous studies of any catalytic system has 
not been established, yet. We are developing the software 
suite SCINE [212], which does not impose heuristics, reac-
tion types, or electronic structure models that are limited 
to specific chemical systems. In this article, we introduce 
the extension of our framework toward general homo- and 
heterogeneous catalysis, both on a conceptual basis and in 
terms of first implementations.



9Topics in Catalysis (2022) 65:6–39 

1 3

We have set out to contribute a general approach to com-
putational catalysis [142, 152, 160, 161] which is the map-
ping of chemical reactions on reaction networks in such a 
way that we can transcend conventional subcategories of 
catalysis. To achieve this goal, it is necessary that all algo-
rithms are agnostic with respect to the type of chemical 
elements involved and the kind of chemical process to be 
considered (in solution, on a surface, in an enzyme, in a 
metal organic framework or zeolite, ...). Moreover, the algo-
rithms need to be as stable as possible, requiring operator 
interference in an interactive manner [213–215] only in criti-
cal cases where even contiguous attempts to achieve some 
target with different algorithmic strategies (such as different 
approaches for transition state searches) have failed [216].

Here, we now focus on automated reaction network con-
structions for catalysis and elaborate on the specific chal-
lenges which need to be addressed in order to make such 
constructions feasible for routine application. For this pur-
pose, the next section first addresses conceptual considera-
tion in the context of catalysis. Afterwards, we discuss an 
explicit numerical example to highlight some of the techni-
cal challenges as well as options for their solution.

3  Conceptual Considerations

We first consider conceptual issues that are presented by 
problems in catalysis to automated reaction mechanism 
exploration.

3.1  Identifying Catalysis in Reaction Networks

A catalyst is defined as a substance that increases the rate of 
a chemical reaction. It is both reactant and product of a reac-
tion and is therefore not consumed [217]. A reaction network 
that is constructed by automated procedures [148–152] and 
hence not limited with respect to the number and type of 
reactants (at least in principle) does not highlight catalytic 
or autocatalytic cycles that may be embedded within. (Auto)
catalysis is an emergent chemical concept that needs to be 
discovered in such a network. However, the definition of 
catalysis given above can be turned into an algorithm for its 
discovery (see, for example, Ref. [161] for an autocatalytic 

mechanism detected in a reaction network of the formose 
condensation reaction).

Since a vast reaction network of elementary reaction 
steps is a priori agnostic with respect to our understanding 
of some of its substructures as being catalytic, their identifi-
cation follows a posteriori by searching for properties given 
in the definition of a catalyst: (1) An individual molecule or 
atomistic ensemble (such as a surface) is identified to take 
part in a reaction, but is recovered at another position in the 
network. (2) The other reactants and products of this reac-
tion are found to be connected by a set of different elemen-
tary steps somewhere else in the network. (3) Then, one may 
be able to extract two net reaction rates for both reactions 
(one with the entity that emerges unchanged from the reac-
tion and one without such an entity). (4) If the reaction rate 
with the eventually recovered species is significantly faster 
than the one without, this species will most likely be a cata-
lyst—obviously, the increase in rate must be significant for 
a catalyst in order to distinguish its role from that of a pure 
spectator molecule such as a solvent molecule. A minimal 
reaction network is depicted in Fig. 1, where the compound 
R can either react uncatalyzed to P in reaction 1 or via the 
reactions 2 and 3 enabled by the catalyst C.

A discovery of (auto)catalytic processes in this way is 
relevant mostly for exploratory studies of vast reaction net-
works, for which hardly any or no information is available at 
the start of the exploration. In practice, the problem is often 
simplified by the fact that one may know the (standard or a 
class of) catalyst structures to be investigated (and also of 
the chemical reaction that is to be catalyzed). A catalytic 
cycle can then be explored in a straightforward manner and 
directly compared with the reaction that lacks the catalyst 
as a reactant (typically in two different explorations con-
ducted in parallel). This procedure is clearly more target-
oriented and allows for catalyst design (by modification and 
subsequent refinement of structures in a catalytic cycle; see 
below) as well as for the evaluation of the catalytic poten-
tial by direct energy-based comparison with the catalyst-free 
reference network.

3.2  Calculation of Well‑Established Diagnostics 
from Reaction Networks

Given a vast reaction network that includes an identified 
catalyst, the question remains, how the catalytic mechanism 
can be understood and quantified from this network.

Micro-kinetic modeling of the network, e.g., by solving 
a Markovian master equation based on state and transition 
probabilities [218–227], preferably accounting for first-prin-
ciples-derived uncertainties in these probabilities [142, 228, 
229], is desirable. However, this is computationally demand-
ing for vast reaction networks, especially if several reaction 
networks should be compared with one another. Therefore, 

Fig. 1  A minimal reaction network including a reactant R, catalyst C, 
intermediate I, and product P. The orange colored reaction features a 
larger barrier height than the green colored reactions
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some limitations of the network or approximations for the 
kinetic analysis are commonly introduced (see, for instance, 
Refs. [230, 231]).

Instead of constructing reaction networks based on heu-
ristic rules and then conducting a kinetic analysis on the 
whole network, one may explore the reaction network based 
on quantum chemical methods with a continuously running 
kinetic analysis on the fly as a guide. Such a kinetics-driven 
steering of the exploration process can exploit the calculated 
barrier heights obtained so far to determine those nodes that 
accumulate concentration and are therefore the key nodes 
for further network exploration in the next step [161, 229].

Two general experimental metrics for the effectiveness of 
catalysts are the turnover number (TON) and the turnover 
frequency (TOF). However, their definitions may vary for 
different types of catalysis such as biocatalysis, homogene-
ous catalysis, and heterogeneous catalysis [232]. We take 
the TON to be a quantitative measure for the stability of 
a catalyst against deactivation reactions and the TOF as a 
measure for the efficiency of a catalyst.

We first define the TOF as the number of catalytic reac-
tion cycles Nc accomplished per time t

which may be obtained numerically by micro-kinetic mod-
eling of a reaction network or analytically by identifying the 
catalytic cycle within a network and applying the energetic 
span model [233–236].

Experimentally, this quantity must be normalized by 
some measure for the amount of catalyst available. One 
may compare experimental results and theoretical predic-
tions based on first-principles networks based on relative 
theoretical TOFs rather than on absolute TOFs for reasons 
discussed later.

In heterogeneous catalysis, the TOF is commonly 
replaced with the site time yield [237], which is normalized 
with the number of active sites on the catalyst that may be 
approximated by the number of adsorbing gas molecules in a 
separate experiment. We do not need to consider such a nor-
malization, because a complete chemical reaction network 
at full atomistic resolution would include a catalytic cycle 
for each and every individual active site. Hence, one would 
obtain a theoretical TOF per site and then may average over 
all sites afterwards, if desired.

Theoretical TOFs are often determined in the framework 
of transition state theory (TST) [238], which connects the 
reaction rate ki with the activation free energy ΔG‡

i

(1)TOF =
Nc

t
,

(2)ki =
kBT

h
e−�ΔG

‡

i

with Plank’s constant h, temperature T and � defined as the 
inverse product of the Boltzmann constant kB and T, i.e., 
(kBT)

−1 . In the framework of TST, Kozuch and Shaik derived 
the energetic span model [233–236], which allows one to 
calculate the TOF from the absolute Gibbs energies of all 
transition states GT

i
 and intermediates GI

j
 and the relative 

Gibbs energy ΔGr of the catalytic cycle of N steps

This general expression can be approximated in terms of 
two crucial concepts, the TOF determining transition state 
(TDTS) and TOF determining intermediate (TDI) [236]:

The two states, TDTS and TDI, maximize the energetic span 
�E of a catalytic cycle. The reliability of this approximation 
depends on the degree of TOF control [236] of TDTS and 
TDI.

By virtue of the energetic span model, the activity of a 
catalytic reaction cycle within a chemical reaction network 
can be directly estimated [239]. Additionally, crucial states 
and steps within a reaction mechanism can be identified. 
Kozuch and Shaik showed that comparisons of calculated 
TOFs are quantitatively reliable due to error cancellation, 
while absolute rate estimates are difficult to predict due 
to the exponential amplification of an error in the Gibbs 
energy [236].

The robustness of relative rate comparisons allows also 
for reliable estimates of the proportion of occurring catalytic 
reactions and degradation reactions, which allows to calcu-
late the TON. For this, we define catalytic reactions rc

i
 , i.e., 

a single reaction or series of reactions, for which a species 
has been identified to act as a catalyst and is therefore recov-
ered after the reaction. We also define degradation reactions 
rd
j
 , for which the catalyst is solely a reactant and not recov-

ered, and we define degradation reactions rd
k
 , which also 

consume the catalyst, but require an intermediate of a cata-
lytic reaction rc

i
 as reactant. Note that ’reaction’ here refers 

to a sequence of elementary steps. In other words, if a cata-
lytic reaction consists of multiple elementary steps, which 
is typically depicted as a cycle, it is solely one rc

i
 in our 

definition.
In view of the data that are available for a reaction net-

work of elementary steps, it would be convenient to define 
a ’turnover efficiency’ as a measure for the TON that can be 
obtained as the ratio of the total probability for product 

(3)

TOF =
kBT

h

e−𝛽ΔGr − 1
∑N

i,j=1
e
𝛽(GT

i
−GI

j
−𝛿Gi,j)

, 𝛿Gi,j

�
ΔGr, if i > j

0, if i ≤ j.

