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☯ These authors contributed equally to this work.

* gilberto.sanchez@insp.mx (GSG); pablo.lopez@academicos.udg.mx (PCLV)

Abstract

In this paper we model the spreading of the SARS-CoV-2 in Mexico by introducing a new

stochastic approximation constructed from first principles, where the number of new

infected individuals caused by a single infectious individual per unit time (a day), is a random

variable of a time-dependent Poisson distribution. The model, structured on the basis of a

Latent-Infectious-(Recovered or Deceased) (LI(RD)) compartmental approximation

together with a modulation of the mean number of new infections (the Poisson parameters),

provides a good tool to study theoretical and real scenarios.

Introduction

Since the late 2019 to date, the rapid worldwide spread of the SARS-CoV-2 has caused around

four and a half million of human deaths [1], placing mankind in one of the most challenging

episodes in the recent human history. An extraordinary effort has been made to implement

mathematical methods to accurately describe the spreading of the epidemic, looking to fore-

cast and to implement non-pharmaceutical responses to reduce the damage in the society [2].

These methods, ranging from standard compartmental models (typically employed to deter-

mine the initial epidemiological parameters [3–8]), to hybrid methods that incorporates sto-

chastic meta-population network models with local and global mobility patterns [9–13],

attempt to overcome the complex behavior of social interaction characterized by the tendency

of the population to cluster [14], following quasi-periodic patterns of mobility in large dense

urbanized areas [12, 13, 15]. Furthermore, in addition to the complexity for determining the

degree of connectivity among individuals (the contact network), regulatory measures such as

home lockdown and social distancing were promoted to reduce the transmission of the infec-

tion [1], providing an additional degree of complexity in determining the spreading of the

disease.
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In this regard, how and when to promote regulatory measures became one of the most diffi-

cult decisions to follow, because of their effects in public health, the economy and several other

social factors. These decisions had to be supported in predictive models possessing a good

equilibrium between registered data (reliable readouts about registered confirmed cases),

mobility patterns followed by the population, and computational efficiency of the epidemio-

logical models [8, 11, 13, 16–19].

Moreover, the efficiency of a given model rely on a good accessibility and characterization

of the available data [13], which could be more difficult or impossible to be obtained in the

case of less developed countries; in this context, stochastic models, which introduce a random-

ization about certain unknown elements could provide an alternative guidance.

Recently, some stochastic models have been employed to study the Sars-CoV-2 spreading

[20–22]; however these models still rely on the law of mass interaction governing the probabili-

ties of infection, an assumption that may not be fulfilled when the dispersion of the disease

happens in highly structured social networks following confinement measures; e.g., in [20, 21]

a compartmental description is used as base model and then additive white Gaussian noise is

introduced in the contact parameter β; other approximations are carried out by considering a

master equation following transition probabilities which also rely on the standard SIR model

dynamics and hence a probability of infection proportional to the infected and susceptible

populations. In this paper, we introduce a new stochastic model which attempts to overcome

the law of mass interaction underlying in the traditional compartmental models. The model

has served us to simulate and follow the spreading of the Sars-CoV-2 in Mexico with a good

agreement to the real cases; it is structured on the basis of a LI(RD) compartmental model

(Latent-Infectious-(Recovered or Deceased)) where the number of infections caused by a sin-

gle infected individual, per unit time (a day) is randomized, while the daily mean of infected

population is modulated through a weight-like time dependent function. The modulation help

us to introduce tendencies in the mean of the daily infections caused by several phenomeno-

logical or fundamental behavior such as pharmaceutical or non-pharmaceutical interventions

and herd immunity as well.

Finally, through this model we analyze the evolution of the disease in some Mexican states

(some of them housing the largest metropolitan areas of Mexico), by deriving an empirical

approximation of the weight function which is in turn deeply connected to the effective repro-

duction number RðtÞ.

Materials and methods

The model

The epidemiological model we propose attempts to describe a scenario about how many peo-

ple can infect one infectious individual per day when the infectious events are considered

homogeneously distributed in time and when the probability of infection is affected by phar-

maceutical or non-pharmaceutical interventions; it consists of the randomization of the daily

number of infections using a time-dependent Poisson processes to generate the new infections

caused by each of the infectious individuals, along a given period of time (the time unit). The

core of the model is constructed on the basis of a compartmental description: the susceptible

population S(t) which serves merely to have a finite resource about the number of new infec-

tions, the infected-latent population L(t) which is randomly obtained and the infectious popu-

lation I(t) which represents the the part of the population capable of infecting. Once the

number of infections per infected individual at a single time step (i.e., the daily infected (but

not infectious) population per infected individual) has been obtained, they are removed from

the susceptible condition an placed into the latent condition L(t) which characterizes the part
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of the population that is infected but is not capable of transmitting the virus until an incuba-

tion period or latency period τL, has passed. After the latency period, the infected-latent popu-

lation becomes contagious, passing into the infectious condition I(t) and hence becoming able

to transmit the disease to the susceptible population by associating to each member of this

group a new random process of infection. A schematic representation of the stochastic model

is given in Fig 1; in the figure, an infectious population number n will generate a set of random

numbers following a Poisson distribution associated with infectious individuals and which are

summed to the infected population.

