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Background: Although the tumor microenvironment (TME) is known to influence the

prognosis of glioblastoma (GBM), the underlying mechanisms are not clear. This study

aims to identify hub genes in the TME that affect the prognosis of GBM.

Methods: The transcriptome profiles of the central nervous systems of GBM patients

were downloaded from The Cancer Genome Atlas (TCGA). The ESTIMATE scoring

algorithm was used to calculate immune and stromal scores. The application of these

scores in histology classification was tested. Univariate Cox regression analysis was

conducted to identify genes with prognostic value. Subsequently, functional enrichment

analysis and protein–protein interaction (PPI) network analysis were performed to reveal

the pathways and biological functions associated with the genes. Next, these prognosis

genes were validated in an independent GBM cohort from the Chinese Glioma Genome

Atlas (CGGA). Finally, the efficacy of current antitumor drugs targeting these genes

against glioma was evaluated.

Results: Gene expression profiles and clinical data of 309 GBM samples were obtained

from TCGA database. Higher immune and stromal scores were found to be significantly

correlated with tissue type and poor overall survival (OS) (p= 0.15 and 0.77, respectively).

Functional enrichment analysis identified 860 upregulated and 162 downregulated cross

genes, which were mainly linked to immune response, inflammatory response, cell

membrane, and receptor activity. Survival analysis identified 228 differentially expressed

genes associated with the prognosis of GBM (p ≤ 0.05). A total of 48 hub genes

were identified by the Cytoscape tool, and pathway enrichment analysis of the genes

was performed using Database for Annotation, Visualization and Integrated Discovery

(DAVID). The 228 genes were validated in an independent GBM cohort from the CGGA.

In total, 10 genes were found to be significantly associated with prognosis of GBM. Finally,

14 antitumor drugs were identified by drug–gene interaction analysis.

Conclusions: Here, 10 TME-related genes and 14 corresponding antitumor agents

were found to be associated with the prognosis and OS of GBM.
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INTRODUCTION

Glioblastoma (GBM) is a highly aggressive brain tumor with
poor prognosis (1). The 1- and 5-year survival rates of
GBM are estimated to be 35.7 and 4.7%, respectively, while
its average overall survival (OS) time is 12–18 months (2).
The Cancer Genome Atlas (TCGA) is a valuable resource
used for the classification and discovery of large cancer gene
expression datasets (3, 4). GBM is classified into four subtypes:
proneural, neural, classic, and mesenchymal (5). In 2016, the
WHO updated the classification of GBM into three subtypes
based on molecular and histological features: (1) isocitrate
dehydrogenase (IDH) wild type, (2) IDH mutant, and (3)
not otherwise specified (NOS) (unspecified) (6). Several genes
and transcription factors have been shown to play a critical
role in the occurrence, development, and evolution of GBM
(7, 8). Other scholars have demonstrated that the tumor
microenvironment (TME) strongly influences gene expression
in tumor tissues, thus having a notable impact on the clinical
outcomes of cancers (9–14). The TME refers to the environment
around a tumor and is mainly composed of immune cells,
endothelial cells, mesenchymal cells, inflammatory mediators,
and stromal cells (15, 16). In tumors, immune and stromal cells
are the two main non-tumor constituents with diagnostic and
prognostic potential.

Various tools have been developed to analyze the molecular
composition of the TME in TCGA gene expression datasets
(14, 17). For example, the estimation of stromal and immune
cells in malignant tumor tissues using expression data
(ESTIMATE) scoring algorithm estimates the number of
stroma and immune cells in tumors (14). This algorithm
predicts non-tumor cell infiltration by analyzing the
expression patterns of particular genes in immune and
stromal cells and also calculates their scores. ESTIMATE
has been applied to study various cancers, including breast
(18), prostate (19), and colon cancer (20). However, the
significance of immune and stromal scores in GBM has not
been established.

Currently, GBM is difficult to treat because of several
challenges, such as the blood–brain barrier, tumor heterogeneity,
drug efflux pumps, and glioma stem cells (21, 22). Therefore,
it is important to find new druggable targets for the treatment
of GBM.