(4)

TOF ≈
k
B
T

h
e
−��E,

�E

{
TTDTS − ITDI, if TDTS appears after TDI

TTDTS − ITDI + ΔG
r
, if TDTS appears before TDI.
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molecular production and the total probability for catalyst 
decomposition. Naturally, such probabilities are given by the 
net rate constants for sequences of elementary steps that 
either lead to product molecules or to catalyst decomposi-
tion. Accordingly, we may introduce such a TON as the ratio 
of the sum of rate constants kc

i
 of all catalytic reactions and 

the sum of rate constants kd
j
 of all degradation reactions

As indicated in the numerator, the rate constant of the cata-
lytic reaction(s) kc

i
 is, among other quantities, a function of 

the degradation reactions rd
k
 that branch off the catalytic 

cycle—which only affect catalytic reaction rc
i
—while the 

degradation reactions rd
j
 disconnected from any catalytic 

cycle affect all rc
i
 and lower the total TON. Generally, kc

i
 can 

be approximated by the TOF, but due to this additional con-
sideration of Nd degradation reactions with ΔG‡

k
 Gibbs 

energy barriers, Eq. (3) must be slightly altered to read

The TON can then solely be expressed in terms of energies 
as

This allows us to calculate the stability of a catalyst against 
decomposition. However, this is hardly done in experimental 
research [240] and neither in computational research due 
to the complexity of finding all relevant degradation reac-
tions. A mitigation of this problem is, in fact, the autono-
mous exploration of elementary steps based on automated 
first-principles procedures, which can deliver huge networks 
of complex reactions that may be considered complete after 
a certain exploration depth has been reached.

3.3  Autocatalysis

The simplest definition of autocatalysis is given by a (series 
of) elementary step(s), in which a product X catalyzes its 
own creation [241].

Due to the nonlinear chemical dynamics  [242] (such as 
oscillations) that autocatalysis can cause, it has attracted 
little interest by the chemical industry until recently [241]. 
Accordingly, the topic has received much attention in origin 

(5)TON =

∑
i k

c
i
(rd

k
)

∑
j k

d
j

.

(6)

k
c

i
=

k
B
T

h

e
−𝛽ΔGc

i − 1
∑N

a,b=1
e
𝛽(GT

a
−GI

b
−𝛿Ga,b)

∑Nd

k=1
e
−𝛽ΔG

‡

k

, 𝛿G
a,b

�
ΔG

r
, if a > b

0, if a ≤ b.

(7)

TON =

∑
i

e
−𝛽ΔGc

i −1

∑N

a,b=1
e
𝛽(GTa −G

I
b
−𝛿Ga,b )

∑Nd
k=1

e
−𝛽ΔG

‡
k

, 𝛿Ga,b

�
ΔGr, if a > b

0, if a ≤ b.

∑
j e

−𝛽ΔG
‡

j

(8)A + X ⟶ 2X

of life studies [243–246], since autocatalysis can be con-
nected to replication, which is essential for the develop-
ment of complex living organisms. It might also be the 
cause of homochirality of all amino acids within all living 
beings on Earth [247]. Recently, autocatalytic self replica-
tion has been developed and studied in synthetic chemical 
systems [248–251].

On a theoretical basis, autocatalytic reaction net-
works have been studied as a basis of the origin of life by 
Eigen [252], Kauffman [253], and Steel et al. [254, 255]. 
Steel et al. developed the reflexively autocatalytic food gener-
ated (RAF) network model, that was also applied in the study 
of metabolic pathways [256] based on slightly modified or 
grouped reactions stored in the UniProt database [257] to fit 
the RAF model. Note, however, that Andersen et al. criti-
cized the RAF model for assuming that every reaction 
within a chemical reaction network is catalyzed, which is 
unlikely [258]. Instead, Andersen et al. developed a rigor-
ous definition of autocatalysis in chemical reaction networks 
by describing the network as a directed hypergraph and the 
autocatalytic reaction as an integer hyperflow [259] based 
on reactions derived from graph rules. However, they noted 
that a sole definition by hyperflows is most likely not suf-
ficient and will need complementary constraints in order 
to detect autocatalytic cycles in arbitrary chemical reaction 
networks [258].

Such algorithms, which avoid computationally expen-
sive numerical kinetic simulations, are required and can-
not be circumvented with a straightforward identification 
strategy solely based on thermodynamic criteria as outlined 
in Sect. 3.1. For example, the corresponding uncatalyzed 
reaction of Eq. (8), which can be formulated as

might simply not exist or impose such high barriers that it 
cannot be located with standard algorithms. Without such 
points of references, which are missing in experimental 
data of biological systems, for which most definitions and 
algorithms discussed in this section had been developed, 
autocatalysts can only be identified and distinguished from 
bystander molecules based on kinetic analyses.

Many theoretical models also construct chemical reac-
tion networks solely with graph rules and do not take into 
account different reaction barriers and conformers. If the 
exploration of a network is based on first-principles calcula-
tions in such a way that all elementary steps are mapped out, 
the detection of autocatalysis requires micro-kinetic mod-
eling of the reaction network. However, if one restricts the 
exploration by constraints that do not allow for the passing 
of barriers of a given height (or similarly by explicit kinetic 
modeling), the detection of autocatalytic paths becomes 
much more difficult, especially for compounds which can 
only be formed by an autocatalytic reaction. The issue is that 

(9)A ⟶ X
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a product, which might act autocatalytically and, therefore, 
decreases the barrier(s) of the reaction(s) necessary for its 
own creation, might never be found. A minimal example 
is depicted in Fig. 2, where compound h acts autocatalyti-
cally. In a first-principles-based exploration of this network 
starting from a and b, the network would never discover the 
region II leading to the favored product f, but would, instead, 
stay in region I and wrongly predict the compounds j and k 
as the major products.

The crucial question then is how one can account for this 
issue in the automated exploration of a chemical reaction 
network? For known autocatalytic motifs, a viable option 
would be the systematic trial exploration of such a motif. 
An example is acid catalysis in the context of ester hydroly-
sis (see, for instance, Ref. [260] for a detailed description 
and further examples). If many exhaustive catalytic reaction 
networks become available in the future so that sufficient 
amounts of data are available, one may extract patterns for 
the onset of autocatalytic pathways with machine learning 
models. Unfortunately, all of this would include a heuristic 
bias on known chemical phenomena and further research is 
required to identify truly exploratory first-principles-based 
approaches.

3.4  Catalyst Design

Many optimization and design strategies for more stable 
or active catalysts have been developed for specific fields 
such as biocatalysis  [261–270], homogeneous cataly-
sis [271–281], or heterogeneous catalysis [282–288]. In 
these strategies, the activity of a catalyst is judged on various 
physical descriptors. For our discussion here, it is impor-
tant to recall that a chemical reaction network of elementary 

steps is a universal means for studying a catalytic reaction: it 
encodes all information for understanding the catalytic pro-
cess in toto (including deactivation processes and side reac-
tions). Once the reaction states that are key for a catalytic 
process (e.g., those that determine TON and TOF) have been 
identified, they can become a target for catalyst optimiza-
tion and even for de novo design. Note that the uncatalyzed 
reaction itself is already a viable starting point as its network 
contains those steps that require a catalyst to decrease high 
reaction barriers. As such, the network provides atomistic 
structural information about where and possibly also about 
how to introduce structural changes and potentially catalytic 
reagents. Naturally, any structural change introduced at some 
node of the network will then require a re-evaluation of the 
whole network in order to probe the viability of previously 
found elementary steps, to find new ones, and to assess the 
resulting activation (free) energies. While this is a computer 
time demanding task, tailored optimization strategies that 
target specific structure-property relationships may decrease 
the computational burden.

In general, it will neither be feasible nor sensible to auto-
matically explore a complete reaction network from scratch 
for a large number of potential catalyst candidates, prohib-
iting high-throughput screening for catalysts based on net-
works of elementary steps. Instead, the comparison between 
different catalysts should happen on the basis of network 
inheritance in order to be efficient.

First, the chemical reaction network may be explored with 
one specific catalyst, e.g., the known reference catalyst that 
should be improved. To increase the efficiency of the explo-
ration, this catalyst should be generic in the sense that its 
structure should not possess unnecessarily costly elements; 
i.e., those that can be expected to be spectator residues for 

Fig. 2  A reaction network 
including the autocatalytic reac-
tion 5. Light-green reactions 
have the lowest reaction barrier 
heights, followed by yellow, 
orange, and dark-red (indicating 
the largest barriers)
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the catalytic process itself, but would increase the computa-
tional time significantly. A typical example are substituents 
with large conformational freedom that can be expected to 
play hardly any role in the catalytic process itself, but are 
required for different purposes (e.g., solubility or prevent-
ing catalyst dimerization). Such structural elements may be 
discarded for the generic catalyst for which it is then much 
easier to generate a complete reaction network as it will 
not suffer from a combinatorial explosion of conformers. 
However, crucial misrepresentations of the catalyst, which 
foundamentally change the reaction mechanism, have to be 
avoided [289].

In a subsequent step, one may re-introduce substituents 
(also for the purpose of catalyst design) in a step- or shell-
wise fashion, possibly aided by ML approaches [290, 291]. 

The generic reaction network can then serve as an efficient 
starting point, allowing for a fast re-evaluation of its nodes 
with the new catalyst structure and a search for new elemen-
tary steps.

