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Abstract
The response and adaption to salt remains poorly understood for beach morning glory [Ipo-
moea imperati (Vahl) Griseb], one of a few relatives of sweetpotato, known to thrive under

salty and extreme drought conditions. In order to understand the genetic mechanisms

underlying salt tolerance of a Convolvulaceae member, a genome-wide transcriptome

study was carried out in beach morning glory by 454 pyrosequencing. A total of 286,584 fil-

tered reads from both salt stressed and unstressed (control) root and shoot tissues were

assembled into 95,790 unigenes with an average length of 667 base pairs (bp) and N50 of

706 bp. Putative differentially expressed genes (DEGs) were identified as transcripts over-

represented under salt stressed tissues compared to the control, and were placed into met-

abolic pathways. Most of these DEGs were involved in stress response, membrane

transport, signal transduction, transcription activity and other cellular and molecular pro-

cesses. We further analyzed the gene expression of 14 candidate genes of interest for salt

tolerance through quantitative reverse transcription PCR (qRT-PCR) and confirmed their

differential expression under salt stress in both beach morning glory and sweetpotato. The

results comparing transcripts of I. imperati against the transcriptome of other Ipomoea spe-
cies, including sweetpotato are also presented in this study. In addition, 6,233 SSRmarkers

were identified, and an in silico analysis predicted that 434 primer pairs out of 4,897 target

an identifiable homologous sequence in other Ipomoea transcriptomes, including sweetpo-

tato. The data generated in this study will help in understanding the basics of salt tolerance

of beach morning glory and the SSR resources generated will be useful for comparative

genomics studies and further enhance the path to the marker-assisted breeding of sweetpo-

tato for salt tolerance.
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Introduction
Salt and drought stresses are two major abiotic constraints to furthering crop food production.
Water soluble salt affects more than 800 million hectares of land worldwide. Salts in soil can
primarily originate from soil parent material, secondarily from irrigation water, or from fertil-
izers, manures, compost, and other amendments [1]. Soil salinity affects sweetpotato produc-
tivity and expansion of cultivation in many parts of world, including Africa where it is a staple
food [2]. A better understanding of underlying mechanism of salt tolerance in plants adapted
to saline environments may offer clues to alleviate limitations to crop productivity and opening
new crop lands with a saline environment.

Beach morning glory (Ipomoea imperati, Convolvulaceae), a native of tropical Central
America and part of southeastern North America, is a prostrate vine that is distributed in the
backshore of coastal beaches of most continents, and is common in the dune system (3). This
species thrives in poor soils enriched in salt, and is therefore adapted to saline environments.
Identifying genes for salt tolerance in this species might facilitate the usefulness of current tran-
scriptome and genomic resources available for sweetpotato [3,4] and serve as a basis towards
genic marker-assisted breeding for salt tolerance in sweetpotato. Next generation sequencing
(NGS) has been utilized to unravel genes and pathways on a transcriptome-wide scale in non-
model plant species For example, 454 and Illumina platforms have benefited the transcriptome
analysis of sweetpotato by identifying genes involved in the development of storage roots (4)
and documenting functional transcripts on a global scale [5,6]. None of these studies has
focused on transcriptome and gene expression profiling of sweetpotato under salinity stress.
Lack of a reference sweetpotato genome and the unknown potential existing in sweetpotato for
salt tolerance is unexplored. Transcriptome profiling by next generation sequencing technolo-
gies are being widely applied in the study to identify components that mediate abiotic stress
responses in plants, specifically from wild and non-model plants [7–9].

Plant adaptation to salinity depends primarily on three mechanisms: salt exclusion, osmotic
stress tolerance, and the tolerance of tissue to accumulated salt ions [10]. At the molecular level,
salt tolerance in plants is associated with genes implicated in ion homeostasis by transporters
located in the plasma membrane and in the tonoplast [11]; efflux and sequestration of ions are
the two underlying strategies by which plants can adapt to growth when challenged with salinity
stress. Sodium-hydrogen (Na+/H+) exchangers and high-affinity potassium (K+) transporters
(HKT) that are stimulated in response to an increase in sodium ions are among key components
associated with salinity tolerance. The Arabidopsis thaliana vacuolar AtNHX1 transporter [12]
and the membrane SOS1 (salt overly sensitive 1) transporter [13] are some of the most studied
proton-transporters that confer salt tolerance in Arabidopsis and in other plants [14]. Sequestra-
tion of sodium in vacuoles catalyzed by vacuolar Na+/H+ antiporters requires a transmembrane
electrochemical potential, so it is not surprising that genes encoding vacuolar H+-ATPase
(V-ATPase) and H+-pyrophosphatase (H+-PPase), which generate this membrane potential, are
found to enhance salinity tolerance [15–17]. The plasma membrane Na+/H+ antiporters of
SOS1 family have been implicated in Na+efflux and the members of HKT1 are responsible for
the influx and redistribution of Na+ from shoots to roots [10,18]. The signal transduction net-
works activated in response to salt stress involve components of abscisic acid (ABA) signaling,
plant mitogen-activated protein kinase (MAPK), calcium-dependent protein kinase (CDPK)
and the salt overly sensitive (SOS) pathways. The SOS pathway is key to regulating Na+/K+ ion
homeostasis and SOS1-mediated salt tolerance in plants [19–21]. SOS3 and SO2 proteins,
encoding calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs)
respectively, are important in the calcium signaling pathway that is used by plants in response
to environmental cues through post-translational modifications [22]. It is recognized that cross-
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talking at different levels of these pathways exists in response to salt, dehydration, drought and
cold tolerance [23]. ABA signaling is known to play a critical role in the plant response to salin-
ity and ABA-mutants perform poorly under salt stress [24]. The up-regulation of AtNHX1 for
salt tolerance requires the synthesis of ABA [24].