Herein, we calculated the immune and stromal scores of GBM
cohorts downloaded from TCGA database using the ESTIMATE
algorithm (14). An array of TME-associated genes that predict
poor outcomes in GBM patients were found. Finally, the Chinese
Glioma Genome Atlas (CGGA) GBM cohort was used to validate
the prognostic performance of the genes. Drugs targeting the
genes were identified in the Dgidb database.

MATERIALS AND METHODS

Database
The transcriptome profiles of GBM patients were obtained
from TCGA database (https://tcga-data.nci.nih.gov/tcGA/).

The gene expression data of GBM were determined using
Agilent G4502A072 (Sep 08, 2017). Clinical data, including
gender, tissue type, prognosis, and survival rates, were retrieved
from TCGA database. Immune and stromal scores were
calculated using the ESTIMATE algorithm (14). The gene
expression profiles of GBM patients were downloaded
from the CGGA database (http://www.cggA.org.cn/). The
RNA sequencing of samples from diffuse gliomas was
performed using the Agilent Whole Human Genome array.
The survival and prognosis data were downloaded from the
CGGA database.

Identification of Differentially Expressed
Genes
The datasets were analyzed using the LIMMA package (23).
Fold change ≥1.5 and adjusted p ≤ 0.05 were set as
the cutoff thresholds for selection of differentially expressed
genes (DEGs).

Construction of a Protein–Protein
Interaction Network and Module Analysis
Protein–protein interaction (PPI) networks were constructed
using STRING v11.0. The full gene list was uploaded to the
database. Disconnected nodes were excluded from the resulting
network (24). The PPI network was visualized using Cytoscape
(version 2.8.1) (25).

Overall Survival Analysis
The association of the hub genes with the OS rate was determined
using survival data of GBM patients obtained from TCGA-
BRCA database.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Analyses
Gene ontology (GO) is a tool used to predict the biological
processes (BPs) of gene. The GO terms analysis included
BPs, molecular function (MF), and cellular composition
(CC) (26, 27). Kyoto Encyclopedia of Genes and Genomes
(KEGG) is an open-access resource for analyzing the
biological pathways of genes. These tools were used to
determine functions and pathways associated with the
prognostic value genes (28). p ≤ 0.05 was considered
statistically significant.

Drug–Gene Cross-Talk and Functional
Analysis of Potential Genes
The Drug Gene Interaction Database (DGIdb) was used to
determine potentially druggable targets for the mutated and
altered genes (29).

Statistical Analysis
All statistical analyses were performed using R/BioConductor
(version 3.6.3) with two-tailed p-values. For Cox regression
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FIGURE 1 | Immune scores and stromal scores are associated with glioblastoma (GBM) subtypes and their overall survival. (A) Distribution of immune scores of GBM

subtypes. Violin plot shows that there is significant association between GBM subtypes and the level of immune scores (n = 309, p < 0.001). (B) Distribution of stromal

scores of GBM subtypes. Violin plot shows that there is significant association between GBM subtypes and the level of stromal scores (n = 309, p < 0.001). (C) GBM

cases were divided into two groups based on their immune scores: as shown in the Kaplan–Meier survival curve, median survival of the low-score group is longer than

high-score group; it is not statistically different as indicated by the log rank test; p-value is 0.15. (D) GBM cases were divided into two groups based on their stromal

scores: the median survival of the low-score group is longer than the high-score group; similarly, it is not statistically different as indicated by the log rank test p = 0.77.
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FIGURE 2 | Comparison of gene expression profile with immune scores and stromal scores in glioblastoma (GBM). (A) Volcano plot of differentially expressed genes

(DEGs) of immune scores. Red, upregulated DEGs; blue, downregulated DEGs. (B) Volcano plot of DEGs of stromal scores. Red, upregulated DEGs; blue,

downregulated DEGs. (C) Heatmap of the DEGs of immune scores of top half (high score) vs. bottom half (low score). p < 0.05, fold change > 1.5). (D) Heatmap of

the DEGs of stromal scores of top half (high score) vs. bottom half (low score). p < 0.05, fold change > 1.5). (E,F) Venn diagrams showing the number of commonly

upregulated (E) or downregulated (F) DEGs in stromal and immune score groups.
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FIGURE 3 | Gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for differentially expressed genes (DEGs) significantly

associated with immune scores. (A) Top 10 GO terms. Number of gene of GO analysis was acquired from Database for Annotation, Visualization and Integrated