Alternatively, the main catalytic entity—in most cases 
a metal or a certain structural motif—can also be substi-
tuted on a network level to study different candidates. The 
simplest case is that of a ’transmutation’ where the metal 
in all structures of generic network is simply exchanged by 
another one, for which a homologous metal or an isoelec-
tronic metal fragment are suitable candidates (consider, for 
example, replacing Ru by Fe or Co+ ) as depicted in Fig. 3.

In this way, information about the catalytic process 
is inherited in such a way that computational costs are 

Fig. 3  A schematic reaction 
network depicting the uncata-
lyzed reaction 0 of X and Y to Z 
(red). The same chemical reac-
tion can also be found catalyzed 
by a minimal catalyst a in the 
series of reactions 1–4 (in blue). 
This minimal cycle can then 
be exploited for catalyst design 
by systematically exchanging 
ligands (or substituents or cen-
tral metal ions) of the catalyst, 
which is schematically depicted 
in the circle at the top. The 
modified reaction barriers for 
1–4 based on the new catalyst A 
(in purple) can then be explored 
within the reaction network



14 Topics in Catalysis (2022) 65:6–39

1 3

efficiently reduced and the emerging ancestry can enhance 
the conceptual understanding of the catalytic system.

Since this is a direct approach, in which a molecu-
lar structure is given and its property is calculated, high-
throughput virtual screening (HTVS) must be conducted to 
search for a better catalyst in a systematic way. However, 
even with an efficient HTVS approach, it is hardly possible 
to visit a sufficiently large fraction of the chemical space 
due to its sheer size [292, 293]. Therefore, a wise selection 
of compounds and materials of this space has to be made 
depending on the design target.

The key problem is that quantum and classical mechanics 
allow us to predict a molecular property or function for a 
molecular structure given. The inverse direction, i.e., from 
a desired function to a molecular structure that exhibits this 
function, is mathematically ill-defined for various reason 
(e.g., in quantum mechanics all dynamical degrees of free-
dom (such as coordinates) are integrated out when expecta-
tion values or response properties are calculated). However, 
one may hope to develop inverse approaches for specific 
goals as certain properties of these goals may be exploited 
to alleviate the problem.

Accordingly, inverse design strategies attempt to prede-
fine a specific target property and then construct the corre-
sponding ensemble of structures that feature this property. 
Many approaches for such algorithms exist and have been 
discussed in general reviews [294–296] and reviews focusing 
on ML approaches for inverse design [297–300].

For example, we have proposed the inverse-design 
approach Gradient-driven Molecule Construction 
(GdMC) [301–303], which targets design of new catalysts 
by sequentially constructing metal fragments that stabilize 
structurally activated small molecules in intermediates 
through reduced structure gradients on all atoms. In another 
approach, Hartke and co-workers have combined optimiza-
tions of minimum energy reaction paths in an electric field 
of point charges with global optimization techniques in their 
Globally Optimized Catalyst scheme [304, 305] and have 
further improved on it in a quantum-mechanical molecular-
mechanical composite approach [306].

ML had a considerable impact on the field of inverse 
design in recent years as it allows for learning structure-
property relationships, which can then be employed to 
generate structures based on a given property. Especially 
deep generative models have been demonstrated to be suc-
cessful across multiple chemical problems ranging from 
drug discovery [307–309] to materials design [310–312]. 
A combination of such models with genetic algorithms is 
also possible [313]. For this endeavor to be successful, it 
was necessary to improve on the representation of chemi-
cal structures [314, 315] and desired properties [316]. It 
was also shown that the new concept of alchemical chiral-
ity [317] might allow one to draw direct energy relations 

across the chemical compound space to accelerate design 
processes.

Hence, many strategies have been developed for the 
design of molecules with specific properties. It can be 
expected that catalyst and process design by computational 
catalysis will continue to strive for novel as well as routinely 
applicable design protocols.

4  Computational Considerations

Because of the numerous elementary steps involved in cata-
lytic processes and the fact that changes in structural compo-
sition point to new networks of elementary steps, the com-
putational burden is truly intimidating and smart procedures 
are required to keep it feasible in principle, but also in view 
of the environmental footprint of high-performance comput-
ing campaigns. In this section, we therefore turn to a discus-
sion of the computational resources required for autonomous 
first-principles-based explorations of homogeneous and 
heterogeneous catalysis that allow for an understanding on 
the basis of reaction networks. Clearly, the computational 
resources required will depend on the methodology chosen. 
Here, we rely on our methodology in order to give an idea of 
the magnitude of computational effort that is to be invested 
in autonomous first-principles-based explorations. Our com-
putational methodology is detailed in the appendix.

4.1  Resource Estimates for Automated Explorations 
of Homogeneous Systems

A chemical reaction network can be constructed solely based 
on initial reactants as input. Starting from these structures, 
all elementary steps can be identified—at least in principle—
by letting algorithms search for new local minima starting 
from the given ones on the respective Born-Oppenheimer 
hypersurfaces. Newly found minima, which correspond to 
long- or short-lived intermediates in a reaction network, 
become new starting points for further exploration in this 
rolling approach.

A key part of autonomous explorations are automated 
procedures that allow for the identification of elementary 
reaction steps with associated transition states. For instance, 
with our Chemoton exploration software, possible elemen-
tary steps are probed based on reaction coordinates defined 
for active sites identified within molecules. In principle, 
every atom (or group of atoms) in a molecule may function 
as an active site, an assumption that allows one to map out a 
reaction network that is as complete as possible. However, 
this will often not be feasible and so protocols are put in 
place that reduce the number of potentially relevant sites to 
those that might be active under reaction conditions. Our 
strategy so far has been to base this selection process on 
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rules that may be derived for any molecular system and 
that are therefore not bound to specific compound classes. 
Accordingly, we introduced first-principles heuristics as a 
way to extract conceptual information on reactivity from 
the electronic wave function [160–163]. Note that it is not 
required to make a precise prediction on what atoms may 
react in some intermediate. Instead, it will already be suf-
ficient to identify with certainty those sites that will not react 
for diminishing the computational burden.

In a brute force approach, one possible ansatz is to define 
an inter- or intramolecular reaction coordinate as a push 
(or pull) of reactive centers, which in turn can be defined 
as the geometric center of one or more reactive sites. This 
then allows one to enumerate all possible inter- and intra-
molecular reactions. Chemoton probes potential reaction 
coordinates with so called Newton trajectories, for details 
see the appendix. An exploratory reaction coordinate can 
be defined as the vector between two geometric centers of 
lists of active sites. A geometric center is defined by a num-
ber a of active sites, with a ≥ 1 ∧ a ≤ ni and ni being the 
number of nuclei in a reactant. The second center is then 
defined by a different list of b active sites. For intramolecu-
lar reactions the reaction coordinate is simply the vector 
between the centers, while intermolecular reactions require 
an additional vector for each combination of active sites and 
angle between these vectors to construct such an exploratory 
reaction coordinate. For each combination of a active sites 
there exists an infinite number of da possible vectors and 
�a possible rotamers, which are reduced in Chemoton by 
discretization of the rotational angle to a finite number based 
on steric criteria and a fixed number of rotamers. To estimate 
the scaling of such a brute force approach, we limit possible 
intermolecular elementary steps to bimolecular reactions. In 
a reaction network with m compounds found at a given point 
in time, a number of nci structures per compound i with ni 
nuclei each allows us to estimate the number of possible 
reaction trials r as

The factor 2 for intramolecular reactions stems from the 
possibility of either associative or dissociative reactions, 
while intermolecular reactions can only be associative, 
albeit they can still generate multiple products. We empha-
size that the above equation solely rests on combinatorial 
considerations that ignores all chemistry knowledge. It is 
obvious that activating chemical knowledge will dramati-
cally decrease the number of options—the question is how 
this can be achieved in a way that is so general that it works 

(10)r =

m�

i=1

m�

j=i

ncincj

ni�

a=1

nj�

b=1

dadb�a�b

�
ni
a

��
nj

b

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
intermolecular reactions

+ 2

m�

i=1

nci

⌊ ni

2
⌋�

a=1

ni−a�

b=a

�
ni

a + b

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
intramolecular reactions

.

for any sort of atomistic system, ranging from molecules to 
molecular aggregates and eventually to surfaces and com-
posite materials.

Note that r represents only the number of elementary 
step trials (i.e., attempts to identify an elementary step) 
and not the number of successful elementary steps, because 
chemical reactions will not be possible for every combina-
tion of nuclei. Nevertheless, r grows factorially with ni and 
quadratically with m, because any intermediate or reactant 
can react with any other one of the network. This quickly 
becomes unfeasible for a large system, which is why prun-
ing (for instance, through first-principles heuristics) will be 
necessary for the elementary step trials even in exhaustive 
reference reaction network explorations.

For our resource estimates, we introduce the assumption 
of maximally combining pairs of active sites ( a ≤ 2 ∧ b ≤ 2 ) 
for intermolecular reactions, and only pairs of single active 
sites ( a = b = 1 ) for intramolecular reactions, which then 
leads to

This reduces the scaling behavior to O(m2n4
i
) . If we assume 

m ≫ n—i.e., there are far more stable intermediates in the 
network than, on average, atoms in each of the intermedi-
ates, which is the case for most molecular networks, then the 
scaling will become quadratic.