The role of the transporters in the physiology of plant, in salt stress tolerance, and develop-
mental processes is complex. For instance, in Ipomoea tricolor a vacuolar Na+/H+ exchanger
with similarity to the AtNHX1 gene, was found regulating the vacuole pH [25] and associated
with flower coloration; a similar antiporter has been reported for I. nil [26]. It is expected that
these transporters have additional roles besides salt-tolerance given the abundance of genes for
vacuolar transportation in salt-sensitive plants. Moreover, Na+ sensing in plants appears to
have evolved by generating natural variants of the SOS1 gene that confers different adaptation
to saline environments in the carrier [21,27], and their roles appear to contribute to different
responses to salt stress besides ion homeostasis [28]. SOS signaling events ultimately trigger the
transcription of multiple stress-responsive genes. Identification of master genes implicated in
the translocation of signaling events in the upstream pathway to SOS1-like transporters and in
the SOS1 downstream targets, all of which might be relevant genes for plant salt-stress toler-
ance, could be enhanced by transcriptome analysis. Although, cross-talking of the signaling
mechanism for most abiotic stresses might impede an immediate use of any master regulatory
gene, identification of salt-responsive genes from salt-tolerant species represent an efficient
approach [6,29]. Transcription factors (TF) are the most powerful candidates to enhance salt
tolerance in plants, as overexpression of a TF can lead to up-regulation of a whole array of
genes under its control [30]. However, gene synergism other than TFs such as the observed
interaction of AtNHX1 and the vacuolar ATPase (V-ATPase) [15] represent a strategy to
enhance salt stress tolerance in plants. Likewise, overexpression of wheat TNX1 antiporter and
the H+-pyrophosphatase TVP1 improved salt and drought stresses tolerance in Arabidopsis
[31]. Two different types of genes, IbNFU1 for iron sulfur cluster machinery [32] and a gene
pyrroline-5-carboxylate reductase (IbP5CR) for proline metabolism [33] were identified in
sweetpotato for salt tolerance. IbNFU1 was shown to enhance salt tolerance through mecha-
nisms for proline accumulation by protecting membrane integrity and photosynthesis, and by
ROS scavenging [34].

The objective of the present study was to characterize the transcriptome of beach morning
glory and identify its tissue-specific salt responsive genes. The results of comparative analysis
against other Ipomoea transcriptome datasets are discussed that may open up a forum for strat-
egies for sweetpotato breeding for salt tolerance.

Materials and Methods

2.1. Biological material and treatments
No specific permissions were required for collection of beach morning glory from coastal Loui-
siana (Holly Beach, N 29°45' 38.588", W 93° 34' 9.365"), which researchers have free access to
and the study did not involve any endangered or protected species. The experiment was carried
out inside the university greenhouse. Plants of beach morning glory were collected with sandy
soil attached to the roots from the coastal areas of Louisiana and grown inside greenhouse con-
ditions at a day/night temperature regime of 29/22°C and 14 h day light. From a pilot-scale salt
stress experiment, we observed stress symptoms after three days of salinity treatment at 300
mMNaCl (S1 Fig). Therefore, 300 mM NaCl was set as the experimental threshold for this
study. After a month of acclimation, 12 plants were subjected to salinity (300 mMNaCl) and
three plants were watered without salt, as control. Shoot (leaf and stem) and root tissues were
taken at 0 h (control), 1 h, 24 h, 72 h, and 1 week of salt treatment for gene expression studies.
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Each treatment had three biological replications. Tissues were frozen in liquid nitrogen and
stored at -80°C until processing for RNA extraction.

Vegetative cuttings of ‘Beauregard’ sweetpotato were transplanted in dry sand in cylindrical
tubes (50 cm x 9.82 cm) under greenhouse conditions similar to the one discussed above and
watered every three days for two weeks. Plants were subjected to 500 ml of 150 mMNaCl after 2
weeks and total roots and leaves were sampled at 24 h and 72 h of stress. Likewise, non-stressed
plants tissues were sampled at each time point as control. Tissues were frozen in liquid nitrogen
and stored at -80°C until processing for RNA extraction. All samples were done in triplicate.

2.2. RNA extraction and library construction
Total RNA was extracted with Trizol reagent (Invitrogen, Carlsbad, CA) according to the man-
ufacturer’s instructions. Aliquots of all individual RNA samples (~ 4 μg) from roots or shoots
under salt stress were pooled prior to sequencing and RNA (~16 μg) of both control root and
control shoot samples were kept separate. Four 454 libraries were constructed by MOgene LLC
(St Louis, MO) from control shoot (CS), control root (CR), pool of salt-stressed root (SR), and
pool of salt-stressed shoot (SS).

2.3. Sequence assembly and analysis
A reference transcriptome was produced by combining all the de-multiplexed reads from all
libraries with the MID index removed (as given by MOgene LC). All raw data were further
cleaned and filtered by removing low-complexity, organellar, dust, and short reads (<100 nt)
using SeqClean. The reference transcriptome (consensus transcripts and singlets) was gener-
ated with iAssembler [35]. Output was further annotated and analyzed for marker sequences
as described in next sections. Raw reads used in this work will be available in SRA database of
NCBI.