Discovery (DAVID) functional annotation tool. p < 0.05. (B) KEGG pathway.
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analyses, survival data that show the state of survival and the
time of follow-up were considered the dependent variable,
whereas continuously expressed values of the 10 RNAs
were considered as the independent variables. Kaplan–
Meier (KM) plots and receiver operating characteristic
(ROC) curves for the prognosis model were constructed
using R (survival, survminer, and ggplot2 packages).
The Cox proportional hazards regression model was
applied to determine OS, and log-rank test was used
to compare differences in OS. p < 0.05 was considered
statistically significant.

RESULTS

Immune and Stromal Scores Are
Associated With Glioblastoma Subtypes
and Survival Outcome
Gene expression profiles of 309 GBM cases initially diagnosed
between 1989 and 2010, and their associated clinical data,
were downloaded from TCGA dataset. Of the 309 GBM cases,
122 (39.5%) were female and 187 (60.5%) were male. Using
the ESTIMATE algorithm, we calculated the stromal scores,
which ranged from 1,430.1 to 3,920.55, and immune scores,

TABLE 1 | Two hundred twenty-eight significantly gene correlated with poor overall survival.

Gene symbols

ABCC3, CASP4, DDIT4L,GPR84, LOC654346, PDPN, SDC2, TMEM176A, AHNAK2, CASP5c, DENND2D, GZMB, LOX, PHLDA3, SERPINA3, TMEM176B,

ALPK1, CAST, DIRAS3 HCST, LOXL1, PKIB, SERPING1, TNC, ANG, CCDC109B, DKFZP586H2123, HLA-DPB2, LRG1, PLA2G5, SIGLEC10, TNFRSF11B,

ANXA1, CCR5, DOK3, HOXB4, LRRC25, PLAUR, SIGLEC7, TNFRSF1A, ANXA2, CD109, DPYD, HPS3, LTF, PLP2, SIGLEC8, TPP1, ANXA4, CD14, DRAM,

HRH1, LY75, PLSCR1, SIGLEC9, TREM1, APOB48R, CD163, DTX3L, HSPA6, MAN1C1, PLTP, SIPA1, TRIM6, APOBEC3C, CD44, ECGF1, IBSP, MAOB,

PLXDC2, SLAMF8, TRPM8, APOBEC3F, CD68, EHBP1L1, IFITM2, MARCO, POSTN, SLC11A1, TTC12, APOBEC3G, CD84, EMP3, IFITM3, MDFIC, PPM1M,

SLC16A3, UGCG, AQP9, CEBPD, ETV7, IL13RA1, MGC24103, PQLC3, SLC47A2, UNC93B1, ARPC1B, CEBPE, F3, IL4I1, MGC7036, PRAM1, SNX10, UPP1,

ARSJ, CFI, FAH, IL7, MOXD1, PSCD4, SOCS3, VAMP5, BCL3, CHI3L1, FAM129A, ISG20, MR1, PTRF, SP140, VASN, BIC, CHIT1, FBLN5, ITGA3, MRO, PTX3,

SPI1, VDR, BST1, CLDN23, FCER1G, ITGAM, MSR1, RARRES2, SPP1, WIPF1, BST2, CLEC5A, FCGBP, ITGB4, MST150, RCSD1, SQRDL, WWTR1,

C10orf10, CLEC7A, FCGR2B, ITGB5, MXRA5, RDH10, SRPX2, C17orf87, COL8A1, FCGR3A, KCNN4, MYBPH, RIN3, STAB1, C1orf34, COL8A2, FER1L3,

LCTL, NAGA, RIPK3, STEAP3, C1RL, COPZ2, FES, LGALS1, NCF1, RNASE2, tcag7.1314, C1S, CP, FGL2, LGALS3, NFE2L3, RNASE3, TCTEX1D1, C21orf62,