Next, we impose restrictions based on graph distances 
�AB , which can be determined from Mayer bond orders [318] 
and our Molassembler library [319, 320], which is part 
of the SCINE project. The graph distance �AB is defined 
as the number of bonds that one passes when proceed-
ing from nucleus A to nucleus B in the molecular graph. 
Elementary step explorations r{A,B}−{C,D} are defined with a 
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reaction coordinate constructed between the active sites A 
and B and the active sites C and D. We limited the number 
of r{A,B}−{C,D} depending on the explored reaction type

(12)
intermolecular association: r{A,B}−{C,D} ⇔ �AB = 1 ∧ �CD = 1

(13)r{A}−{C,D} ⇔ �CD = 1
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Additionally, we applied a symmetry analysis to reduce the 
number of unique active sites and only considered further 
explorations for compounds, which were accessible by reac-
tions with barrier heights below 200 kJ mol−1 . Moreover, 
to properly sample the remaining elementary steps, we 
considered two rotamers per reactant ( �a = 2 ) and multiple 
directions of attack ( da ≥ 1 ), where multiple local minima in 
steric hindrance around the active site were present.

(14)r{A,B}−{C} ⇔ �AB = 1

(15)
intramolecular association: r{A}−{B} ⇔ �AB = 5 ∨ �AB = 6

(16)intramolecular dissociation: r{A}−{B} ⇔ �AB = 1.

First, we constructed from first principles a broad refer-
ence reaction network without a catalyst. Such a network 
allows us to estimate the scaling effects of the restrictions 
imposed on the explored elementary steps. As an example, 
we selected propylene and molecular oxygen, which already 
allowed us to construct a broad reaction network from first 
principles as shown in Fig. 4. This illustrates the potential 
scope of reaction networks for small systems.

For the uncatalyzed reference, we explored the reaction 
network starting from propylene and molecular oxygen with 
GFN2-xTB [321, 322]. We stopped the exploration after 
≈ 3 × 106 elementary step trials carried out in a total com-
puting time of 5775 CPU days and ≈ 1.4 × 107 elementary 
step trials still remaining. This resulted in 4218 compounds, 
909 of which are accessible with reaction barrier heights 

Fig. 4  A All compounds in our 
reaction network connected 
with lines corresponding to 
reactions. The compounds are 
colored according to their order 
of discovery from violet to yel-
low. B Examples of some of the 
first reactions in the network

AA

B
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below 200 kJ mol−1 . The 4218 compounds include a total of 
1,185,893 individual optimized minimum energy structures 
that are connected by 587,752 transition state structures in 
elementary steps, which were grouped into 6323 reactions. 
For the exploration we set an upper limit in terms of ele-
ment composition of C10H22O7 and the heaviest compound 

in our explored reaction network is C9H18O4 . The explora-
tion required a total of ≈ 2.9 × 109 single-point calculations, 
which, for the sake of comparison, corresponds to a total 
runtime of ≈ 1.45 μs of a continuous MD simulation with a 
timestep of 0.5 fs.

The most straightforward solution to reduce the num-
ber of elementary step trials is a pre-selection based on 

Fig. 5  Histogram of the 
required number of single-point 
calculations for an elementary 
step search attempt (details see 
Sect. 1). Green bars represent 
successful and purple bars 
represent failed attempts. The 
dashed lines of the same color 
are the fitted � distribution

A B

Fig. 6  A A logarithmic plot of the number of elementary step trials r 
against the number of compounds m in the reaction network within an 
upper limit for barrier heights of 200 kJ mol

−1 . The orange dots were 
calculated from Eq.  (11) based on the number of compounds in the 
reaction network, while the blue dots are the actual number of ele-

mentary step trials based on the constraints applied during the explo-
ration. B Identical data points of the actual elementary step trials in 
the network, but without taking the logarithm. Lines represent linear 
regressions; the resulting linear equations are shown in the plot in the 
corresponding color
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reactivity descriptors (e.g., first-principles heuristics; see 
above), which was deliberately not considered in our ref-
erence network. The fact that we did not activate such a 
selection/exclusion schemes for the assignment of active 
sites to be subjected to elementary search trials can also 
be observed in the low success rate � of only 22 % in our 
brute force approach. Furthermore, we could have restricted 
the number m of intermediates to be considered as reactants 
by exploiting some measure for their lifetime. For instance, 
an intermediate connected to other low-energy intermediates 
by low barriers will be short-lived and may be excluded from 
the set of m reactants to be considered.

The average number of single-point calculations per 
elementary step trial is depicted in a histogram in Fig. 5, to 
which we fitted a �-distribution due to the long tail towards 
higher numbers. This fit allows us to estimate the number of 
calculations for successful elementary steps to be 1473 ± 405 
and of failed attempts to be 1058 ± 424 (ranges defined by 
the standard deviation) for the current development version 
of our Chemoton software [323]. However, a substan-
tial number of unsuccessful attempts (11 %) already failed 
within the first 200 steps of the Newton trajectory set-up 
because structures far away from an equilibrium structure 
were generated so that the self-consistent-field procedure 
did not converge. These calculations were excluded from 
the fit. Upon taking them into account, the arithmetic mean 
of the single-point calculations required is lowered to 1050.

Structure optimizations of conformers generated with 
Molassembler [319, 320] required only 3 days of total 
CPU time on a single core for a total of ≈ 8.5 × 106 single-
point calculations. Hence, it can be estimated that the costs 
of additional geometry optimizations, e.g., to refine struc-
tures based on more accurate electronic structure methods, 
are negligible compared to elementary step trials.

Based on this extensive network, we can now study 
whether our assumptions about the scaling behavior were 
correct and how our graph distance restrictions affect this 
scaling. For this numerical analysis, we plot the number of 
elementary step trials r against the logarithm of the number 
of compounds in the reaction network m that are accessible 
within the given barrier height limit as shown in Fig. 6A)).

It is evident that a quadratic scaling with the number of 
compounds can be observed. However, the total scaling is 
larger than quadratic, because the molecule sizes cannot 
be disregarded. In addition, we understand that the chosen 
constraints based on the graph distance have a strong effect 
on the scaling behavior and reduce the scaling to a linear 
one. Nevertheless, the slope of 28,000 of the linear scaling, 
shown in Fig. 6B), is still substantial, especially considering 
that we did not take into account the generated conformers 
in the reaction explorations, but probed possible elementary 
steps only for the first occurring conformer structure of each 
compound.

Note also that explicit solvation was not consid-
ered in this extensive reference network. Numerous 
approaches [324–329] exist that can limit the number of 
solvent molecules. However, they still increase the required 
number of calculations and may require further development 
to tame this increased computational burden (e.g., by trans-
ferring solvation information with machine learning models 
from microsolvated nodes to those for which no microsolva-
tion had been considered).

Whereas the network structure discussed so far did not 
contain any catalyst, we now estimate how the addition of a 
homogeneous catalyst increases the computational resources 
required. Formally, the scaling of the reaction network still 
follows the same pattern as before, because the catalyst 
molecule is simply another compound within the network. 
However, because of the typical size of a catalyst of 50–150 
atoms and because of the intricate relation between its struc-
ture and activity, the approximation that a single conformer 
is sufficient to provide a sufficiently deep and reliable over-
view on the reaction mechanism will, in general, no longer 
be valid. Moreover, organometallic catalysts often repre-
sent challenging electronic structures, which can prohibit 
the application of fast semi-empirical methods, but require 
a more accurate description of the electronic wave function 
based, at least, on a fast (spin-unrestricted) density func-
tional approach. Therefore, any practical exploration of a 
reaction network in the context of studying catalysis benefits 
from further restrictions in the exploration protocol, if they 
can be invoked without compromising the exploration depth.

Based on the data obtained for our reference network and 
a representative example of an organometallic catalyst, we 
now show, how severe such restrictions must be and how 
time-consuming exhaustive explorations of a catalytic reac-
tion network can become. We selected a ruthenium catalyst 
consisting of 66 atoms, which catalyzes the epoxidation of 
small cyclic olefins [330]; see Fig. 7A)). We assume that 
a minimal catalytic cycle consists of around 10 different 
compounds and we can further estimate that the reaction 
mechanism including possible side reactions may be suf-
ficiently well explored with 100 compounds, while 1000 
compounds would be a very exhaustive exploration of all 
reactions surrounding a catalytic cycle. Recall that our defi-
nition of a compound [152] is a set of molecular structures 
with the same nuclear composition and connectivity; hence, 
one compound consists of numerous conformers.

Our uncatalyzed reaction network of 4218 compounds 
starting from propylene and oxygen already covers polym-
erizations, cyclizations, epoxidations, various peroxides, 
radical reactions, and beginnings of the formose reaction 
network. To estimate the number of single point calcula-
tions nsp that are required to find m different compounds 
we take the following metrics from our reference network 
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and assume, as a starting point, that they are suitable for a 
network including a homogeneous catalyst:

• success rate of elementary step trials �
• ratio between elementary steps found and reactions � , 

which yields an average number of elementary steps that 
belong to the same reaction

• average rate of newly found compounds per reaction � , as 
some reactions yield more than one previously unknown 
compound

• single-point calculations per elementary step trial �

Assuming that these metrics are independent of the number 
of compounds in the network, we arrive at Eq. (17) to esti-
mate the number of single-point calculation for constructing 
a network of m compounds to be

However, all four parameters were taken from our refer-
ence reaction network and some of them will depend on the 
choice of our constraints in the exploration protocol. For 
example, � will strongly depend on the number of conform-
ers considered in the exploration and � can be increased 
with the application of a suitable reaction descriptor, both of 
which were not considered in our reference network. There-
fore, we assume our � and � to be lower bounds for unguided 
explorations.

Based on these data, we can estimate the number of 
single-point calculations to find 102 − 103 compounds to 

(17)nsp =
��

��
m

(18)≈
92.95 × 1050

0.22 × 1.99
m ≈ 2.2 × 105m.