BLASTN [36] was used for comparative analysis of the unigenes against transcripts from
related species of the Convolvulaceae family. Transcriptome data sets from four species were
considered: the sweetpotato gene index of root transcriptome (3), called “PBL assembly”; a cus-
tom unpublished sweetpotato assembly called “CAP3 assembly”, which integrates all expressed
sequence tags deposited at ESTdb of NCBI, and all reads from two independent sweetpotato
transcriptome libraries from stem and leaves (Dr. R. Schafleitner, personal communication)
and from root libraries (personal communication with Dr. N. Firon, 2011); a sweetpotato tran-
scriptome deposited at the Transcript Shotgun Assembly (TSA) database, called “sweetpotato
TSA assembly” (4); The Gene Index of morning glory (I. nil) by Dana Faber Cancer Institute
(DFCI), released on July 1, 2008 [37]; and The TIGR Plant Transcript Assemblies [38] of I. tri-
fida (accessed on July 10, 2007. The identifiers (accession number, header) of each sequence of
the above databases were added as a prefix to indicate the source: IbPBL, IbCAP3, IbTSA, In,
It, for PBL, CAP3, TSA, DFCI and TIGR assemblies, respectively. In addition, the I. purpurea
deposited in the TSAdb under accession number GALY01000000 (sequences
GALY01000001-GALY01086691) were included and the prefix Ip was added to each accession
entry in our analysis. Likewise, a suffix (_RC) to each entry identifier of each sequence was
added to indicate that the reverse complementary sequence was used in our analysis. Raw
reads from each sweetpotato library can be requested from appropriate authors [3,39] and our
custom sweetpotato databases are available upon request.

2.4. Mining for microsatellites
In silico analysis was performed on the transcriptome of beach morning glory to identify
microsatellites/SSR (simple sequence repeats,) y using the SSR Locator tool [40]. Repeats were
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searched on criteria that a dinucleotide or trinucleotide repeat should appear at least six and
five times, respectively, and tetra, penta and hexa nucleotide repeats should appear five times
each. Primer pairs flanking each SSR were designed using the integrated Primer3 package. Vir-
tual-PCR analysis was conducted to map SSR primers on sequences of custom databases of
four Ipomoea species described before to investigate the ability of the primers to amplify poten-
tial homologous targets across the Ipomoea genus.

2.5. Annotation and identification of transcripts associated with salt
stress
The consensus transcripts and singlets (at least 100 bp), hereafter mentioned as unigenes, were
queried to the Uniref90 protein database using BLASTX [36] with an e-value cut-off of 1e-06.
The top 20 hits were assigned to each unigene and cross-referenced to NCBI database to fur-
ther annotate and to obtain the relevant Gene Ontology (GO) term. A custom TAIR10 data-
base [41] was used for querying Arabidopsis thaliana gene indices.

To identify candidate transcripts associated with salt stress response, all raw reads that were
mapped in each consensus sequence were processed by custom Perl scripts. Counting number
of reads from each CS, CR, SR and SS libraries contained in each unigene were used as an indi-
cator of their association with salt stress responses (S1 Table). As criteria, a unigene with 0 read
count from both CS and CR and with at least 2 reads from both/either of SR and SS libraries
was putatively identified as a gene associated with salt stress response. This was an arbitrary rel-
ative threshold established to estimate whether a read was overrepresented in a library. Only
unigenes with well-supported annotation and abundance of reads from salt-stress treatments
were considered for further analysis.

2.6. Expression analysis by quantitative real time PCR (qRT-PCR)
Reverse Transcription PCR and quantitative real time PCR (qRT-PCR) was used to study the
expression of selected genes in response to salt stress at different time points in beach morning
glory (leaf only at 1 h, 24 h, 72 h, and 168 h) and sweetpotato (leaf and root at 24 h and 72 h).
First strand cDNA synthesis was performed by reverse transcription of 1 μg total RNA using
the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) as per manufacturer’s instructions.
Then, qRT-PCR reactions were performed with 2 μl of diluted cDNA (1:3) on a MyiQ Real-
Time PCR detection system (Bio-Rad, Hercules, CA) using iQ SYBR Green supermix (Bio-
Rad, Hercules, CA) in a final volume of 20 μl following the recipe and thermal profile as
described earlier (42). Each reaction was performed in triplicate (three independent plants—
biological replicates), and the average threshold cycle (Ct) was used to estimate the relative
expression of each transcript to control samples normalized against the endogenous reference
gene elongation factor-1-alpha (IbElf-1α) as previously reported [42].

Results and Discussion
Adapted to grow in coastal areas and a close relative of hexaploid sweetpotato, beach morning
glory (Ipomoea imperati) represents a unique genomic resource for salt tolerance in sweetpo-
tato and related crops. The ability to further abiotic stress breeding in sweetpotato is now plau-
sible given the availability of NGS as a low-cost, large-scale approach for transcriptome
sequencing [43]; as a result an increased knowledge of functional genes has been identified for
sweetpotato [3–5,39]. However, little information has been derived from the previous reports
on the changes in its transcriptome in response to abiotic stress; to our knowledge all existing
transcriptome libraries developed were from tissues at different developmental stages except
for a single library from drought stressed leaves [39]. We conducted transcriptome profiling by
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454 sequencing of beach morning glory under salt stress to dissect salt tolerance mechanisms
at the transcriptional level. The raw sequence reads are publically available at the NCBI SRA
(http://ncbi.nlm.nih.gov/sra) under the accession number SRP066755. The results presented in
this research may benefit sweetpotato breeding for tolerance to salinity.