Fig 1. Schematic representation of the model. The figure shows an schematic representation of the stochastic model, where according to the number

of infectious population a random number associated to each infectious individual provides the new number of infections. After a latency period, the

amount of infected population at time tj passes into the infectious population generating a new set of random numbers associated to the new infections.

Once the recovery period has passed since the beginning of the infections, the infectious population is removed from this condition and moved either to

the recovered population with probability 1 − pd, or to the deceased population with probability pd, where pd represents a probability of decease.

https://doi.org/10.1371/journal.pone.0275216.g001
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The number of the latent and the infectious population at time tj+1 may be written as fol-

lows:

Lðtjþ1Þ ¼ LðtjÞ þ
XIðtjÞ

i¼1

fwðtjÞgi � yðtj � tLÞ Lðtj � tLÞ ; ð1Þ

Iðtjþ1Þ ¼ IðtjÞ þ yðtj � tLÞ Lðtj � tLÞ � yðtj � tIÞ Iðtj � tIÞ ;
ð2Þ

where τL and τI represents the period of latency and the period of infectivity, the former

defined as the period of time in which an infectious person is capable of transmitting the dis-

ease, also, the theta functions θ(�) are placed in the equations to start counting or removing

individuals from the different categories after the latency or infectivity periods have passed.

The set of random variables {χ(tj)}i gives the amount of new infected individuals due to the i-
th infectious individual at time tj (which with absolute certainty become infected). The random

variables are obtained from a Poisson process, i.e.:

fwðtjÞgi  PoisðliðtjÞÞ ð3Þ

where the intensities of the Poisson process, (i.e. the parameters λ(tj)), describe the mean num-

ber of contagious events at the time tj.
In a real scenario, the spreading of a disease depends on the degree of close contact among

the individuals and therefore, on the degree of urbanization and mobility of the population

[23]; however, we believe that part of these complex aspects could be captured into our model

by a proper parametrization of the Poisson processes, i.e., the daily mean number of infections

per infectious individual λi(tj). In this regard, we introduce a time-dependent function which

indirectly serves to modify the mean number of the daily infections by associating at each time

t the following mean of the number of infections produced daily:

liðtÞ ¼ li WðtÞ ; ð4Þ

where λi represents individual rates of contagious which could be represented as additional

random variables assigned to the i-th infectious individual following a probability distribution

P(%o), i.e., {λ}i P(%o) with parameter %o representing an initial estimation about the average

of the number of infections that a single infectious individual can cause per unit time, i.e., the

ratio between the basic reproduction number (calculated at the beginning of an epidemiologi-

cal event [5, 24, 25]) and the infectious period:

%o ¼ Ro=tI ; ð5Þ

additionally, W(t) in 4 is a time-dependent function (the weight function) which serves to

modulate the mean of the number of infections. In other words, the stochasticity of λi attempts

to simulate the contact patterns followed by the different individuals of the population given a

specific mean of contacts in the whole population while the weight function W(t) describes

modulations about the probability of getting infected, e.g., herd immunity, social distancing or

confinement. Along this paper we will focus on the case where λi follows a punctual distribu-

tion, i.e. P(%o)! %o, and we will address the employment of W(t) in the following subsection.

Finally, and following within the compartment direction, we consider that the infectious

population could pass, either to the recovered R(t) or to the deceased D(t) condition, depend-

ing on the development of the disease in the infected individual (see Fig 1). In the former, we

define the recovery period τR, after which the infected population heals with a given probabil-

ity of recovering 1 − pd, while the deceased population is the part of the infected population
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which does not heal according to the decease probability pd. For implementing this procedure

we make use of an additional random procedure to randomly select from the infected-latent

individuals and according a given fatality rate l, the infected population that will pass into the

deceased category at the time tji.e., we count every new set of infected-latent individuals

appearing at time tj+1 and for each of the new cases, we use a uniform distribution to generate

a random number r 2 unif(0, 1) which is compared to p = 1 − l and if r> p, we then remove in

the future time tj+1 + τL + τI = tj+1 + τR this individual from the infectious condition and place

him into the deceased condition D(t). In this sense, the number of recovered and deceased

population at the time tj+1 is given by:

Rðtjþ1Þ ¼ RðtjÞ þ yðtj � tIÞ ð1 � pdÞ Iðtj � tIÞ ; ð6Þ

Dðtjþ1Þ ¼ DðtjÞ þ yðtj � tIÞ pd Iðtj � tIÞ : ð7Þ

Along this paper, we will simulate the evolution of a disease possessing similar epidemiolog-

ical parameters to those of the COVID-19. We use a basic reproduction number of Ro = 4, an

incubation period τL = 4 days and an infectivity period of τI = τR − τL = 14 [6, 9, 10, 24–27].