Fig. 7  Conformer analysis of 
an example catalyst, which we 
chose to be an organometallic 
catalyst for olefin epoxida-
tion. A Lewis structure of 
the catalyst; B overlay of the 
optimized crystal structure and 
nine optimized conformers, 
which were the energetically 
lowest structures within their 
bin of structures after cluster-
ing; C electronic energies of all 
57 conformers relative to the 
optimized crystal structure

A B

C
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be approximately 107 − 108 . Any reactivity descriptors that 
identifies unreactive and reactive sites should manage to find 
all intermediates and products of the minimal catalytic cycle 
within these 102 − 103 compounds, otherwise the number of 
required compounds and therefore calculations increases.

To estimate the number of conformers for an organome-
tallic catalyst, we applied our conformer generation and opti-
mization protocol implemented in Chemoton for our exam-
ple catalyst. The crystal structure was taken from Ref. [330] 
and optimized with PBE-D3BJ/def2-SVP. Our graph library 
Molassembler generated 57 conformer guesses, which 
were then optimized and the resulting structures were clus-
tered according to root mean square deviation (RMSD) by 
average linkage agglomerative hierarchical clustering with 
a distance threshold of 2.5 Å (see the appendix), which 
resulted in nine representative conformers. The results are 
shown in Fig. 7.

We expect a linear to quadratic effect of the number of 
considered conformers on the overall scaling, because con-
formers linearly increase the number of considered struc-
tures for explorations and in the worst case linearly increase 
the ratio of elementary steps and reactions � (assuming that 
all conformers still lead to the identical reaction). Hence, 
the increase in the number of calculations for this example 
would be a factor of 100 in the worst case. However, this 
would mean a consideration of about 10 conformers per 
compound in the network, which might not be necessary for 
most substrates. Therefore, we may consider this number of 
conformers per compound as an upper bound requiring about 
109 − 1010 calculations in a brute force approach without the 
help of any pruning algorithms. Based on the computing 
times for an energy and gradient of the crystal structure of 
the catalyst with the semi-empirical GFN2-xTB approach 
(i.e., 0.25 seconds per single-point in our set-up) and with 
the generalized-gradient-approximation density functional 
with density fitting PBE-D3/def2-SVP (i.e., 2 minutes per 
single point in our set-up), we extrapolate the required total 
CPU time to be 8–80 and 4000–40,000 years, respectively. 
In general, a reaction network exploration has the advan-
tage of being trivially parallelizable, meaning that the use 
of n computing cores brings an n-fold decrease in total wall 
time. Therefore, the calculations for our example catalyst can 
be achieved with GFN2-xTB in 3 − 30 days on 1000 cores, 
while a complete exploration with DFT remains basically 
unfeasible without further modification of the exploration 
protocol or without a large increase in computing power.

In this context, it can be beneficial to carry out the time-
demanding exploration trials with efficient semi-empirical 
methods and then refine the stationary points on a more 
accurate potential energy surface (PES). In our reference 
network, the number of single-point calculations required 
for structure optimizations of stable intermediates was three 

orders of magnitude smaller than the number of single-point 
calculations required for elementary step trials. If we assume 
that 109 − 1010 single-point calculations are to be carried 
out for building a reaction network, we estimate another 
106 − 107 single-point calculations for a refinement of the 
network with a more accurate method, provided that the 
reaction mechanism or connectivity of the reaction network 
do not change significantly with the more accurate model. 
Given our set-up for DFT calculations, this results in an 
estimate of 3–30 years of computing time on a single core 
for the reaction network refinement, which again parallelizes 
trivially and could therefore be achieved within one day to 
two weeks on 1000 cores. Note that this estimate will also be 
about the cost for every catalyst design feedback loop (dis-
cussed in Sect. 3.4) if the design shall be based on rigorous 
first-principles-based reaction network information.

These estimates do not consider any restriction or con-
straint in the exploration process itself. Apart from the prun-
ing options already discussed above (i.e., first-principles 
heuristics for reactivity descriptors [160, 162, 163] and 
exclusion of short-lived intermediates from further explo-
ration), the exploration process may be kinetically driven 
by steering trial and search calculations to those parts of 
the network that can be reached under reaction conditions 
by exploiting barrier information [161] or explicit micro-
kinetic modeling [229]. Hence, we may assume that broad 
automated reaction network explorations are within reach, 
provided that reliable approximate methods are available 
and the exploration space can be limited without excluding 
important reactions.

Unfortunately, resource estimates for explorations of 
heterogeneous catalysts cannot easily be inferred from data 
on homogeneous systems. For heterogeneous catalysis, we 
need to consider additional structures and elementary steps 
to bridge the phase difference between catalyst and reactant 
as discussed in the next section.

4.2  Special Algorithms for Heterogeneous Catalysis

Typical heterogeneous catalysts exhibit vastly different 
structural motifs compared to molecules in the gas phase or 
in solution, which need to be accounted for in the explora-
tion. The algorithms that we implemented in Chemoton for 
this work in order to resolve these challenges are described 
in this section.

Any extensive exploration requires to compare individual 
structures in a timely manner. Root mean square deviations 
of Cartesian coordinates are not suitable for the process for 
various reasons (e.g., they depend on molecular size and 
will require elaborate thresholding for making reliable state-
ments on molecular identity). Graphs are among the best 
options for such a metric, because (i) they can be compared 
efficiently and do not depend on system size, (ii) they are 
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chemically intuitive, and (iii) they allow for substructure/
similarity searches. In the automated explorations conducted 
so far, we exploited graph-based comparisons that are facili-
tated by the Molassembler library [319, 320]. To con-
struct graphs, connectivity information is required, which 
may be taken from simple distance information or from 
population analysis of electronic wave functions that yields 
quantum chemical bond order information. For solid-state 
systems such as those acting as catalyst or catalyst supports 
in heterogeneous catalysis, this information is not straight-
forward to obtain (e.g., consider the adsorption process and 
how an adsorbate’s binding to a surface is to be character-
ized in terms of chemical bonding).

The seemingly easiest approach to determine bonds in a 
three-dimensional structure is distance criteria. Parametrized 
distances for each element are sufficient for molecular struc-
ture, but often fail for solid state structures. The two remain-
ing distance-based approaches are Voronoi tessellation and 
nearest-neighbor criteria. Voronoi tessellation fails for sur-
face systems without the knowledge of the corresponding 
crystal structure [331]; hence, it is difficult to implement 
within an automated exploration algorithm, where each 
minimum structure has to be labeled with a graph, which 
should ideally only be dependent on the structure’s spatial 
coordinates and electronic structure and not be based on 
inheritance from other structures.

Nearest-neighbor approaches work well for crystal and 
surface structures, but can fail for molecular structures, 
because the atoms in molecules have varying elements as 
bonding partners with different bond lengths. Therefore, an 
approach to detect bonds only between the closest distances 
would either overlook valid bonds or require an elaborate 
inclusion threshold. Hence, an algorithm solely based on 
distances must know which nuclei are part of a solid state 
structure and which are part of an adsorbate. Additionally, 
the algorithm must then select the distance criterion based 
on this categorization of nuclei within one structure and also 
be able to handle chemical and physical adsorption. Such 
elaborate tracking of nuclei and categorization can introduce 
many system-dependent heuristics and possible points of 
failure within an automated exploration.

Alternatively, bonds may better be derived directly from 
the electronic structure, which avoids system-dependent 
heuristics. We implemented Mayer bond orders [318] in 
SCINE for molecular and periodic structures, which allows 
us to directly compare the different approaches. Alterna-
tively, DDEC6 bond orders based on a so-called dressed 
exchange hole determined by the electron density distribu-
tion, which has been tested for a wide array of chemical 
structures  [332], may provide more reliable bond estimates.

Adsorption is a key feature of heterogeneous catalysis that 
is absent in homogeneous catalysis. However, a selection of 
every nucleus and bond as a potential active site would make 

an automated exploration unfeasible. In some cases, active 
sites are likely to be found on high symmetry sites of the 
surface [333]. Accordingly, Persson et al. applied a Delaunay 
triangulation on the top layer of the surface slab to retrieve 
top, bridge, and hollow sites from the corners, edges, and 
centers of the triangles [334, 335]. The number of these sites 
can then be reduced based on the symmetry of the surface 
structure. Boes et al. [331] improved the algorithm by first 
constructing a graph of the corresponding crystal structure 
with Voronoi tessellation. This allows one to identify the top 
layer nuclei of any surface resulting from that crystal struc-
ture and to construct an adsorption direction based on the 
normal vector of a plane spanned by all neighboring atoms 
in the surface graph. Deshpande et al. [336] directly inferred 
the adsorption sites from the surface graph, but constructed 
the graph with a nearest-neighbors approach. This procedure 
allowed them to deduplicate the relaxed surface structures 
according to their local-graph information. Recently, Marti 
et al. [337] released the software DockOnSurf, which was 
specifically developed to generate structures for complex 
adsorbates and surfaces based on pre-screening of conform-
ers, adsorbing them based on geometric centers of nuclei, 
and screening conformers on the surface according to dihe-
dral angles. The resulting structures were then deduplicated 
following an energy criterion.

For this work, we adopted the already existing general 
algorithms in Chemoton, which were developed for inter-
molecular reactions [323], to establish a new adsorption 
algorithm which can handle surface slabs and nanoparti-
cles, multidentate adsorption and any adsorbate, while also 
minimizing the number of screened structures. This new 
workflow is illustrated in Fig. 8.