3.1. De Novo Transcriptome Assembly
Raw reads of the pyrosequencing libraries were processed by filtering out short reads (<100nt),
dust sequences (consisting mostly of low complex sequences), and removing sequences derived
from plastid, mitochondria, and rRNA. Removal of contaminants in sequencing input (reads)
has improved quality of de novo assemblies [39] and common when working with high-
throughput sequencing data [44]. The workflow implemented for the pipeline of iAssembler
requires that contaminants from plastid and rRNA be removed before analysis to avoid misas-
semblies and misinterpretations [35]. Statistics of raw and filtered sequence data from each
library are presented in Table 1. As expected, sequence reads from shoot libraries were highly
enriched in plastid sequences. Average length of filtered reads ranged from 519.7 bp to 538.8
bp. After removing 98,402 and 100,396 reads as short size/low complex sequences and contam-
inants, respectively, 485,520 reads comprising 151,942,782 bases were used to develop a refer-
ence transcriptome.

A unique assembly combining all reads from the four libraries were developed using the
iAssembler package, which represented the first gene index for beach morning glory. Sequence
assembly resulted in 95,790 unigenes comprising 32,291 contigs and 63,499 singlets (Fig 1).
Size of contigs ranged from 102 bp to 10,245 bp whereas that of singlets ranged from 100 bp to
1,231 bp. Annotation of the beach morning glory transcripts revealed that 34,053 of out of
95,790 unigenes did not have matching sequences in the Uniref90 database (S1 and S2 Tables).
The unannotated sequences comprised 5,902 contigs and 28,151 singlets, which may represent
new genes and/or non-coding regions and could be unique to the Ipomoea genus, although
their number is less compared to previous studies in sweetpotato [44]. A large fraction of the
transcripts (47,602 out of 95,790 transcripts) lacked a putative orthologous sequence in the
model plant Arabidopsis thaliana (S3 Table). This emphasizes the need of developing genomic
resources for Convolvulaceae order. Further detail of this transcriptome assembly and the
aligned reads are in the supplementary file in SAM-format (S1 Text).

Table 1. Summary of statistics of filtered and unfiltered reads from libraries of shoot (S) and root (R) tissues of beachmorning glory under control
(C) and salt stress (S).

CS SS CR SR Combined libraries

Number of reads in filtered data sets 49,079 44,442 88,921 104,142 286,584

Total length (nt) in filtered data sets 26,383,034 23,527,656 47,906,340 54,125,752 151,942,782

Mean length (bp) in filtered data sets 537.6 529.4 538.8 519.7 530.2

Maximum length (bp) in filtered data sets 1079 1029 1231 1048 1231

Median length (bp) in filtered data sets 581 574 580 566 574

Number of reads before filtering 96,102 119,923 118,410 151,085 485,520

Number of reads filtered due to short size (100nt) or low complexity 18,224 22,810 23,470 33,898 98,402

Number of reads filtered as being contaminant (rRNA, organellar) 28,756 52,639 5,987 13,014 100,396

CS = control shoot; SS = salt stressed shoot; CR = control root; SR = salt stressed root.

doi:10.1371/journal.pone.0147398.t001
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3.2. Identification and expression analysis of candidate salt-tolerance
genes in beach morning glory
A number of candidate salt responsive genes were identified in response to salt stress in beach
morning glory transcriptome (Table 2). Orthologs of these genes implicated in abiotic stress
responses, including salinity, have been reported in several other crops. A large number (4,045)
transcripts from shoot and/or salt stressed libraries (S4 Table) represent a set of candidate
genes that could be unique in beach morning glory that possibly play important roles in its
ability to thrive in saline soils. Comparative transcriptome analysis revealed that about half of
the I. imperati transcripts (46,017 out of 95,790) have homology in sweetpotato (S5 Table). In
addition, 46,215 transcripts did not have matches in the available transcriptome of four Ipo-
moea species (S5 Table). Transcripts belonging to the biological processes ‘photosynthesis’
(GO: 0015979) and ‘generation of precursor metabolites and energy’ (GO: 0006091) were
highly represented in beach morning glory transcriptome (S6 Table),

Transcription factors associated with salt stress response. Four consensus transcripts
encoding aWRKY transcription factor (UN15532, UN14336), a cation:cation antiporter
(UN26363), and an ethylene responsive factor (UN22967) were preferentially represented in
the root transcriptome libraries from both beach morning glory and sweetpotato (Table 2).

Fig 1. Summary and distribution of unigenes from beachmorning glory.

doi:10.1371/journal.pone.0147398.g001
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Members ofWRKY transcription factors have recently been found involved in salt tolerance of
plants [45–47]. S_PBL_c6924, a root-derived sweetpotato transcript (3), is an ortholog of Ara-
bidopsis WRKY53 (At4g23810) and matches UN14336; At4g23810-like transcripts are
reported to accumulate in roots ofMedicago truncatula under salt stress [48]. There is

Table 2. Candidate genes associated with salt-stress response in beachmorning glory.

Unigene ID
(consensus
transcript,
singlets)

Length
(bp)

Annotation Source of reads
included
consensus
transcript

Transcriptome libraries of
beach morning glory in which
reads are overrepresented

Sweetpotato entry

UN08046 976 DRE-binding transcription
factor swDREB1

Shoots and Roots Shoots and Roots under salt
stress

IbCAP3Contig720.1

UN07119 723 DREB protein (Fragment) Shoots and Roots Shoots and Roots under salt
stress

NO DATA

UN22967 570 Ethylene responsive factor Roots Roots under salt stress RT_307632.1

UN14336 1063 WRKY transcription factor Shoots and Roots Shoots and Roots under salt
stress

IbPBL_S_PBL_c6924

UN14262 1070 Putative cytochrome C oxidase
subunit II family protein

Shoots and Roots Shoots and Roots under salt
stress

IbCAP3Contig26623.1

UN15532 710 WRKY transcription factor Roots Roots under salt stress IbCAP3Contig31286.1