Modulation of the Poisson parameters. Without the inclusion of the weight function W
(t), the model we propose represents a probabilistic model with replacements, i.e., the proba-

bility of infecting a certain amount of susceptible per infected individual would be only deter-

mined by a stationary given value, independently of the total population being infected or the

contact network. Nevertheless, an intuitive behavior is that as the population of susceptible

decreases, then also the chances of having large number of susceptible to fall into close contact

with the infectious population; in fact, this is exactly the underlying idea in the emergence of

the herd immunity effect. On the other hand, the probability of infection is also continuously

changing when contingency measures such as social distancing and home lockdown are

implemented in the population. In this regard, an appropriate functionality of the weight func-

tion could help us to incorporate such effects.

In the context of an exemplification, we make use of a weight function being the product of

a function characterizing the herd immunity effect with an additional function characterizing

the variability of the probability of infection along the transients of the epidemiological

dynamics due to confinement and other related contingency measures, i.e.:

WðtÞ ¼ HðtÞCðtÞ ð8Þ

where H(t) represents the herd immunity effect which is estimated to emerge when a large pro-

portion of the population (but not all), has gain certain immunity [28, 29], while C(t) repre-

sents additional changes in the probability of infection along the transients of the dynamics.

For the herd immunity effect, we employ a reversed logistic-like function whose argument

depends on the fraction of the population that has become infected along the evolution of the

epidemic, i.e.:

HðtÞ ¼
1þ exp

cNð0Þ
a

� �

1þ exp
cNðtÞ
a

� � ð1 � aÞ þ a ð9Þ

where cNðtjÞ ¼
Ptj

t¼to

PIðtÞ
i¼1
wiðtÞ=N, is the fraction of the cumulative infected population

(Latent and Infectious) at time tj; α is a free parameter serving to adjust the stationary value of

the infection in the long time limit, and a is a lower bound at which the probability of infection
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is reduced sufficiently to reach the stationarity. In our simulations, we set a = 0.1, whereas we

have seen that by choosing α = 0.22 the herd immunity is achieved when close to the 80% of

the population has been infected [29].

In Fig 2 we present the effect of the weight function to the epidemiological variables when it

only characterizes the herd immunity effect (i.e.W(t) = H(t), C(t) = 1). In the panels at the left

we present single realizations of the latent, the infected, the recovered the deceased, the cumu-

lative of the incidence (top left panel) and the incidence (bottom left panel), together with the

form of the weight function generating the herd immunity effect. At the right panel, the nor-

malized incidence is presented for different population sizes and when averaged over 5000

realizations.

The parameters employed in Fig 2 are fixed to the estimated values of the COVID-19 dis-

ease described above, although this choice is done only for demonstrative purposes to exem-

plify the manipulation of the incidence through the weight function and the Fig 2 does not

reflects a herd immunity effect emerging in the COVID-19 pandemic.

From Fig 2, one notices that the maximum incidence for a population of one million is

obtained from around 3 months after the beginning of the disease spread, reaching at its maxi-

mum an amount of roughly 2.5% to 2.7% of the total population. Additionally, if the popula-

tion is increased in size by one order of magnitude, the maximum is shifted around 20 to 30

days when no contingency measures are implemented in the population.

The effect of non-pharmaceutical strategies to contain the spreading of a disease is another

way to modify the probability of infection. In this regard, one could think that some of the

Fig 2. Effects of the weight function representing the herd immunity over the spreading of a disease based on the estimated COVID-19

parameters. At the first column (from left to right), the development of the latent, the infectious, the recovered, the deceased population and the

cumulative of the incidence are plotted for a single trajectory. At the left bottom panel is plotted the incidence with the form of the weight function

superimposed on the incidence, and representing the herd immunity effect. The y-axis labeled at the right of this panel corresponds to the values taken

by H(t). In the panel at the right, the averages over 5000 trajectories of the normalized incidence for different sizes of the population are shown. The

epidemiological parameters employed in the figure corresponds to the estimated values of the COVID-19.

https://doi.org/10.1371/journal.pone.0275216.g002
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most common or intuitive responses of the population under an epidemiological risk: a con-

finement responding to the daily experience about the development of the disease, e.g., a con-

finement depending upon the number of active cases. In other words, when a certain fraction

of the population has become symptomatic-infected (or deceased), it is more likely that some

of the susceptible population has knowledge about infected individuals in their social circles or

in the neighboring community, reacting with lockdown due to the fear of becoming infected.