CPD, FLJ46266, LGALS8, NFKBIZ, RNASE4, TFEC, C2orf39, CSF3R, FMOD, LGALS9, NMI, S100A10, TGFBI, C3AR1, CTSB, FTL, LHFPL2, NYD-SP21,

S100A11, THNSL2, C5AR1, CTSL1, FZD7, LILRB3, OCIAD2, S100A4, TIMP1, C5orf29, CXCL10, GJB2, LIMS1, P4HA2, SAMD9, TLR3, CA12, CXCL14,

GPR160, LOC388335, PBEF1, SAMD9L, TMBIM1, CAPG, CYP19A1, GPR18, LOC493869, PDLIM4, SCIN, TMEM154

FIGURE 4 | Correlation of expression of individual differentially expressed genes (DEGs) in overall survival in The Cancer Genome Atlas (TCGA). Kaplan–Meier survival

curves were generated for selected DEGs extracted from the comparison of groups of high (red line) and low (blue line) gene expression. p < 0.05 in log rank test. OS,

overall survival in days.
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FIGURE 5 | Protein–protein interaction (PPI) network of differentially expressed genes (DEGs). (A) Based on the STRING online database, 207 genes/nodes were

filtered into the DEG PPI network. (B) The most significant module 1 from the PPI network. (C) The second significant module 2 from the PPI network. The color of a

node in the PPI network reflects the log (FC) value of the Z score of gene expression, and the size of node indicates the number of interacting proteins with the

designated protein.
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which ranged from −405.52 to 3,640.43 (Figures 1A,B). The
mesenchymal cell subtype had the highest immune and stromal
scores, indicating that immune and stromal scores can be used
for subtype classification.

To determine the correlation between OS and the two scores,
309 GBM cases were divided into high- and low-score groups
based on the immune and stromal scores. KM analysis revealed
that patients with high immune scores had lower OS than those
with low immune scores (442 vs. 394 days, log-rank test p =

0.15, Figure 1C). Notably, patients with high interstitial scores
had shorter median OS (442 vs. 422 days, log-rank test p = 0.77,
Figure 1D) than patients with low interstitial scores, although the
difference was not significant.

Association of Gene Expression Profiles
With Immune Scores and Stromal Scores
in Glioblastoma
The data obtained from TCGA database were standardized using
the LIMMApackage, and the results were visualized on heatmaps
and a volcano map (Figures 2A–D). The analysis revealed
different gene expression profiles for high/low immunoassays
and high/low stromal assays. Subgroup analysis based on
immune scores revealed that 860 genes were upregulated and
162 genes were downregulated in the high-score group compared
with the low-score group (fold change ≥1.5, p ≤ 0.05). Similarly,
611 genes were upregulated and 37 were downregulated in
the high stromal score group. The overlap between genes
revealed that 601 were upregulated and 36 downregulated
(Figures 2E,F). Interestingly, the DEGs extracted from the
immune score comparison were found to have covered most of
the genes extracted from the comparison based on stromal scores.
Therefore, these DEGs were further analyzed.

To predict the roles of the DEGs, GO function analysis
was performed. For the immune score group, the DEGs were
enriched in immune response in the biological component,
inflammatory response in the cellular component, and plasma
membrane and receptor activity in the MF component
(Figure 3A). KEGG pathway analysis identified 57 pathways
associated with the DEGs. The top 5 enriched pathways were
cytokine–cytokine receptor interaction pathways (59 DEGs),
viral protein cross-talk with cytokine and cytokine receptor
pathways (34 DEGs), hematopoietic cell lineage (31 DEGs),
chemokine signaling pathways (31 DEGs), and tuberculosis-
related pathways (57 DEGs) (Figure 3B).

Impact of the Differentially Expressed
Genes on Overall Survival
To determine whether the DEGs were associated with the OS,
KM survival curves were designed based on TCGA dataset.
Among the 860 DEGs upregulated in the high-immune scores
group, 228 DEGs were significantly associated with poor OS (log-
rank test, p ≤ 0.05, Table 1). The selected genes are shown in
Figure 4.