UN06652 528 sodium transporter HKT1-like Shoots and Roots Shoots and Roots under salt
stress

IbCAP3Contig22603.1

UN07231 1433 Inorganic pyrophosphatase
(PPase)

Shoots and Roots Roots under salt stress IbCAP3Contig23069.1

UN31159 1043 soluble inorganic
pyrophosphatase-like (PPase)

Shoots and Roots Shoots and Roots under salt
stress

IbCAP3Contig22172.1

UN25947 630 Na+/H+ antiporter Shoots and Roots Shoots under salt stress NO DATA

UN26363 822 Cation:cation antiporter Shoots and Roots Roots under salt stress IbPBL_S_PBL_c17537
IbCAP3Contig6212.1

UN18353 1000 Osmotin-like protein Shoots and Roots Roots under salt stress IbPBL_S_PBL_lrc38257
IbCAP3Contig10297.1

UN04545 1033 CBL-interacting protein kinase Shoots and Roots Roots under salt stress IbPBL_S_PBL_c3473

UN20155 1518 Calcineurin B-like protein Shoots and Roots Roots under salt stress and in
shoots

IbnuEST_JG699772.1

UN04785 1349 CBL-interacting protein kinase Roots under salt stress IbTSA_JP111514.1

UN14651 985 CBL-interacting protein kinase Roots under salt stress IbTSA_JP112284.1

UN19201 594 CBL-interacting protein kinase Roots under salt stress IbPBL_S_PBL_c12091

UN19788 815 CBL-interacting protein kinase Shoots under stress IbTSA_JP106495.1

UN26778 1104 CBL-interacting protein kinase Roots under salt stress IbTSA_JP120118.1

UN71496 131 CBL-interacting protein kinase Roots under salt stress IbTSA_JP113068.1

UN74114 821 CBL-interacting protein kinase Roots under salt stress IbTSA_JP107110.1

UN75513 686 CBL-interacting protein kinase Roots under salt stress IbTSA_JP106495.1

UN83272 504 CBL-interacting protein kinase Roots under salt stress IbPBL_S_PBL_c10086

UN83471 468 CBL-interacting protein kinase Roots under salt stress IbPBL_S_PBL_lrc30596

UN84314 577 CBL-interacting protein kinase Roots under salt stress IbPBL_S_PBL_lrc54022

UN84911 501 CBL-interacting protein kinase Roots under salt stress IbTSA_JP111514.1

UN84921 323 CBL-interacting protein kinase Roots under salt stress IbTSA_JP140418.1

UN85200 851 CBL-interacting protein kinase Roots under salt stress IbPBL_S_PBL_c292

UN89027 272 CBL-interacting protein kinase Shoots under stress No matching hit found

UN90198 584 CBL-interacting protein kinase Shoots under stress IbTSA_JP121101.1

UN91252 624 CBL-interacting protein kinase Shoots under stress IbTSA_JP107110.1

UN94341 160 CBL-interacting protein kinase Shoots under stress IbTSA_JP106970.1

doi:10.1371/journal.pone.0147398.t002
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accumulating evidence that components of ethylene signaling are involved in salt stress and
other abiotic stresses tolerance. In addition, it is well known that abiotic stress enhances the
expression of members of DREB family genes. Two DREB transcripts (UN07119 and
UN08046) were found enriched under salt stress (Table 2). Our comparative analysis between
beach morning glory and sweetpotato transcriptomes revealed that UN07119 apparently lacks
a homolog in sweetpotato. Ethylene response factors enhanced salt tolerance in plants [49,50],
including transgenic plants [50–52]. Interestingly, two sweetpotato ERF genes, IbERF1 and
IbERF2, appear to be key for controlling up-regulation of various defense genes involved in abi-
otic stress tolerance and pathogenic resistance [53]. IbERF1 and IbERF2 expression was found
induced in leaves within 2 hours of treatment with 100 mMNaCl; it was also up-regulated
under dehydration-, chemical-, and pathogenic-stress treatments.

Cation transporters, membrane-associated proteins and vacuolar proteins under salt
stress. The transcripts of beach morning glory that did not have close matching sequences in
sweetpotato included a sodium/hydrogen (Na+/H+) antiporter (UN25947; salt stress respon-
sive gene 13, SS13), which is known to be involved in salt tolerance in many plants. Thus tran-
scripts coding for these antiporters may play important roles for allowing the growth of beach
morning glory in saline environments. TheHKT1 (high-affinity potassium transporter) is the
most promising gene identified for salt tolerance in a diverse plant species [47,54] and was also
found overrepresented in the libraries from salt stressed tissues in the present study (transcript
UN06652 in Table 2). Osmotin and osmotin-like proteins are a subgroup of plant defense pro-
teins, termed PR-5, which are responsive to biotic and abiotic stress [55,56]. Osmotin and
other closely related proteins are encoded by intron-less genes within a small gene family as
reported for flax, potato, and tobacco. The transcript encoding an osmotin-like protein identi-
fied from beach morning glory (UN18353; SS3 in Table 3) is another example of a candidate
gene for salt tolerance which was derived from root libraries under salt stress; comparative
analysis of this transcript against all three custom sweetpotato transcriptomes suggested that
the sweetpotato orthologs are also expressed in root. Little is known about the osmotin gene
family relating to salt stress tolerance, although the first plant osmotin gene was originally iso-
lated from salt-adapted tobacco cells [57]. Recently osmotin was found to confer tolerance for
both salinity and drought [55]. Osmotin has long been recognized to accumulate into vacuolar
inclusions under salt stress and confer salt tolerance to tobacco cells [58,59], suggesting that
osmotin could be involved in the maintenance of high ion concentrations in the vacuole. It has
also been reported that in the whole plant, the highest level of accumulation of osmotin under
stress occurs in the roots [57].The closest sequence of UN93566 identified from the sweetpo-
tato root transcriptome (S_PBL_c6736) (3) is annotated with homology to At1g36980 from
Arabidopsis and TaSC, a an ortholog of At1g36980, was identified in a salt-tolerant wheat line
that accumulated in the plasma membrane [60]. In the same study, TaSc was found to confer
higher germination rates and seedling root length, and increased salt-tolerance of Arabidopsis
overexpressers under salt stress by increasing the K +/Na + ratio.