Another possibility is that contingency measures are placed over the population (typically by

health authorities) along different stages of the evolution of the disease, attempting (primarily)

to find an equilibrium between the public health resources and different economical activities

that require contact among the population. In this case and as we have experienced with the

COVID-19 pandemic, all populations have gone through lockdown and relaxation of the con-

finements during different stages, which in turn, can be imposed at any time of the epidemio-

logical development by the health authorities.

We use our stochastic model to explore the behavior of the COVID-19 spreading in two dif-

ferent confinement scenarios, a confinement triggered upon the number of infectious popula-

tion and an idealized confinement regulated by health authorities at different stages of the

dispersion of the disease. In the former, we let C(t) to be Gaussian-decaying function of the

active cases (the infectious population), triggered once certain part of the population has

become infectious-symptomatic or deceased, i.e.:

CðtÞ ¼ 1þ ½expð� ½g IðtÞ=N�2 Þ � 1�yðIðtÞ � IoÞ ð10Þ

where I(t) are the infectious cases at time t, while Io represents a threshold about the amount of

infectious population at which the confinement function is triggered; γ is a decaying-rate

parameter describing how strong is the confinement and N is the total population. Fig 3 shows

the evolution of the disease for a confinement following a Gaussian decay as described in (10).

The left four frames represent Io = 1% and Io = 10% (from top to bottom) while from the left to

the right, γ = 5 and γ = 10.

In the figure one can see that the outcomes of a confinement relying on the number of the

infectious population depend on how strong and rigorous is the confinement and at what

stage of the dispersion of the disease is implemented. The different outcomes go from a flatten-

ing of the epidemic curve, happening when the confinement does not happens abruptly, to

revivals in the incidence which become periodic and more pronounced when the confinement

is strong and happens at earlier stages of the epidemic. At the right panel we have plotted the

latent and the infectious population under an abrupt confinement (γ = 50) at an early stage of

infection (Io = 1%), from which several revivals can be seen. These revivals can be explained by

looking at the curve of the latent population: in an abrupt confinement, large part of the popu-

lation remains on the latent condition and when the number of infectious population is

reduced, the latent population will tend to break out the confinement, beginning to produce

new contagious events. These results exhibit the need to employ correct times and duration of

the confinement measures and that abruptly confinements without proper regulatory mea-

sures may trigger revivals.

In the context of a confinement based on regulatory measures such as lockdown, social dis-

tancing and restrictions on mobility; they could be implemented at any time of the epidemio-

logical development and they will not follow a deterministic behavior (as shown previously).

In Fig 4, we explore the generation of the incidence when the probability of infection is manip-

ulated by a piece-wise time-dependent C(t) function. In this figure, we show single realizations

of the behavior of the incidence. In the figure one sees that if confinement is applied at rela-

tively early stages, then a reduction of the C(t) function below the 25% of its initial value
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produces a deceleration of the incidence, at 25% the incidence is maintained approximately at

a constant rate while anything above the 25% will correspond to increments in the incidence

with stronger accelerations for larger values of the C(t) function.

Empirical estimation of W(t). Having a self-consistent mechanism that could provide us

with an estimation about the evolution of the weight function based on the real available data,

would be desirable. We approximate to this problem by using the information accessible

through empirical data, such as the empirical incidence ie(t) and its cumulative ce(t). In our

stochastic approximation, the daily synthetic incidence is obtained from a set of random vari-

ables following a Poisson distribution; i.e. isðtjÞ ¼
PIðtjÞ

j¼1 wiðtjÞ, hence the statistical mean of the

cumulative of the daily incidence may be written as:

�csðtjÞ ¼
1

M

XM

l¼1

Xj

k¼1

XIlðtkÞ

i¼1

w
ðlÞ
i ðtkÞ ð11Þ

where M represents the total number of trajectories to which the statistical mean is performed.

If the number of trajectories is large enough, then the statistical mean will approach the expec-

tation value of the random variables, i.e., the Poisson parameters associated to the infectious

individuals.