In the case of surface slabs, Chemoton first detects 
the high symmetry sites based on Delaunay triangulation 
as shown in Fig. 8A) and implemented in pymatgen [93]. 
Then, Chemoton determines an adsorption vector based on 
steric hindrance, which allows the program to determine the 
optimal angle of adsorption, while requiring no graph infor-
mation of the surface structure. The vectors corresponding 
to the detected sites are illustrated in Fig. 8B). The adsorbate 
is then treated as an intermolecular reaction partner and the 
directions of attack can be formulated for any combination 
of active sites within the molecule as shown in Fig. 8C) for 
nuclei and in D) for bonds, which can be extended to any 
complex combination of multiple nuclei.

The adsorption guess structure is then simply generated 
by alignment of the direction vectors and can additionally 
be diversified by considering multiple rotamers defined by 
a rotation around the direction vectors. The generated guess 
structure can be optimized with any of the available quantum 
chemistry programs within SCINE (see appendix) and an 
example result is shown in E). This workflow allows us to 
reduce the number of explored structures based on symmetry 
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while also being able to treat any chemical system. If no 
significant symmetry is present, e.g., for nanoparticles, we 
apply the standard intermolecular approach implemented in 
Chemoton.

For systematic autonomous explorations, the generation 
of multiple adsorption structures of a single compound is 
not sufficient, but requires two more steps. First, the num-
ber of subsequently explored structures must be reduced by 
deduplication analysis after structure optimization, because 
different guess structure may lead to the same minimum. 
Since an energy criterion for deduplication does not directly 
relate to structural equality, it may lead to false positives and 
may hide crucial branches of the reaction network, we opt 
for a graph-based approach, which is required for large scale 
explorations in any case. Second, a first-principles-based 
exploration requires to sample different reactions, which, 
in the context of heterogeneous catalysis, often requires to 
adsorb multiple different reactants onto the same surface 
slab. This is an algorithmic problem, which has hardly been 
discussed in the literature.

The existence of an already adsorbed molecule causes 
three main issues in the context of automated adsorption 
protocols. First, the algorithm must be able to distinguish 
the existing adsorbate from the remaining surface slab, oth-
erwise it would be detected as a surface site, which may 
lead to the generation of inaccessible high-energy structures. 
Second, the existing adsorbate breaks the symmetry of the 
surface slab in most cases and the number of different sec-
ond adsorption structures is therefore significantly larger. 
Finally, the surface may have changed after the first adsorp-
tion step, which may prohibit to infer second adsorption 
positions from the structure of a clean slab.

Therefore, we implemented an algorithm within our auto-
mated exploration that tracks which nuclei are part of the 
surface and which are not. It is able to execute a modified 
Delaunay triangulation without symmetry exclusion, but 
with steric exclusion of sites too close to the first adsorbate. 
This leads to a plethora of possible sites, especially for larger 
slab models. Hence, it is often wanted to minimize the sec-
ond adsorption step to sites that are within a reasonable dis-
tance to the first adsorbate, especially since the exploration 

Fig. 8  Representation of the 
adsorption workflow imple-
mented in Chemoton: A 
two-dimensional view of a 
Cu2O (001) slab with detected 
adsorption sites marked by 
black crosses and the unit cell 
by black lines; B three-dimen-
sional view of the slab with 
the unit cell and the adsorption 
vectors marked by black sticks; 
C directions of attack indicated 
by black sticks for each nucleus 
in propylene and in D for each 
bond in propylene; E example 
for an adsorbed structure after 
structure optimization with 
PBE-D3BJ/DZVP-MOLOPT-
GTH
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should sample potential reactions of the adsorbed molecules. 
Additionally, the exploration should also consider that the 
second molecule may directly react with the adsorbate 
from the gas phase, which is why one must screen for such 
possibilities.

The adsorption algorithm discussed here now allows us to 
generalize our resource requirements analysis from a homo-
geneous reaction network to a heterogeneous one.

4.3  Resource Estimates for Automated Exploration 
of Heterogeneous Catalysts

Because a heterogeneous catalyst is per se only another com-
pound in the network, we know that our reference reaction 
network consisting of molecules only would be formed iden-
tically if we did not enforce any limitations or favored het-
erogeneous reactions. As in the case of homogeneous cataly-
sis, we cannot consider a single structure of the catalyst only. 
However, the definition of ’conformers’ is, of course, very 
different for solid state structures, which we discuss in the 
following. We will also see that new definitions for elemen-
tary steps are required which are elaborated on afterwards.

Conformers of a heterogeneous catalyst are not necessar-
ily formed from already active structures, but rather stem 
directly from the crystal structure. For regular surfaces, 
these are usually discussed in terms of their Miller indices, 
including defects and different terminations of the surface. 
A consideration of all possible surfaces is impossible due 
to their infinite number and the consideration of many, e.g., 
≥ 10 , is hardly considered in manually guided studies, which 
can afford only fewer calculations per discovered compound 
and need to exploit preexisting knowledge.

For well characterizable surfaces, we may roughly cat-
egorize automated heterogeneous explorations in terms of 
the number of the surfaces (plus decoration) considered per 
solid state catalyst. A minimal exploration would consider 
only a single surface without defects. An extensive explora-
tion would consider the (100), (110), and (111) surfaces, 
usually termed low-index surfaces, with different surface ter-
minations, as clean surfaces and a point vacancy and adatom 
each to include effects of the most-common defects. An 
exhaustive exploration would consider every surface up to a 
maximum Miller index of four ( ≈ 30 surfaces), every possi-
ble surface termination as clean surfaces and with ≈ 5 differ-
ent defects each. Before estimating the scaling of the num-
ber of surfaces, we first introduce the term of the number 
of unique elemental species e. This shall be defined as the 
number of types of atoms existing in a solid state structure, 
if all atoms are categorized based on their element, local 
coordination, and electronic properties. We can roughly esti-
mate that e linearly increases the number of possible surface 
terminations and possible point defects each. The number of 
surfaces to be considered, nsurf , is then given by

For a bielemental crystal and ntermination(e) ≈ e ≈ 2 , we esti-
mate nsurf in the three exploration protocols termed above 
as ’minimal’, ’extensive’, and ’exhaustive’ to be 2, 30, 
and 600, whereas e = 3 would increase nsurf to 3, 63, and 
1500. Of course, the number of considered Miller indices 
nindices , surface terminations ntermination , and defects ndefects 
are completely independent of each other and explorations 
can be envisioned that only focus on one of these aspects to 
decrease the computational costs.

For a given number of surfaces considered, nsurf , which 
do not mutually affect the exploration of one another, we 
can estimate the scaling of the elementary steps for each of 
them so that the total scaling will be linear in nsurf . While 
the purely molecular part of the exploration is not changed 
by the addition of a heterogeneous compound, new types 
of elementary step trials rsurf , which scale differently when 
compared to purely molecular elementary step trials rm , must 
be introduced into the network exploration. Furthermore, the 
number of possible compounds varies for this part of the net-
work, which is why we split the total number of compounds 
m into molecular compounds mm and compounds adsorbed 
on surfaces ms for our scaling estimates. Moreover, we can 
split any additional elementary step trials involving the solid 
phase into adsorption trials ra , trials between surface species 
rs , and desorption trials rd , which yields the total number of 
elementary step trials r as

The scaling of rm was already evaluated and discussed in 
Sect. 4.1 and shown in Eq. (11). The elementary step tri-
als for adsorption, ra , can be considered as special cases of 
intermolecular reactions with identical scaling to Eq. (11) 
for the molecules, whereas each considered surface is only 
a multiplicative value based on its available first adsorption 
sites nsites1 , which gives ra as

with nci for the number of conformers of compound i consid-
ered for elementary steps. Similarly, the trials for elementary 
steps on surfaces rs can also be considered as intermolecular 
reactions with the number of second adsorption sites nsites2 
in place of the different directions of attack da and rotamers 
�a , which leads to

(19)
nsurf = nindices × (ntermination(e) × ndefects × e + ntermination(e)).

(20)r = rm + nsurf × rsurf = rm + nsurf ×
(
ra + rs + rd

)
.
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In a brute-force approach, every adsorbed compound must 
also be probed to be desorbed or dissociated. The number 
of elementary step trials for complete dissociation of an 
adsorbed compound is equal to the number of compounds, 
while dissociations of adsorbed compounds can be viewed 
as intramolecular dissociations, which gives

If we now apply identical constraints on the number of pos-
sible active sites in a molecule as in our reference network 
(such as limiting intramolecular dissociation trials to repul-
sion of bonded nuclei or maximally combining bonds and 
bonds in intermolecular reaction trials), we arrive at

These additional types of reactions, which are typical for 
reactions on surfaces, are highlighted in a minimal reaction 
network in Fig. 9. In that figure, the molecular reaction net-
work I in blue is enhanced by the reaction network II, which 
consists of interactions with solid state structures.

In Fig. 9, ra corresponds to reactions 1 and 2, reaction 3 
resembles rs , the pink reaction 4 (as well as the reverse reac-
tions of 1 and 2) corresponds to rd , and the blue reaction 4 is 
an example for rm and is in general the uncatalyzed variant 
of the series of reactions shown in network II.