Beach morning glory is a relative of sweetpotato and exhibits a high degree of salt tolerance.
In contrast to other plants, it does not have salt glands in its leaves. Thus, mechanisms that
help to sequester the excessive Na+ into the vacuoles may be the predominant adaption mecha-
nism to cope with high salinity. In higher plants, salt extrusion from the cell and the salt
sequestration into vacuoles are carried out by antiporters, which require the energy dependent
proton pumps [P-type H+-ATPase, V-type H+ ATPase and V-type H+- pyrophosphatases (V-
PPases)]. Genes encoding V-PPases are among well-studied candidate genes for salt tolerance
in halophyte plants, and consequently used for conferring salt and drought tolerance by over-
expression in model as well as non-model plants [16,17,29,31,61]. In this study, two V-PPases
(UN07231, UN31159; Table 2) were overrepresented in both shoot and root libraries under
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salt stress. It is documented that all the major processes such as photosynthesis, protein synthe-
sis and energy and lipid metabolism are affected during the onset and development of salt
stress within a plant [62]. Indeed, we have found transcripts related to genes in these processes
in different amounts from each of the I. imperati shoot and root libraries under both control
and stressed conditions.

Table 3. Salt-induced transcripts used for expression analysis under salt stress in beachmorning glory.

UnigeneID
(Strand)
[Name]*

Forward primer Reverse primer Expected
product
size (bp)

Entry in sweetpotato Description

UN05312(-)
[SS1]

aggcccctctctgtgatatctg tcttgagaccttaaactgggaaca 243 IbTSA_JP110071.1 probable salt tolerance-
like protein
At1g75540-like

UN06652(-)
[SS2]

ttgtggttcatattcttggctct catgttttcatttgtggggaca 167 IbTSA_JP108441.1 Sodium transporter
hkt1-like protein

UN18353(-)
[SS3]

caccttcggaggacaacaata cagtagatccagcagggcaac 149 IbTSA_JP134767.1 Osmotin-like protein

UN08712(-)
[SS4]

ccttgcatcagatggcttatggg cactcacgtcgtcaaaagagcc 158 IbTSA_JP112840.1 protein phosphatase 2C
25-like

UN90868(+)
[SS5]

tcttcatccttggggaagtcac tccaagaaattcatccagctgcca 222 IbTSA_JP108274.1 salt tolerance-like
protein At1g78600-like

UN25202(+)
[SS6]

ttgagtttccgggagataaagc cattttattctccctcttggcatg 171 IbTSA_JP115696.1 salt tolerance-like
protein At1g78600-like/
Zinc finger protein
CONSTANS-like
protein

UN93566(-)
[SS7]

gtcgtttgcagcgccgtcaaa tcaatctccattcgccttcctcata 139 IbPBL_S_PBL_c6736 transmembrane protein
50a, putative [Jatropha
curcas]

UN85241(-)
[SS8]

tacttgctgggcctggagtg caaatttgttttccagctccagt 170 IbPBL_GM0Z85L06HJZAC Na+/H+ antiporter (sos1,
salt overly sensitive 1)

UN15396(+)
[SS9]

cattccctgcatgttaagaacct tatttccaggcattgtttggatg 206 IbTSA_JP104644.1 DNA binding protein

UN07231(+)
[SS10]

gtgctcttgtcatgctcactcc gccaacagtgtcaccaatcaca 243 IbTSA_JP106494.1 Inorganic
pyrophosphatase

UN05798(+)
[SS11]

caagaaaatcttggccatgcagc cagcctccaatttgccacgaatt 162 IbTSA_JP121852.1 Nicotiana attenuata
jasmonate ZIM domain
protein h mRNA;
Solanum lycopersicum
salt responsive protein
1 (SRG1)

UN04483(+)
[SS12]

cgtggctgaaaactcacctctc atgcgcccataagttcatcgagc 166 IbTSA_JP108229.1 Arginine-aspartate-rich
RNA binding protein-
like

UN29547(-)
[SS13]

gtcagccaccagtaattgatgt gcccaactattgccaagacttac 206 IbTSA_JP113383.1 salt tolerance protein
5-like protein [Solanum
tuberosum]

UN05755(-)
[SS14]

tgatacccgcgacttcaagatt gctctcaatcacaacagcaaca 226 IbTSA_JP120116.1 Voltage-dependent
calcium channel protein
TPC1A

UN17963 ccaagattgatagacggtctgg ctcatgtccctcacagcaaaac 160 IbTSA_JP106582.1 Elongation factor
1-alpha

*A plus sign next to unigene identifier means that coding sequence is the given sequence, and a minus sign means that coding sequence is in reverse

complementary strand.