Now, if the infection is sustained in the population (i.e. the probability of having none new

infections is very low), then fluctuations around the mean number of infectious individuals at

a given time tj does not significantly contribute to the averaged incidence over the ensemble;

Fig 3. Effect of a confinement based on a Gaussian decay as given in (10) for the COVID-19 parameters. At the four left panels, the incidence is

shown with the weight function (containing the effects of herd immunity as presented before, and the effects of the confinement), over-imposed on the

incidence. The rows from top to bottom show increasing values of Io: Io = 5% (top), Io = 10% (bottom), while the columns from left to right show an

increasing decaying rate parameter: γ = 5 (left), γ = 10 (right). At the right, the figure shows the effect of a strong and early confinement, γ = 50 and Io =

1%, to the latent and the infectious population. In all the cases, the heard immunity is incorporated with the same parameters as used in Fig 2 while we

use a total population of 10 million.

https://doi.org/10.1371/journal.pone.0275216.g003
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hence by considering the average of the infectious individuals at a given time t, i.e.
�IðtÞ ¼ 1=M

PM
l IlðtÞ, we can approximate the average of the cumulative to:

�csðtjÞ ¼
Xj

k¼1

X�I ðtkÞ

i¼1

liWðtkÞ:

In order to gain convergence, we fix as stated before, the Poisson parameters λi to be

obtained from a punctual distribution, i.e. P(%o)! {λ}i = %oδii = Ro/tI δii, hence we write for

the average of the cumulative:

�csðtjÞ ¼
Xj

k¼1

%o
�IðtkÞWðtkÞ : ð12Þ

Our aim is to give an approximate description about the time dependent reproduction

number through empirical quantities; in this regard, we do the replacement of the average syn-

thetic cumulative and the averaged infectious population with their correspondent empirical

descriptions; �csðtjÞ ! ceðtjÞ and �IðtjÞ ! IeðtjÞ thus, by expanding the sum to the first steps of

propagation, one can recurrently obtain the value of the weight function at the different times,

Fig 4. Effects of the piece-wise confinement in the incidence. At the first row (panels a), b) and c)), the confinement begins at the day 30 and the

decreasing along 7 days the function C(t) from its initial value (one) to a 20% of its initial value (panel a)), to a 25% of its initial value (panel b)) and to a

30% from its initial value (panel c)). At the second row (panels d), e) and f)) the confinement begins at the day 60 where the function C(t) is decreased

from its initial value to a 20% of its initial value (panel d)), to a 25% of its initial value (panel e)) and to a 30% from its initial value (panel f)). Finally at

the third row (panels g), h) and i)), the function C(t) is initially decreased to a 20% of its initial value along a period of 7 days, increased back to a value

of a 50% of its initial value along a period of 7 days and finally decreased back again at the day 120 along a period of 7 days to a 20% of its initial value

(panel g)), to a 25% (panel h)) and to a 30% (panel i)). The y-axis labeled at the right of panels c), f) and i) corresponds to the values taken by W(t), H(t)
and C(t). The figure was done using the COVID-19 parameters in a population of one million.

https://doi.org/10.1371/journal.pone.0275216.g004
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i.e.:

ceðt1Þ ¼ %oIeðt1ÞWðt1Þ ! Wðt1Þ ¼
ceðt1Þ
%oIeðt1Þ

ð13Þ

ceðt2Þ ¼ ceðt1Þ þ %oIeðt2ÞWðt2Þ ! Wðt2Þ ¼
ceðt2Þ � ceðt1Þ
%oIeðt2Þ

..

.
ð14Þ

ceðtjÞ ¼ ceðtj� 1Þ þ %oIeðtjÞWðtjÞ ! WðtjÞ ¼
ceðtjÞ � ceðtj� 1Þ

%oIeðtjÞ
; ð15Þ

therefore, at any given time, one can write for the weight function;

WðtjÞ ¼
ieðtjÞ
%oIeðtjÞ

¼
ieðtjÞ
IeðtjÞ

tI
Ro

ð16Þ

while the number of infectious individuals at time tj can be approximated, according the defi-

nitions done earlier, as: IeðtjÞ ¼
PtI

k¼0
ieðtj � tL � kÞ.

Results

Development of the COVID-19 in some Mexican states

Along the development of the COVID-19 pandemic, we have used the stochastic model to fol-

low the evolution of the spreading of the COVID-19 in certain Mexican states, some being the

largest populated states, (Estado de México�17 million, Ciudad de México�9 million, Jalisco

�8 million, Nuevo León�6 million), housing the largest Mexican metropolitan areas (i.e.,
México City, Guadalajara (Jalisco) and Monterrey (Nuevo León) having populations around 5

to 8 million), and some middle-size populated states (i.e., Chiapas�5.5 million, Michoacan

�5 million and Oaxaca�4 million) and the state of Nayarit which has a relative small popula-

tion�1 million.

To model the spreading of the COVID-19 in these states, we collect the empirical data of

the incidence through the reported cases by the scientific division of the Mexican federal gov-

ernment (CONACyT): https://datos.covid-19.conacyt.mx/ and with that, we construct the

empirical weight function as described in (Eq (16)), using the fixed epidemiological parame-

ters of τI = 14 days and Ro = 4. Once the empirical weight function is obtained, we generate the

synthetic incidence is as described in our model (following a Poisson distribution modulated

through the weight function). For doing this, we fix an initial time of propagation when the

empirical data shows a sustained incidence plus the latency period, and by entering the initial

latent individuals (the incidence from the past latency period), we initiate the generation of the

incidence by fitting the initial number of infectious individuals such that the averaged trajecto-

ries of the synthetic incidence is in good agreement to the empirical data (see the supporting

information for reference about the used initial conditions and estimation of the infectious of

each case included the empirical incidence used in our simulations).