(23)rd =

ms�
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⌊ ni

2
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In general, ra scales quadratically with ni , linearly with 
mm , and linearly with the number of possible first adsorption 
sites nsites1 . However, the scaling with ni can again be reduced 
by exploiting graph constraints as shown in Sect. 4.1. We 
may also assume that rs scales similar to our reference 
network, although the slope of the linear scaling might be 
larger due to the factor of nsites2 . A priori nsites2 is consider-
ably larger than nsites1 due to missing symmetry as discussed 
in Sect. 4.2. However, close-proximity constraints can limit 
this to an approximately constant number of sites on the 
order of 10. By contrast, nsites1 depends on the complexity of 
the surface slab and it can be estimated to scale linearly with 
the number of unique surface species e.

The exact scaling of the elementary step trials rs and rd is 
difficult to estimate, because they only apply for compounds 
that include adsorbed species. As shown in Eq. (25), ms 
depends on the success rate � of the adsorption elementary 
steps ra and the number of elementary steps � that are found 
for the same reaction

However, the assumption that � and � are similar in value 
compared to our uncatalyzed molecular reaction network is 
not valid. While the screening algorithms within Chemo-
ton are very similar, the underlying chemical processes 
are too different to expect similar numbers and they will, 
in general, also vary between different surfaces. Due to this 
dependence on the chemical structure, we cannot provide 
valid general estimates of the number of elementary steps 
and therefore on the number of single-point calculations 
required for a heterogeneous network. However, based on 
the fact that a single surface does not require conformer gen-
eration and its different adsorption sites can be viewed as 
similar to directions of attack in a molecular structure (albeit 
with a slightly different scaling), the order of magnitude of 
required single-point calculations for a purely heterogeneous 
network should be similar to a homogeneous one.

The largest cost factor is, instead, the number of con-
sidered surfaces nsurf , which linearly increases the number 
of all calculations. Therefore, the computational costs of 
an exploration would be increased by a factor of 1000, if 
various surfaces and defects would be considered as shown 
earlier in this section. Although it can be assumed that 
100 would already cover most relevant reactions and 10 
may be enough based on restrictions that may be deduced 
from experimental data. If we therefore assume a factor of 
100, the required number of single-point calculations in a 

(25)ms =
�

�
ra.

Fig. 9  A minimal reaction network is shown consisting of a molecu-
lar part I and a solid state interaction part II. It includes two com-
pounds a and b, and one surface c. The two compounds can react to 
e uncatalyzed via the blue reaction 4 or catalyzed by c through the 
series of reactions 1-4
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brute-force approach may be similar to those required in the 
exploration of a homogeneous catalyst, which we deduced 
to be 109 − 1010.

Due to the inherently larger number of atoms in solid 
state structures (and imposed periodic boundary condi-
tions), the calculation times are usually longer compared 
to molecular systems. If we again take the example of 
propylene epoxidation, for which Cu2O is a potential cata-
lyst [338–340], we can estimate the total computing time 
based on the time required for a single calculation of a (001) 
slab with an extension of 2 × 2 × 3 , which can be taken as 
the minimal slab size for the exploration of such a reaction. 
This then leads to a total computing time of 106 − 107 years 
on a single core.

4.4  Requirements for Predictive Computational 
Catalysis

To make reliable and accurate in silico predictions about 
catalytic processes, the following requirements need to be 
fulfilled.

First, it must be guaranteed that all accessible reactions 
under some specified ambient conditions are explored. Since 
there is no way to know that everything has been found in 
an exploration, this can never be guaranteed. However, it 
needs to be shown in computer experiments that the explo-
ration algorithms chosen can reproduce the relevant parts 
of a reference network. Clearly, such reference networks for 
diverse catalytic systems must first be developed, which will 
require a community effort. While the heuristic nature of 
this approach cannot be circumvented, it is clear that the 
exploration algorithms must be general (i.e., agnostic with 
respect to all sorts of chemical constraints) and cover all 
relevant reaction types.

Second, the uncertainty of predictions must be accessible, 
which will require error estimates for all key quantities in the 
exploration process. Since it is impossible to derive accu-
rate errors for many-particle problems in quantum mechan-
ics (otherwise, an accurate quantum mechanical solution 
would have been found and the approximations would no 
longer be needed, which is impossible for any relevant cata-
lytic system), a Bayesian approach is required that transfers 
error estimates obtained for some nodes after investment of 
additional computational resources to nodes for which such 
information is not available [142, 144, 229, 341].

Third, structural fidelity, i.e., the fact that the nuclear 
scaffolds that define the external potential in the quantum 
chemical calculations sufficiently well represent the chemi-
cal system in terms of molecular structure, surface, and sol-
vent, needs to be ensured for all predictions. Only if the 
structural model adequately resembles the experimental 
situation, reliable predictions can be made.

Finally, it should be possible to use electronic struc-
ture methods applied interchangeably in order to find the 
best compromise between accuracy and speed by switch-
ing from fast-approximate to expensive-accurate methods. 
Such switches can either be driven in an automated fashion, 
if a suitable descriptor (such as confidence intervals from 
machine learning models [144]) is available, or the software 
issues a warning and requires manual intervention [151]. 
These approaches must be combined into general workflows, 
some of which will be discussed in the following section.

We emphasize that the diversity of all reaction steps that 
can occur is so vast, even if one restricts the exploration to 
the known ingredients (i.e., ignoring the unknown ones such 
as impurities in solution or at a surface), that achieving com-
pleteness is formally impossible. This is not a key problem 
of an autonomous approach that targets orders of magni-
tudes more detail (measured, e.g., in terms of the number 
of elementary steps or the number of potentially important 
impurities such as traces of oxygen or water in a reaction 
liquor) than what could be inspected manually. However, 
manual intervention is, of course, possible and can be used 
to steer an exploration into specific regions of chemical reac-
tion space by letting the search algorithms probe reactants 
that are potentially and unintentionally present in the experi-
ment. It is for this reason that we have begun to estabish 
interactive quantum mechanics [213–216, 342–345] for an 
easy and simple interference of an operator with an autono-
mously running exploration protocol.

4.5  Workflows for Efficient Computation Protocols

As shown in Sects. 4.1 and 4.3, even if a single calcula-
tion may be efficient, the amount of data generated in an 
exhaustive exploration is immense and on the scale of 109 
single-point calculations in brute force approaches. There-
fore, smart automated protocols must be established to steer 
the exploration and reduce the number of calculations in 
order to maintain efficiency through all stages of the explora-
tion process. A general paradigm for these workflows should 
be the automated selection of the minimally required algo-
rithm for each specific task, while still being transparent, 
so that the applied approximations and their limitations can 
be understood. This requirement inherently requires flexible 
and modular workflows.

A prime challenge, which demands such an approach, 
is conformer generation. The generation of conformers of 
a chemical structure is necessary to reflect the structural 
ensemble accessible at a given temperature. This has been 
of major importance in the design of new pharmaceuti-
cals [346]; hence, most conformer generation algorithms 
have been tested and compared on drug-like molecules [347, 
348]. However, the importance of conformers in the 
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elucidation of reaction mechanisms and the calculation of 
reaction barriers has also been emphasized recently [161, 
349, 350].

The most efficient methods for sampling the phase space 
of a chemical structure apply prior chemical knowledge to 
systematically generate conformers with rotations around 
rotatable bonds. Such algorithms can be developed based 
on heuristic rules [351–357], distance geometry [320, 358, 
359], machine learning [360–367], or methods beneficial 
for quantum computing [368]. However, due to the combi-
natorial increase of possible conformers with the number of 
rotatable bonds, all these algorithms become unfeasible at a 
certain system size and stochastic sampling will be required. 
Hence, at this point, the conformer generation method must 
switch to algorithms that do not aim at covering the com-
plete phase space, but sample most relevant regions of the 
PES within reasonable time. The most common examples 
in this regard are MD simulations with enhanced sampling 
techniques. Due to the plethora of different enhanced sam-
pling techniques developed, we refer the reader to recent 
reviews [369–372] for discussions of their differences and 
advantages, and to Refs. [373–375] for different applications 
in the context of conformational sampling.

Since MD simulations are inherently expensive in terms 
of computing time, it is beneficial to additionally apply a 
multilevel approach for the evaluation of the PES. Larger 
systems can first be evaluated with faster, less accurate mod-
els and the most relevant conformers can later be studied 
with more accurate methods [376, 377]. However, within 
some finite computing time given also these algorithms will 
eventually fail for increasingly larger systems. The situation 
will then be similar to that of the prediction of a most stable 
protein fold, which is a conformational sampling problem at 
its core and for which specific knowledge-based approaches 
are advantageous [378, 379].

Should the end of a chain of available algorithmic 
switches be reached, the (meta)algorithm that implements 
the switching must recognize that the problem cannot be 
solved in an autonomous fashion. Structural fidelity can 
no longer be guarantedd and manual intervention might 
be required; e.g., the algorithm may warn the operator as 
already discussed in Ref. [213]. Such cases could then be 
approached within an interactive setting [161, 213, 216, 
380].

Another well-known problem, which requires a sequential 
switching approach with maximum automation and minimal, 
but intuitive interaction, is the search for transition states 
(TS), i.e., first-order saddle points on a PES. Numerous 
stable and reliable TS optimization algorithms have been 
developed in the last fifty years [381–383]. However, due 
to the difficult nature of the optimization problem, a uni-
versally successful algorithm that is able to find all relevant 
TS from a limited number of start conformations will most 

likely never exist. Therefore, the software must be able to 
recognize that two or more structures should be connected 
via a TS, although a series of attempts of various algorithms 
has failed to locate a TS. This recognition can be based on 
physical or structural descriptors such as RMSD or graph 
comparisons. In such a case, the software can present the 
issue to the operator in an interactive manner, who can 
decide, whether this possible reaction is relevant and may 
even provide another educated guess for the TS based on 
real-time quantum chemistry [215, 216, 345].