doi:10.1371/journal.pone.0147398.t003
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Genes in signal transduction pathways in response to salt stress in beach morning
glory. Many salt-tolerance related genes act via signaling pathways. Calcineurin B-like (CBL)-
interacting protein kinases (CIPKs) transcripts were found enriched in both shoot and root tis-
sues under salt stress (Table 2). All the CIPK transcripts except UN89027 had a matching tran-
script in at least one of sweetpotato transcriptomes. Transcript UN14651, encoding a CIPK, had
high reads in salt stressed tissues and matched to the sweetpotato root-derived transcript
S_PBL_c574 annotated as SOS3 (SOS3-interacting protein 3, At4g30960). SOS3 is a paradig-
matic example of a CIPK involved in mediating salt tolerance and developmental processes in
Arabidopsis. Our study revealed that three CIPKs (UN04785, UN19201, UN84911) had a pref-
erential expression in root tissues of sweetpotato; our comparative analysis against two sweetpo-
tato transcriptomes found that the putative sweetpotato orthologs of these CIPKs were
identified as overrepresented in roots [2,3]. The sweetpotato transcript S_PBL_c3473 (3), identi-
fied to be orthologous to beach morning glory entry UN84911, matched with AtCIPK23
(At1g30270), known to be involved in activating a plant potassium channel in concert with
other calcineurin B-like calcium sensors (CBLs). Phosphorylation of CBLs by their interacting
CIPKs has been shown to be required for full activity of CBL-CIPK complexes toward their tar-
get proteins [19,63,64]. New CIPKs participating in reduced shoot Na+ accumulation and reten-
tion of K+ under salt stress conditions are being discovered in other species, with at least four
CIPK genes reported in Arabidopsis [65], thus underscoring the importance of CIPK genes for
salinity tolerance in plants [66–68]. In higher plants, the CBL-CIPK network typically consists
of about 10 CBLs and 25–30 CIPKs [22]. The present study showed multiple CIPKs found in
beach morning glory transcriptome. Furthermore, there is a crosstalk between the CBL-CIPK
pathway, the low-K+ response pathway, the ABA signaling pathway, the nitrate sensing and
other signaling pathways [23]. Potassium is an essential macronutrient for plants and mecha-
nisms that alter its homeostasis, such as salt stress due to NaCl, undoubtedly trigger other adap-
tive mechanisms to maintain uptake of K+ inside the cells. Plant K+ acquisition and homeostasis
is driven by K+-channels and their low and high affinity for K+ depends on the phosphorylation
of the transporters by CIPKs and other sensors. Since plants absorb K+ from soils through root
cells, the altered expression of CIPKs in beach morning glory root might be related to K+-trans-
port. Studies involving TaSC gene indicated that it may involve the CDPK pathway [60], with
CDPKs known to be in pathways that lead to enhanced expression of the known salt-tolerant
genes such as AtCOR15a, AtRD29B, AtP5CS1, and AtADH [69].

Validation of expression of salt-responsive genes. A set of 14 transcripts, from different
categories and overrepresented as either members of GO term categories or transcripts
enriched in the libraries in response to salt stress, were selected for validation of their expres-
sion corresponding to the results of the transcriptome sequencing analysis. Detailed descrip-
tion of these transcripts and primers are presented in Table 3.

Expression analysis suggested that genes involved in salt response in beach morning glory
contrasted with their response in sweetpotato (Fig 2). Transcripts coding for sodium trans-
porter hkt1-like protein (UN06652; salt stress responsible 2, SS2 gene)), protein phosphatase
2C 25-like (UN08712; SS4), Na+/H+ antiporter (UN85241; SS8), and salt tolerance protein
5-like protein (UN29547; SS13) were consistently up-regulated (2 to10 fold) in response to salt
stress in shoot tissues at early and late stages of salt imposition. Although, nine out of 14 tran-
scripts did not show enhanced expression after 1 hour of stress, their expression was up-regu-
lated in the shoots of beach morning glory at 24 h and 1 week of stress. All 14 transcripts
except for the voltage-dependent calcium channel protein (UN05755; SS14)) were enhanced
under salt stress supporting their role in salinity tolerance. In addition, the inconsistency in
expression level observed in shoot of beach morning glory for osmotin-like protein (UN18353;
SS3) could be due to the specificity of the primers and RT PCR conditions.
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The results indicated that ion homeostasis by the regulation of transporters appear as a pre-
dominant mechanism of salt adaptation of I. imperati. Two Na+/H+ antiporters such as the
vacuolar transporter NHX1 and the plasma membrane transporter SOS1 were the first compo-
nents identified in Arabidopsis to be involved in mechanism of Na+ detoxification in cells
[12,13], and it was their up-regulation under salt stress that provided supporting evidence of
their role in salt tolerance. We also found similar transporters in beach morning glory tran-
scriptome. NHX1-, SOS- and HKT1-like genes are found in both salt-tolerant and salt-sensitive
plants [10], although their efficiency and underlying responses may be unique to each species
[21,27]. Salt-stress signaling in plants occurs via abscisic acid-dependent and-independent
pathways, and several transcription factors. Identification of components downstream of
NHX1-like, SOS-like, and HTK1-like Na+ transporters in beach morning glory is needed. A
new mechanism of 14-3-3 proteins-mediated regulation of SOS components has been found in
plants [70]. We expect that, given the uniqueness of beach morning glory, further investigation
of the current transcriptome will contribute to novel mechanisms of regulation of ion transport
under salinity.