Our simulations are presented from Figs 5 to 7. They show the comparison between the

incidence (first rows), the cumulative of the incidence (second rows) and the form of the

weight functions for each of the studied cases (third rows), all of them when averaged over

1000 trajectories of the stochastic model. In the general context one can notice same tenden-

cies in the dispersion of the disease and a good agreement to the real cases, with the possible

PLOS ONE Stochastic epidemiological model of SARS-CoV-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0275216 September 29, 2022 10 / 18

https://datos.covid-19.conacyt.mx/
https://doi.org/10.1371/journal.pone.0275216


exception of Campeche, (and less noticeable in Chiapas and Michoacan); all the discrepancies

starting around the day 350 from the beginning of the dispersion (February 18th, 2020), in

which the empirical data lies below our simulations. This discrepancy could be due to i) that

the weight function should have taken smaller values than those obtained by the empirical

data, which leads us to assume an under-counting on the infectious cases, i.e. there were many

infectious imported cases (see Eq (16)), or ii) there was an under-counting in the incidence.

The former case seems more likely since the discrepancy occurs at a time when the effect of

the second wave at a national level has begun to subside hence possible relaxation of mobility

measures may have happened.

At the last row of Figs 5–7 we present the form of the weight function for each of the studied

cases. The large values of W(t) shown in the gray shaded areas represent an initial interval of

the infection where the occurrence of the incidence, without reported infectious cases require

that the majority of the real infectious cases are imported cases while after the shaded area one

can expect that the dispersion of the disease relies mostly on the connection network of the

local region, the confinement and social distancing regulations.

In this context, one could ask about encoded periodic patterns in the empirical weight func-

tion when the local dispersion regime dominates, (i.e., the regime at which confinement is well

established and imported infectious cases do not contribute largely to the dispersion and esti-

mated in clear areas of the weight function figures (last rows of Figs 5–7)), which could provide

us with information about the development of the pandemic e.g.the local restrictions, the

Fig 5. Comparison between the synthetic data generated by the stochastic model and real scenarios happening in some Mexican states and the

form of their corresponding weight functions. The figure shows a comparison of the incidence (first row) and its cumulative (second row), between

the synthetic data (�is and �cs) generated by the stochastic model when averaged over 1000 trajectories to the real scenarios (ie and ce), happening in

Mexico City(CDMX), Jalisco(Jal) and Nuevo León(NL). The shaded region for the cumulative of the incidence represents the 1st and the 3th quartil of

the cumulative of the synthetic incidence generated randomly. The synthetic data was generated by employing the empirical estimation of the weight

function (last row) obtained form Eq (16). The figure shows a period of roughly a year and a half of the spreading of the SARS-CoV-2 (from February

18th, 2020 to August 20th, 2021).

https://doi.org/10.1371/journal.pone.0275216.g005
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testing, mobility and the contact network, or even emergent periodic behavior encoded in the

probability of infection, during the development of the COVID-19. These periodic patterns

can be examined by performing the Fourier transform of the weight function for which, the

peaks appearing in the spectrum correspond to frequencies associated to these periodic

behaviors.

In Fig 8 we present the absolute value of the one-sided Fourier transform of the weight

function of each of the studied cases. In the figure we identify different set of frequencies

whose corresponding periods (given in days) lie on time scales associated to the weekly

agenda, possibly confinements and de-confinements and also to larger patterns such as pan-

demic waves or even the emergence of seasonality. We identify a first set belonging to periods

within a week for which in almost all the cases (with the exception of Nayarit) three peaks are

present exactly at the same periods i.e. at 7 days, 3.5 days and 2.3 days which may confirm a

global (not local) behavior suggesting these are related to the weekly agenda concerning the

testing and readouts. A second time scale lies on the range from one two six months which

we believe are connected to pandemic waves or periods of confinement, de-confinement and

holiday seasons. At this time scale one observes periods that are shared by several states; the

periods of roughly six months shared by Nuevo León, Chiapas, Nayarit and Campeche; peri-

ods of 3 months shared by Ciudad de México, Jalisco, Estado de México, Michoacan, Chiapas,

Nayarit and Oaxaca, and periods of roughly one and a half months which appearing in the

states of Ciudad de México, Jalisco, Estado de México, Michoacan and Nayarit. The shared