Construction of a Protein–Protein
Interaction Network for the Genes With
Prognostic Value
To analyze the interaction between identified DEGs, a PPI
network was constructed using the STRING (http://string-db.
org). A total of 228 genes were included in the PPI network,
which contained co-genes, including 207 nodes, 1,481 edges, and
a score > 0.25 (Figure 5A). With the use of MCODE analysis,
the top 2 significant modules were selected for further analysis
(Figures 5B,C, Table 2).

Functional Enrichment Analysis for Genes
With Prognostic Value
Consistent with PPI network analysis, functional enrichment
clustering of these genes revealed a strong association of the genes
and immune response. A total of 115 GO terms of BP, 21 of
CC, and 48 of MF were found to be significant (FDR ≤ 0.05, –
log FDR ≥ 1.301). The top GO terms associated with the genes
were immune/inflammatory response, extracellular region, and
carbohydrate binding (Figure 6A). Moreover, KEGG analysis
revealed that all pathways were associated with immune response
(Figure 6B).

Validation of the Prognostic Value of Genes
in the Chinese Glioma Genome Atlas
Dataset
To understand whether the genes identified in TCGA database
also affect the prognosis of other cases of GBM, we downloaded
and analyzed gene expression data from 124 cases of GBM in
an independent glioma database, CGGA. A total of 10 genes
were validated (Figure 7) to be significantly associated with poor
prognosis (Table 3).

Drug–Gene Interaction and Functional
Analysis of the Genes
Drug–gene interaction analysis was performed on the 10
validated genes assigned to the critical gene module 1. The
DGIdb analysis identified 186 drugs that interacted with the

TABLE 2 | Forty-eight genes in the two modules that obtained from TCGA

database.

Categories Gene symbols

Cluster 1 AQP9, SLC11A1, TLR3, SIGLEC9,

SIGLEC7, TFEC, FGL2, ITGAM, CD14,

CD68, LILRB3, CD163, CXCL10, CCR5,

CSF3R, C5AR1, MSR1, TREM1,

FCGR2B, FCER1G, FCGR3A, CLEC7A,

C3AR1, SPI1, MS4A14, SLAMF8, GPR84,

CLEC5A, RNASE2, APOBR, STAB1

Cluster 2 SPP1, S100A4, TGFBI, POSTN, LY75,

CAPG, PLAUR, ANXA4, BST2, GZMB,

S100A10, LOX, CHI3L1, TNFRSF11B,

ANXA2, ANXA1, F3

TCGA, The Cancer Genome Atlas.
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FIGURE 6 | Gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for differentially expressed genes (DEGs) significantly

associated with overall survival. (A) Top 10 GO terms. Number of gene of GO analysis was acquired from Database for Annotation, Visualization, and Integrated

Discovery (DAVID) functional annotation tool. p < 0.05. (B) KEGG pathway.

Frontiers in Neurology | www.frontiersin.org 9 May 2021 | Volume 12 | Article 610797

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Jiang et al. Biomarkers in Glioblastoma

FIGURE 7 | Validation of correlation of differentially expressed genes (DEGs) extracted from The Cancer Genome Atlas (TCGA) database with overall survival in

Chinese Glioma Genome Atlas (CGGA) cohort. Kaplan–Meier survival curves were generated for selected DEGs extracted from the comparison of groups of high (red

line) and low (blue line) gene expression. p < 0.05 in log rank test. OS, overall survival in days.

TABLE 3 | Genes significant in GBM overall survival identified in both TCGA and

CGGA.

Gene symbols

BCL3, C2orf29, CD163, F3, FCGR2B, HRH1, PRAM1, SLC16A3, SOCS3,

TREM1

GBM, glioblastoma; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma

Genome Atlas.

histamine receptor H1 (HRH1) gene, 22 drugs that interacted
with Fc fragment of IgG receptor IIb (FCGR2B) gene, two
drugs that interacted with solute carrier family 16 members
3 (SLC16A3), two drugs that interacted with CD163 (CD163
molecule), and three drugs that interacted with coagulation factor
III, tissue factor (F3). Of the 215 drugs, 14 targeted FCGR2B and
SLC16A3 and exhibited antineoplastic activity and anti-GBM
activity (Table 4).