Finally, we discuss required workflows to model het-
erogeneous processes based on the algorithms outlined 
in Sect. 4.2. In general, heterogeneous reactions can be 
explored with two different approaches. On the one hand, 
the chemical reactions can first be explored for molecules 
in the gas phase and in a second step all possible intermedi-
ates can be transferred onto the heterogeneous catalyst in an 
adsorption step. This saves computing time by minimizing 
the exploration trials in the solid state, which requires longer 
computing times, and enables double-ended searches for the 
reactions in the adsorbed state. However, this approach may 
fail if the intermediates of the heterogeneously catalyzed 
reaction are significantly different to those in the gas phase.

On the other hand, the exploration can proceed by screen-
ing for potential reactions directly in the solid state, which 
was outlined in our resource estimates in Sect. 4.3. In this 
approach, the reactants are adsorbed on a minimal surface 
slab directly and screened for conformations, either on the 
surface directly or by adsorbing various conformers. Then, 
the ranked adsorbed conformations of multiple reactants 
can be combined on a surface slab, which may require an 
extension of the surface. There, the second adsorption sites 
must be limited based on distance constraints and preferable 
adsorption sites already screened in the first adsorption as 
discussed in Sect. 4.2. The various possible extensions of the 
solid state structure must also be carefully stored and evalu-
ated in reaction energy analysis across the reaction network.

5  Conclusions

Autonomous reaction network exploration presents an inno-
vative, unbiased, and expansive approach of studying chemi-
cal reactivity. In this work, we discussed the potential of 
understanding catalytic processes in terms of automatically 
generated reaction networks from first-principles calcula-
tions and elaborated on required concepts and workflows. 
First-principles-based approaches are expensive in terms of 
computer time, but they are indispensable if detailed mecha-
nistic insight is sought for. High throughput experimentation 
and data mining are complementary and may even deliver 
results for catalyst design purposes much faster than first-
principles calculations. However, first-principles modeling 
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is also appropriate in cases where experiments are difficult 
to conduct (e.g., in high-throughput settings) or where data 
are incomplete.

As an example, we estimated the computational costs 
associated with exhaustive first-principles explorations in 
brute force approaches for a reference reaction network of 
106 structures constructed by starting with two reactants. Our 
resource estimates showed that truly extensive explorations 
based on density functional theory calculations without acti-
vated pruning schemes (to cut deadwood in the exploration) 
are not feasible because of the sheer number of explora-
tory calculations to be carried out. This can be alleviated 
by suitable first-principles reactivity descriptors [160–163] 
which not only can suggest potentially reactive sites to be 
prioritized in the exploration process, but which can also 
determine those sites that are likely to be unreactive and that 
can therefore be given a very low priority in the exploration 
process.

The efficiency of building reaction networks with time-
independent calculations is also increased by exploiting the 
fact that it parallelizes in a trivial manner because many ele-
mentary reaction trials can be carried out in parallel. Moreo-
ver, fast-but-very-approximate semi-empirical calculations 
can be employed for acquiring quickly a broad overview on 
a network. The key property of a suitable semi-empirical 
method must be structural fidelity since an energy refine-
ment can be done in a subsequent step. In an autonomous 
setting, this is most efficiently accomplished by automated 
determination of those structures (based on uncertainty 
quantification) that should be subjected to reference calcu-
lations. Hence, computational costs are significantly reduced 
by such selective local refinement of the network data [142, 
144, 229, 341].

If properly set up by tailored meta-algorithms that control 
efficient workflows, the autonomous exploration and design 
of catalytic processes based on reaction networks can be 
made routinely applicable. Its advantages, compared to 
standard manual exploration with standard quantum chemi-
cal techniques, are that orders of magnitude more reaction 
steps can be inspected, which is key for predictive work that 
must not miss out on important reaction steps. Obviously, no 
guarantee of completeness can be given, but there is no alter-
native other than autonomous procedures if huge sections of 
a reaction network shall be mapped, rather than focusing on 
a few steps that were considered relevant for some reason 
(e.g., based on prior experimental knowledge).

While this already holds true for a given set of reactants, 
catalytic processes should be described in open-ended 
and rolling reaction network explorations because minute 
amounts of impurities may interfere in a decisive way. This 
requires an interactive option for adding new reactants at 
any time of an autonomous exploration process, which can 

then benefit from human insight that can be exploited as a 
steering element in the exploration process.

To conclude, autonomous reaction network exploration 
presents a bright avenue for future computational catalysis 
as the depth of understanding acquired through the wealth 
of data are unprecedented and increases the probability of 
unexpected discoveries made in silico.

Appendix

Computational Methodology

All data management, quantum chemical calculations, and 
structure manipulations were conducted within our general 
software framework SCINE [212]. Its module Chemo-
ton  [161, 323] finds new elementary steps with single 
ended searches of geometrically aligned structures based 
on reaction coordinates. The reaction coordinates are based 
on reactive sites and directions of attack. The sites are deter-
mined by first-principles-based descriptors or a combinato-
rial geometric criterion in an exhaustive search as applied 
in this work. The directions of attack are derived from least 
steric hindrance. Our algorithm then extracts a potential 
transition state (TS) structure from a given reaction coordi-
nate by pushing together (or pulling apart) two predefined 
lists of reactive sites with a constant force given as an input 
parameter. The force parameter controls the length of indi-
vidual steps in the trajectory. The push or pull is stopped 
when a stop criterion, such as colliding nuclei or a change 
in bonding, has been reached. Upon pushing together (or 
pulling apart) the reactive centers, all atoms besides the reac-
tive sites are continuously relaxed. This approach allows us 
to start screenings for potential elementary steps from any-
where on the PES, not necessarily starting at a minimum, the 
single force parameter does not control the allowed energy 
barriers, but rather allows to balance the computational 
costs and efficiency of finding a suitable TS guess because 
it solely controls the step length. Smaller step lengths allow 
for a more accurate location of a potential TS, but require 
more energy calculations. The potential TS structure is then 
refined with an optimization algorithm [384–387] and then 
automatically verified by intrinsic reaction coordinate (IRC) 
optimizations [388].

The elementary steps between structures are categorized 
into reactions, which connect compounds. A compound con-
sists of multiple structures, which share an identical con-
nectivity graph. The graphs are constructed by our library 
Molassembler [319] which provides the functionality 
for generating graphs and guess structures of conformers 
based on distance geometry for both organic and inorganic 
structures [320].
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All calculations were performed by external programs, 
which can be controlled by the SCINE interface [389, 390] 
that allows to freely select and substitute the underlying 
physical model. The available methods range from system-
focused parametrization [391], fast semi-empirical meth-
ods [322, 392], DFT [393–395], up to highly accurate multi 
reference calculations [396], possibly applying multiscale 
models [397, 398].

The uncatalyzed reference network of this work was 
explored with GFN2 as implemented in the xTB pro-
gram [322, 399]. Molecular oxygen was calculated in its 
triplet state. For all bimolecular combinations of molecules 
within the exploration, the spin multiplicity was chosen as 
the sum of the individual multiplicities minus one. After one 
or more products were found, the smallest possible multi-
plicity, i.e., singlet states for molecules with an even num-
ber of electrons and doublet states otherwise, was assumed. 
Throughout this study electronic energies without zero-point 
vibrational corrections are considered. During the explora-
tion, the Hessian was calculated for all newly found struc-
tures to confirm them as true minima before making them 
available for further elementary step trials.

All DFT calculations were carried out with the Per-
dew–Burke–Ernzerhof (PBE) exchange-correlation func-
tional  [400] with D3 dispersion correction  [401] and 
Becke–Johnson damping  [402]. The calculations of the 
organometallic catalyst were carried out with TURBO-
MOLE 7.4.1 [395] with the def2-SVP basis set [403] and 

density-fitting resolution of the identity through the def2/J 
auxiliary basis set [404]. The periodic DFT calculations in 
the Gaussian Plane Wave (GPW) formalism [405] were car-
ried out with CP2K 8.1 [406] with the MOLOPT-DZVP 
basis set [407] and GTH pseudopotential [408], for which 
we implemented an interface in SCINE.

The crystal structure of Cu2 O was retrieved from the 
Materialsproject database [73] and the (001) surface was 
generated with pymatgen [93, 409]. The calculations were 
carried out on a 2 × 2 × 3 supercell of the surface slab 
consisting of 72 atoms with 15 Å vacuum added in the z 
direction to avoid unphysical interactions of images in this 
direction.

Conformational Clustering

All 57 conformer structures were optimized as outlined 
above. The RMSD was calculated for every pair after an 
optimal alignment. We then constructed the dendrogram 
depicted in Fig. 10 based on average linkage agglomera-
tive hierarchical clustering. The cutoff value was chosen 
to be 2.5 Å based on inspection of the dendrogram and the 
resulting centroids of the clusters, which were determined as 
the structures with the smallest sum of RMSDs to all other 
structures within the cluster. The nine representative struc-
tures shown in Fig. 7B) were, however, not the centroids, but 
those with the lowest electronic energy.

Fig. 10  A dendrogram of all 57 
optimized conformers generated 
with average linkage agglom-
erative hierarchical clustering 
based on the RMSD. Clusters 
resulting from a cutoff value of 
2.5 Å are colored
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