Fig 6. Comparison between the synthetic data generated by the stochastic model and real scenarios happening in some Mexican states and the

form of their corresponding weight functions. The figure shows a comparison of the incidence (first row) and its cumulative (second row), between

the synthetic data (�is and �cs) generated by the stochastic model when averaged over 1000 trajectories to the real scenarios (ie and ce), happening in

Estado de Mexico(Edmx), Michoacan(Mich) and Chiapas(Chis). The shaded region for the cumulative of the incidence represents the 1st and the 3th

quartil of the cumulative of the synthetic incidence generated randomly. The synthetic data was generated by employing the empirical estimation of the

weight function (last row) obtained form Eq (16). The figure shows a period of roughly a year and a half of the spreading of the SARS-CoV-2 (from

February 18th, 2020 to August 20th, 2021).

https://doi.org/10.1371/journal.pone.0275216.g006

PLOS ONE Stochastic epidemiological model of SARS-CoV-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0275216 September 29, 2022 12 / 18

https://doi.org/10.1371/journal.pone.0275216.g006
https://doi.org/10.1371/journal.pone.0275216


periods could be in some cases explained due to the closeness of certain states (such is the

case of Ciudad de Mexico and Estado the Mexico or Jalisco and Michoacan) while other

shared peaks between not neighboring states may be telling us something about the connec-

tion network of those states. The larger time scale corresponds to a period of roughly 9 months

and is represented by the first peak appearing in Ciudad de México and Estado de México.

These states share the largest metropolitan area of Mexico (� 21 million), hence this pattern

suggest a relation to pandemic waves or even the emergence of a seasonal behavior of the

COVID-19. This time scale is only present in these states and it may be a consequence of the

amount of the population that has become infected, and the large degree of urbanization of

this region.

Discussion

The good agreement between the stochastic model here proposed and the studied cases rely on

considering the daily infectious events to follow Poisson distribution, together with the

approximations when deriving the empirical weight function; in fact, since the Poisson distri-

bution possess the property that if a set of random variables χ1, . . ., χn, each following indepen-

dent Poisson distributions with parameters λ1, . . ., λn, then the sum of the random variables

w ¼
Pn

i¼1
wi also follows a Poisson distribution with parameter, l ¼

Pn
i¼1
li. In our context,

Fig 7. Comparison between the synthetic data generated by the stochastic model and real scenarios happening in some Mexican states and the

form of their corresponding weight functions. The figure shows a comparison of the incidence (first row) and its cumulative (second row), between

the synthetic data (�is and �cs) generated by the stochastic model when averaged over 1000 trajectories to the real scenarios (ie and ce), happening in

Campeche(Camp), Nayarit(Nay) and Oaxaca(Oax). The shaded region for the cumulative of the incidence represents the 1st and the 3th quartil of the

cumulative of the synthetic incidence generated randomly. The synthetic data was generated by employing the empirical estimation of the weight

function (last row) obtained form Eq (16). The figure shows a period of roughly a year and a half of the spreading of the SARS-CoV-2 (from February

18th, 2020 to August 20th, 2021).

https://doi.org/10.1371/journal.pone.0275216.g007
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the total number of the daily new infections is a random variable of a Poisson distribution, i.e.

NðtjÞ ¼
XIðtjÞ

i¼1

wi  Poisð
XIðtjÞ

i

liWðtjÞÞ ; ð17Þ

which, under the assumption that all the individuals have the same probabilities of transmis-

sion, (this point refers to the employment of a punctual distribution about the λi’s, i.e. λi =

%oδii), then one can state that the probability of having n infections at the day tj should be given

by pn(tj) = (%oI(tj)W(tj))n exp(−%oI(tj)W(tj))/n!, or by considering the empirical estimation of

the weight function (Eq (16)):

pnðtjÞ ¼
iðtjÞ

n

n!
e� iðtjÞ :

i.e., the good agreement relies on the fact that we generate the daily incidence from a Poisson

distribution whose parameter is the empirical daily incidence. However, in the most general

case the assumption of considering same probabilities of transmission for any individual

might be difficult to meet and instead one could attempt to connect the weight function to

additional empirical quantities. In this regard, one could ask about the relation between W(t)
and an effective reproduction number RðtÞ, the later representing the statistical mean of the

infections caused by single individuals once the disease has begun to disperse. To answer this

question, lets consider the statistical mean of the number of infected at the time tj due to the i-

Fig 8. One-sided Fourier transform of the empirical weight function of some mexican federal entities. The figure shows the absolute value of the

one-sided Fourier transform of the weight function derived from the empirical weight function of: a) Ciudad de México, b) Jalisco, c) Nuevo León, d)

Estado de México, e) Michoacan, f) Chiapas, h) Campeche, i) Nayarit and j) Oaxaca. The colored dots mark the most relevant frequencies associated to

periodic patterns in the empirical weight function. The figure shows a period of roughly a year and a half of the spreading of the SARS-CoV-2 (from