Species-specific differences were observed when comparing expression of the selected tran-
scripts between beach morning glory (Fig 2) and sweetpotato (Fig 3). Moderate levels of
expression for seven transcripts were observed in leaves of sweetpotato at 72 h after imposition
of salt stress (Fig 3). Interestingly, three transcripts (UN08712; SS4), UN06652; SS2), and
UN85241; SS8)) were up-regulated in sweetpotato salt-stressed roots; however, UN08712
(SS4), UN90868 (SS5) and UN25202 (SS6) were not altered or were down-regulated in the
leaves under salt stress at both 24 and 72 h of stress (Fig 3). Altogether, these results support
the existence of mechanisms of salinity tolerance in beach morning glory, which appears to be
partially conserved in sweetpotato. Expression analysis of five Na+/H+ transporters in the halo-
phyte ice plant (Mesembryanthemum crystallinum) revealed a temporal correlation between
salt accumulation and their expression levels in leaves, but not in roots [71]. On the other
hand, GmSALT3 gene of soybean, a moderately salt-sensitive crop, represents one of a few
examples of that is preferentially expressed in root stelar cells and appears to be important for
conferring whole plant salinity tolerance, because these cell types are already known to have a
role in limiting salt transport to the shoot. Our results in sweetpotato and beach morning glory

Fig 2. Relative expression of selected genes at different time points of salt stress in shoot tissue of
beachmorning glory. Salt stress (SS) responsive transcript names are shown in Table 3.

doi:10.1371/journal.pone.0147398.g002
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and other recent evidences indicate that different regulatory mechanisms are adopted by roots
and shoots in response to salt stress [28]. SOS proteins may have novel roles in roots in addi-
tion to their functions in sodium homeostasis [28]. Novel genes involved in molecular
responses to salt stress and for stress tolerance [4] have been reported in sweetpotato [4,34].
This demonstrates that although novel salt tolerance responses are best studied in halophytes
and species adapted to saline environments, researchers cannot overlook existing mechanisms
of glycophytes. Indeed, most of our current knowledge on the molecular basis of salinity toler-
ance comes from studies of genes from salinity-sensitive model plant Arabidopsis. The results
of the present work in both beach morning glory and sweetpotato suggest that the observed tis-
sue-specificity in the expression pattern of certain genes warrants further detail characteriza-
tion to identify their specific and coordinated roles in molecular and/or cellular mechanisms
for plant’s adaptation to salinity.

3.3. In silico SSR analysis across multiple Ipomoeamembers
SSRs derived from coding regions are more conserved and their transferability has been proved
to be high in plants. To further enhance the usefulness of the present beach morning glory
transcriptome, an in silico analysis was performed to identify SSR markers. Six thousand two
hundred thirty three transcripts were found harboring an SSR (S7 Table) and primers were
designed for 4,897 SSRs (S8 Table). The remaining transcripts did not have enough sequences
flanking the SSR motifs to design a primer. Mapping of the SSR primers in the beach morning
glory transcriptome against the transcripts of four Ipomoea species (I. batatas, I. nil, I. pur-
purea, I. trifida) revealed that 434 primer pairs produced an amplicon in at least one transcript
of one or more of the above species. Interestingly, these 434 SSR primer pairs were found tar-
geting 1,221 regions in same number of transcripts across all Ipomoea species (S8 Table) and
they represented a putative digital PCR product. Of these 1,221 amplicons, 627 were from
sweetpotato, 460 from I. purpurea, 130 from I. nil, and 4 from I. trifida. Thus, these 434 SSRs
cross-transferable and can be used in genetic studies of the Ipomoea genus. Two hundred
eighty SSR primers matched with 627 sequences from the combined transcriptomes of sweet-
potato (S9 and S10 Tables). Further, 219 out of 280 primers were polymorphic and produced a

Fig 3. Relative expression of selected genes at 24 and 72h of salt stress in leaf and root tissues of
sweetpotato. Salt stress (SS) responsive transcript names are shown in Table 3.

doi:10.1371/journal.pone.0147398.g003

Beach Morning Glory Transcriptome under Salt Stress

PLOS ONE | DOI:10.1371/journal.pone.0147398 February 5, 2016 13 / 19



digital PCR fragment in sweetpotato that differed by at least 3-bp compared to the homologous
product in beach morning glory. SSR markers have contributed to addressing the origins of
sweetpotato [72] and to identification of loci involved in quantitative traits [73]. The identified
cross-species transferable microsatellite markers from the present study might provide further
insights into the origins of sweetpotato. The present work demonstrates the utility of an in sil-
ico approach in identifying SSRs among Ipomoea species in contrast to other similar studies
that involved analysis of a single transcriptome [39,74]. These genic SSRs will be useful for
genetic studies of sweetpotato and their relatives and to fill the gaps in the current AFLP mark-
ers-based genetic map of sweetpotato [75]. In addition, these cross-transferable genic markers
will have their utility in existing interspecific crosses of sweetpotato and I. trifida to transfer
valuable alleles.

Conclusions
The present study reports the first reference transcriptome of beach morning glory, a sweetpo-
tato relative possessing high level of salt-tolerance. The annotated transcripts represent a useful
resource to unravel genes and pathways involved in salt stress tolerance in Convolvulacea
members, since it revealed transcripts with similarities to genes of other plants known to be
associated with salt stress responses. Expression profiling and comparative transcriptome anal-
ysis suggested similarities and differences between beach morning glory and sweetpotato. The
knowledge and resources generated in this study in the form of novel genes/alleles and genic
microsatellites may aid sweetpotato breeding programs to extend cultivation to saline soil envi-
ronments. Future comparative characterization and functional validation of the identified can-
didate genes in beach morning glory vis-à-vis sweetpotato will further our understanding of
the specifics of the salinity adaptation mechanisms in the halophyte relative of sweetpotato and
subsequent translation to improve salinity tolerance in sweetpotato.
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