DISCUSSION

Here, gene expression data from TCGA and survival data of
309 GBM cases were analyzed. A total of 228 genes were found
to be differentially expressed between samples with high and
low immune or stroma scores. Importantly, 10 genes were
validated in GBMpatients fromCGGA, a separate GBMdatabase
(Figure 8). Finally, analysis of gene–drug database identified 14
drugs that interacted with the 10 genes.

Comparison between high and low immune scores groups
identified 860 DEGs, many of which were found to be involved

TABLE 4 | Candidate drugs targeting genes with glioblastoma.

Number Drug Gene Drug–gene interaction

1 Cetuximab FCGR2B Antineoplastic

2 Etanercept FCGR2B Antineoplastic

3 Adalimumab FCGR2B Antineoplastic

4 Trastuzumab FCGR2B Antineoplastic

5 Rituximab FCGR2B Antineoplastic

6 Muromonab-CD3 FCGR2B Antineoplastic

7 Tositumomab FCGR2B Antineoplastic

8 Alemtuzumab FCGR2B Antineoplastic

9 Alefacept FCGR2B Antineoplastic

10 Efalizumab FCGR2B Antineoplastic

11 Daclizumab FCGR2B Antineoplastic

12 Bevacizumab FCGR2B Antineoplastic

13 Natalizumab FCGR2B Antineoplastic

14 Streptozotocin SLC16A3 Antineoplastic

in the TME, as revealed by GO term analysis (Figure 3). This
finding was consistent with previous reports on the function of
immune cells and extracellular matrix (ECM) molecules in the
TME of GBM (30–33).

Next, we examined the impact of the 860 genes on the OS of
GBM patients. The results showed that 228 genes were associated
with poor outcomes. Additionally, we constructed the top 2 PPI
modules that were related to immune/inflammatory responses
(Figure 5).
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FIGURE 8 | Data analysis workflow.

Finally, using an independent cohort of 124 GBM patients,
the 10 TME-related genes were validated and found to
be significantly correlated with the prognosis of GBM
(Table 3). Analysis of the DGIdb database identified 215
drugs that were associated with the genes. Among them, 14
drugs targeted FCGR2B and SLC16A3 genes and exhibited
antineoplastic properties.

SLC16A3 regulates the secretion of lactic acid, which
maintains pH and the Warburg effect (34). Multiple studies
indicate that overexpression of SLC16A3 promotes the growth
and proliferation of hypoxic cancer cells and is associated
with poor cancer prognosis (35–37). FCGR2B belongs to
the rhodopsin-like G-protein-coupled receptor family. It
is expressed in multiple diseases, including systemic lupus
erythematosus, non-small cell lung cancer, and IgA nephropathy
liver hepatocellular carcinoma (38–42).

The expression of genes has been reported to influence the OS
of GBM, based on findings from cancer cell line experiments,

animal tumor models, or patient samples. However, due to the
complexity of the GBM microenvironment, a more in-depth
analysis should be performed using larger patient cohorts. The
rapid development of whole-genome sequencing technology has
led to the development of high-throughput, publicly available
cancer databases, such as TCGA and CGGA. Other databases
such as DGIdb provide a basis for large GBM data analysis
(8, 43–45).

Previous studies have found that various tumor
intrinsic genes influence various aspects of the TME
(8). Here, we focused on gene features of the TME that
influence the development, progression, and the OS of
GBM patients. The findings of this study expand our
understanding of the complex interaction between GBM and
its TME.

In summary, this study found 10 TME-related genes that
influence the OS of GBM patients. By using the DGIdb database,
several drugs that interact with the genes in GBMwere identified.
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Some of the identified genes can be considered as potential
biomarkers of GBM. It would be interesting to find out whether
a combination of these genes can better predict the survival
rates of GBM patients. Further characterization of the identified
drugs is advocated to reveal effective drugs for the treatment
of GBM.
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