February 18th, 2020 to August 20th, 2021).

https://doi.org/10.1371/journal.pone.0275216.g008
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th infectious individual:

NiðtjÞ ¼
X

k

½wi�k pk½liWðtjÞ� ¼ liWðtjÞ ð18Þ

where the [χi]k represents the possible outcomes of the random variable χi of the i-th infectious

at time tj, i.e., the possible number of infections that the i − th infectious could produce with

probability pk[λiW(tj)] of the k-th event and λiW(tj) is the statistical mean of all possible out-

comes of the i-th contagious individual at time tj. In the case where the Poisson parameters λi
are also distributed according to a probability distribution P(%o) (i.e., the rate at which each

infectious individuals infect is also distributed around a mean %o), then the average of the total

number of infected individuals at a fixed time tj may therefore be given by:

RðtjÞ=tI � �NðtjÞ ¼
XIðtjÞ

i¼1

NiðtjÞ
IðtjÞ

¼WðtjÞ
XIðtjÞ

i¼1

li

IðtjÞ
: ð19Þ

Let us consider now that at certain given time tj� t0, the number of infectious has become

large and representative about the dispersion of the disease in the population, i.e., the number

of infectious can be found homogeneously distributed in the population and the quantity
PIðtjÞ

i¼1 li=IðtjÞ becomes representative about the mean %o. In other words, for times t< t0 fluc-

tuations are expected to dominate and as the number of infectious increases, the fluctuations

reduce yielding a more localized value of the probability of infection. Therefore, at time tj> t0

one could find a close relation between the weight function defined earlier and the time-

dependent effective reproduction number:

RðtjÞ ¼ Ro WðtjÞ : ð20Þ

Finally, the stochastic model we are presenting has the advantage that it does not require

large computational resources to simulate the dispersion in high populated areas and provide

us with a tool to simulate and study idealizations about the changes in the structure of the con-

tact network among the populations. In the context of simulating real scenarios, the success of

the model relies on certain information about the evolution incidence, something that cannot

be known a priori, although the incorporation of agent-based or complex network models

could bring insights about the tendency of the incidence and forecast the spreading of the dis-

ease in a given interval of time. Moreover, the shared frequencies shown in Fig 8 suggest a pos-

sible synchronization of infectious events between populated areas, revealing deeper complex

connections among those regions which could be explored through the implementation of

hybrid stochastic-complex network models.

Conclusion

In this paper we have derived an stochastic compartmental epidemiological model constructed

from first principles consisting on a randomization about the number of the new infected pop-

ulation caused daily and following a Poisson process. We have shown that under this assump-

tion, one can reconstruct and simulate the evolution of the development of the COVID-19

pandemic in Mexico, by introducing an additional time-dependent function (the weight func-

tion) which is in turn connected to a normalized effective reproduction number. Along this

paper, we have focused on the epidemiological parameters corresponding to the COVID-19

disease and through the employment of the weight function, the model is capable of introduc-

ing and studying some conceptual behaviors such as herd immunity or certain idealized con-

finement scenarios. In the former we have employed an inverse-like logistic function of the
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fraction of the total infected population, which for the COVID-19 epidemiological parameters

and without any confinement measures, we have found that the peak of the incidence scales by

20 to 30 days when the total population is increased by one order of magnitude while indepen-

dently of the population sizes, the maximum incidence reaches from 2.5% to 2.7% of the total

population; in the latter, we have explored the reaction of the dispersion of the disease when

the population reacts to the infectious population (representing an intuitive reaction of the

population under an epidemiological emergence), finding revivals in the incidence (infective

waves) if confinement is abrupt and happens at earlier stages in the dispersion of the disease,

and a flattening of the epidemic curve on the contrary situation. In this context, we have

shown an acceleration of the generation of the incidence when the weight function takes values

above 25% of its initial value, a steady behavior in the generation of the incidence for a 25% of

its initial value and a deceleration in the incidence when the weight function take values below

the 25% of its initial value.

In addition, we have employed our stochastic model together with the definition of the

empirical weight function, to simulate the dispersion of the COVID-19 in some Mexican

states, some of them housing the major metropolitan areas in Mexico and finding a very good

agreement to the real scenarios implying that the infectious events in Mexico could be inter-

preted as homogeneously distributed events, providing us with an indirect mechanism to esti-

mate dates of super-infectious or anomalous events.

Finally, we have applied the one-sided Fourier transform to the empirical description of the

weight function with the intention to look at periodic patterns emerging in the mean of the

daily infection which may give us insights about the evolution of the pandemic in Mexico. In

this regard, we have found three different set of frequencies corresponding to different time-

scales which we identify to a weekly agenda about the capture of the readouts of the testings,

confinement and also larger patterns which may be related to pandemic waves or even

seasonality.
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